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Thoughts on data in control systems

increasing role of data-centric methods
in science/engineering/industry due to

* methodological advances in statistics,
optimization, & machine learning (ML)

¢ unprecedented availability of brute force:
deluge of data & computational power

e ...and frenzy surrounding big data & ML
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® jndirect data-driven control via models:

SysID .
data 25 model + uncertainty — control

e growing trend: direct data-driven control
by-passing models ... (again) hyped, why ?

The direct approach is viable alternative

e for some applications: model-based
approach is too complex to be useful
— too complex models, environments, sensing
modalities, specifications (e.g., wind farm)

¢ due to (well-known) shortcomings of ID
— too cumbersome, models not identified for
control, incompatible uncertainty estimates, ...

e when brute force data/compute available

Central promise: It is often
easier to learn a control policy
from data rather than a model.

Example 1973: autotuned PID
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minimize  control cost (u, z) } outer separation &
| i & optimization certainty

subjectto (u,z) satisfy state-space model p atiumlonce

where x estimated from (u,y) & model } middle opt. (— LQG case)

where  model identified from (u?,y?) data } inner opt. } no separation
(— 1D-4-control)

— nested multi-level optimization problem

direct (black-box) data-driven control — trade-offs

modular vs. end-2-end
suboptimal (?) vs. optimal
subject to (u,y) consistent with (ud,yd) data  convex vs. non-convex (?)

minimize  control cost (u, )

Additionally: account for uncertainty (hard to propagate in indirect approach)
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Indirect (models) vs. direct (data)

models are useful for
design & beyond

® some models too
complex to be useful

modular — easy end-to-end — suit-
able for non-experts

to debug & interpret K
id = noise filtering design handles noise

id = projection on
model class

harder to inject side
info but no bias error

harder to propagate
uncertainty through id

transparent: no
unmodeled dynamics

no robust separation
principle — suboptimal

possibly optimal but
often less tractable
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to debug & interpret K
id = noise filtering design handles noise

id = projection on
model class

harder to inject side
info but no bias error

harder to propagate
uncertainty through id

transparent: no
unmodeled dynamics

no robust separation
principle — suboptimal

possibly optimal but
often less tractable

lots of pros, cons, counterexamples, & no universal conclusions [discussion]
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A direct approach: dictionary + MPC

@ trajectory dictionary learning
® motion primitives / basis functions

¢ theory: Koopman & Liouville
practice: (E)DMD & particles
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A direct approach: dictionary + MPC

@ trajectory dictionary learning @ MPC optimizing over dictionary span

® motion primitives / basis functions

¢ theory: Koopman & Liouville
practice: (E)DMD & particles

— huge theory vs. practice gap
— back to basics: impulse response
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Now what if we had the impulse response recorded in our data-library?

o g1 g2 - ]=1[vs v v ...

— dynamic matrix control uiuure (1)
Ufuture (t - 1)

(Shell, 1970s): predictive ywe(t) = [vo vl v .. e (t — 2)
control from raw data

today : arbitrary, finite, & corrupted data, ... stochastic & nonlinear ?
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Today’s menu

1. behavioral system theory: fundamental lemma
2. DeePC: data-enabled predictive control
3. robustification via salient regularizations

4. cases studies from wind & power systems

+ 'Iow,‘fac)
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Today’s menu

1. behavioral system theory: fundamental lemma
DeePC: data-enabled predictive control

robustification via salient regularizations

A w0 D

cases studies from wind & power systems

blooming literature (2-3 ArXiv/week)
— tutorial [1inx] to get started

® [1ink] to graduate school material DATA-DRIVEN CONTROL BASED ON BEHAVIORAL APPROACH:
FROM THEORY TO APPLICATIONS IN POWER SYSTEMS

® [1link] to survey

Ivan Markovsky, Linbin Huang, and Florian Dérfler

° [ s ] 1. Markovsky is with ICREA, Pg. Liuis Companys 23, Barcelona, and CIMNE, Gran Capitan, Barcelona, Spain
1ink] to related bachelor lecture (e-mail: imarkovsky@cimne.upc. edu),

L. Huang and F. Dérfler are with the Automatic Control Laboratory, ETH Zirich, 8092 Zirrich, Switzerland (e-mails:

linhuang@ethz.ch, dorfler@ethz.ch).

® [1ink] to related publications
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Organization of this lecture

¢ | will feach the basics & provide pointers to more sophisticated
research material — study cutting-edge papers yourself

® it's a school: so we will spend time on the board — take notes

¢ We teach this material also in the ETH Zirich bachelor & have
plenty of background material + implementation experience
— please reach out to me or Saverio if you need anything

e we will take a break after 90 minutes — coffee ®
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Preview

complex 4-area power system:
large (n=208), few sensors (8),
nonlinear, noisy, stiff, input
constraints, & decentralized
control specifications

Control Signals VSC-HVDC

-7 y 06

System 04
Partitioning nes1s

control objective: oscillation I .
damping
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control specifications

control objective: oscillation
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Reality check: black magic or hoax ?

surely, nobody would put apply such a shaky data-driven method
® on the world’s most complex engineered system (the electric grid),
® using the world’s biggest actuators (Gigawatt-sized HVDC links),

® and subject to real-time, safety, stability, constraints . ..right?
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surely, nobody would put apply such a shaky data-driven method
® on the world’s most complex engineered system (the electric grid),
® using the world’s biggest actuators (Gigawatt-sized HVDC links),

¢ and subject to real-time, safety, stability, constraints ...right?

Dear Linbin and Florian,

| just submitted a very favourable review of your paper [..] which | believe could be of
importance to our work at Hitachi Power Grids. We do have [...] require off-line tuning that [...]
comissisioning engineer can do on his own [...] an adaptive approach would be very interesting.

If possible | would like to try the decentralized DeePC approach with our more detailed HVDC
system models on the interarea oscillation problem. Could so some code be made available
[..] ? Would you be interested in working together to do such a demonstration ? [...]

ENERGY.
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LTI system representations
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Behavioral view on dynamical systems

Definition: A discrete-time dynamical
system is a 3-tuple (Z>(, W, #) where

(i) Z>o is the discrete-time axis,
A is the set of

(if) W is the signal space, & . .
all trajectories
(iii)y # C W#>0 is the behavior:

et 03 oM cliscjek Fime Series W & e
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Behavioral view on dynamical systems

Definition: A discrete-time dynamical

system is a 3-tuple (Z>(, W, #) where

(i) Z>o is the discrete-time axis,

(i) W is the signal space, & % is the set of
all trajectories

(iiiy Z C W#=0 is the behavior.

Definition: The dynamical system (Z>¢, W, %) is
(i) linear if W is a vector space & 4 is a subspace of WZ=o

(i) & time-invariant if  C 0%, where cw; = wy41.

LTI system = shift-invariant subspace of trajectory space
— abstract perspective suited for data-driven control
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Properties of the LTI traAectory space
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LTI systems & matrix time series

foundation of subspace system identification & signal recovery algorithms
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LTI systems & matrix time series

foundation of subspace system identification & signal recovery algorithms
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{ (u,y) € ROPT . 3p e R s t. — colspan (”Z‘]“) <“’g:~‘>

v = Az + Bu,y=Cz+ Du } (ltll;,_l> <uf2>

parametric state-space model raw data (every column is an experiment)

if and only if the trajectory matrix has rank m - T +n forall T > ¢
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set of all T-length trajectories = <ZZ:> (jé;) (:é:)
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set of all T-length trajectories = <u‘.’ﬂ) (v’h) (uﬂ)
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2t = Az 4+ Bu,y= Cz + Du } (u%..) ('uf{'g) <ui5>
T vho) \¥hs

all trajectories constructible from finitely many previous trajectories
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set of all T-length trajectories
{ (u,y) e RHPT . 3p e RPTgt, ——— walkpEm <;;;’j,) (Vg_

2t = Az + Bu, y = Czx + Du } (u%.) (“‘7',2> <“55>
o Y53

all trajectories constructible from finitely many previous trajectories

standing on the shoulders of giants:
classic Willems’ result was only “if” & Jan €. Wile

“ESAT

required further assumptions: Hankel,
persistency of excitation, controllability

A note on persistency of excitation

*, Paolo Rapisarda®, Ivan Marko

**, Bart L.M. De Moor*

3001
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{ (u,y) € RHPT . 3 c RPT g, ——— colspan <;,;’j,) (ng> (u’;)

2t = Az + Bu, y = Czx + Du } (u%i.) (“‘;,2> <“ff>
Yr,3

all trajectories constructible from finitely many previous trajectories

* Standing on the ShOUIderS Of giants A note on persistency of excitation
CIaSSiC Wi”ems’ result was Only “if” & Jan C V\v’\llcm\'“AP‘\oln Rapisarda®, Ivan Markovsky* *, Bart L.M. De Moor*
required further assumptions: Hankel, o
persistency of excitation, controllability

¢ terminology fundamental is justified : motion primitives, subspace SysID,
dictionary learning, (E)DMD, ... all implicitly rely on this equivalence

® many recent extensions to other system classes (bi-linear, descriptor,
LPV, delay, Volterra series, Wiener-Hammerstein, ...), other matrix
data structures (mosaic Hankel, Page, ...), & other proof methods
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Definition: The data signal u¢ € R™”< of length T} is persistently
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exciting of order T if the Hankel matrix [ o ] is of full rankm- T

ur - ur,

gor gueQ k: T, “T¢4 2 T = Tq s 5«&&;5;\."15

22/53



Input design for Fundamental Lemma

U Ug

Definition: The data signal u¢ € R™”< of length T} is persistently

Ur -t UTy—T+1

exciting of order T if the Hankel matrix [ o ] is of full rank.

ur - ur,

Input design [Willems et al, '05]: Controllable LTI system & persistently
exciting input u¢ of order T +n = rank (%ﬂ (;‘j )) =mT +n.
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Data matrix structures & preprocessing
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Bird’s view & today’s sample path
through the accelerating literature

stabilization of
nonlinear

systems
[Persis & Tesi, '21]

robust stability
& recursive
feasibility

[Berberich et al., 20]

(distributional)
robustness
[Coulson et al., 20,
Huang et al., '21]

non-control d
applications: inf at"t‘, it
- informativity
PE in linear e.g., estimation. - 4
systems filtering, & SysID data-driven |- [van Waarde et al., *20]
[Green & Moore, '86] control of linear >
systems
~ [Persis & Tesi, '19] [ ~]
S e LFT formulation
Sa [Berberich et al., '20]
subspace Fundamental explicit
intersection | _ 5, Lemma Wwilems, implicit
methods Rapisarda, &
[Moonen et al., '89] Markovsky '05] \ many recent
7 A variations &
pid / extensions /
-, / [van Waarde et al., '20]
? / L
/ regularizations | 5
/ deterministic & MPC scenario
/ data-driven [Coulson et al., '19]
/ I~
, control
; & Rapisarda, '08] generalized low-
b rank version —>
subspace [Markovsky
predictive & Dérler, *20]
control
[Favoreel et al., '99]

regularizer from
relaxed SysID
[Dérler et al., 21]

A

instrumental

1980s

2005

today

>
>

variables
[Wingerden et al., "22]

subspace
methods
[Breschi, Chiuso, &
Formention '22]
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Output Model Predictive Control (MPC)

Tfuture
. 2 2 quadratic cost with
BT T kz: g = reli + luxlln R>0,Q=08&ref. r
=1
subject to zy.1 = Az + Bus - - model for prediction
Y = C{Ek 4 Duk € { B future} with & € [17 Tfuture}
up €U
e € Vk e {1,..., Tt} hard operational or

safety constraints
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Tfuture
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BT kz_:l g = reli + luxlln R>0,Q=0&ref. r
subject to zp. 1 = Az + Bug - - model for prediction
Y = C.’Ek - Duk € { B future} with k € [17 Tfuture}

model for estimation
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Tini > lag (many flavors)
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Output Model Predictive Control (MPC)

Tfuture 5 5
minimize Z —r + ||u
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Vk € {1,..., Ture}

“IMPC] has perhaps too little system
theory and too much brute force

— Willems 07

quadratic cost with
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model for estimation
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hard operational or
safety constraints
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Output Model Predictive Control (MPC)

Tfuture

. 2 2 quadratic cost with
BT kz_:l g = el + luxlln R>0,Q=0&ref. r

subject to = icti
B L R Rt e
Tp41 = Axy + Buy
yx = Czp + Duy,
up € U
Y €Y }

model for estimation
} Vk € {=Thi—1,...,0} withk € [T —1,0] &
Tini > lag (many flavors)

Vk e {1,..., Tt} hard operational or
safety constraints

“IMPC] has perhaps too little system
theory and too much brute force [...], but
MPC is an area where all aspects of the
field [...] are in synergy.” — Willems ‘07

Elegance aside, for an LTI
plant, deterministic, & with
known model, MPC is the
gold standard of control.
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Data-enabled Predictive Control (DeePC)

Tfmure . .
minimize Z e — 7 ”2 +l ”2 quadratic cost with
Py 2 Y =Tkl ™ lUkllp R>0,Q>0&tef. r
Uini non-parametric
subject to %p<u:) g = Yini model for prediction
& U and estimation
Y
up €U hard operational or
Y €Y } vk € {1, e} safety constraints

¢ real-time measurements (uin;, yini) for estimation  updated online
) th T 20
¢ trajectory matrix %(Zd) from past collected offline
experimental data (could be adapted online)
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Data-enabled Predictive Control (DeePC)

T
g uy = Yk~ TrllQ kiR R+0,Q = 08&ref. r
Uini non-parametric
subject to z g = _Yini model f_or pr_edlctlon
u and estimation
Y
up €U hard operational or
yr €Y } k€ {1, Thure} safety constraints

¢ real-time measurements (uinj, yini) for estimation  updated online

¢ trajectory matrix %(ﬁ,) from past collected offline
experimental data (could be adapted online)

— equivalent to MPC in deterministic LTI case ...
but needs to be robustified in case of noise/nonlinearity ! 27/53



Regularizations to make it work

Tiuture o o
minimize Z —r + ||u
piniine > = il + sl

Uini

subject to %(ZZ) -g = i
( u

Y

up €U

ey } Vke{l,..., Thuture }
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Regularizations to make it work

measurement noise

Tiuture
minimize Z lye = ill% + lluell e + Ayl — infeasible yiy estimate
9:®Y9 i — estimation slack o

— moving-horizon

. d least-square filter
subject to %<Zd> g =

o o 9 O

up €U

o e y} Vk e {1,..., Tiuure}
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noisy or nonlinear
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Regularizations to make it work

Thare measurement noise
mlnlrmze Z lye — 7’k||Q + HukHR + A, llell, + Ay h(g) — infeasible yin estimate
¥ O — estimation slack o

— moving-horizon

. d least-square filter
subject to %”(Zd> g =

[eo RN ES i en)

noisy or nonlinear
(offline) data matrix

} VEk € {1,..., Tuwre} — any () feasible
— add regularizer h(g)

u €U
Yk €Y

Bayesian intuition: regularization < prior, e.g., h(g) = ||g|/: sparsely
selects {trajectory matrix columns} = {motion primitives} ~ low-order basis

Robustness intuition: regularization < robustifies, e.g., in a simple case
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+ implicit SysID



Regularization = relaxing low-rank
approximation in pre-processing

minimize,, , , control cost (u, y)

X optimal control
subject to Eﬂ = (“) g } P

() - ()

subject to rank (. (%)) =mL +n

where ( ) € argmin

} low-rank approximation
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Regularization = relaxing low-rank
approximation in pre-processing

minimize,, , , control cost (u, y)

X optimal control
subject to Eﬂ = (“) g } P
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} low-rank approximation
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(i-regularization = relaxation of low-rank

approximation & smoothened order selection
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Regularization = relaxing low-rank
approximation in pre-processing

minimize,, , , control cost (u, y)
bject ¢ =
subject to o = (y) g

where (Z) € argmin
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subject to rank (. (%)) =mL +n

J sequence of convex relaxations |

minimize,  , controlcost(u,y) + A, - [lg]1
u d
bject t = ()
subject to Lj i)

(i-regularization = relaxation of low-rank
approximation & smoothened order selection

} optimal control

} low-rank approximation
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Certainty-Equivalence Regularizer
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Regularization < reformulate subspace ID

— indirect SysID + control problem
minimize,, , control cost(u,y)
Uini
subjectto y = K* | yini
u
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Regularization < reformulate subspace ID

partition data as in subspace ID: — indirect SysID + control problem
g/p (m 4 p)Ti minimize,,, control cost(u, y)
%< uj) ~ |¥p Uini
i e * .
' Z;}f ("L + P)Tfuture SUbJeCt @ Y= K Yini

u
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Regularization < reformulate subspace ID

partition data as in subspace ID:

UP
o u Yp (m + p)Tini
( Y ) ~ Us -
Y} (m + p) Thuture

— indirect SysID + control problem

minimize,, , control cost(u,y)

Uini
subjectto y = K* | yini
u
Up
where K*=argming ||[Yr — K | Y,
Ut
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Regularization < reformulate subspace ID

partition data as in subspace ID: — indirect SysID + control problem

Up (m + p)Thn minimize,,, control cost(u, y)

%(u::) oY Uini

i e * e .

y Us (m -+ P) Thore subjectto y = K* | yini

Y U
ID of optimal multi-step predictor Up
P pUp R where K*=argming ||[Yr — K | Y,
as in SPC: K*:YF[Yg} Ut

Ut
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Regularization < reformulate subspace ID

partition data as in subspace ID: — indirect SysID + control problem
Up (m 4 p)Ti minimize,,, control cost(u, y)
%(u::) oY Uini
Y U (m + )T subjectto y = K* | yini
Y} uture U
. . . Up
ID of optimal multi stepUpre-Td|ctor where K* = argming ||[Ye — K | Y,
as in SPC: K*:YF[Yg} Ut
Ut

The above is equivalent
to regularized DeePC

minimize, ., controlcost(u,y) + A, HProj (Zj) g
: 2

Uini
Yini
u
Yy

subjectto %(ZZ) g =
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Regularization < reformulate subspace ID

partition data as in subspace ID: — indirect SysID + control problem
Up (m 4 p)Ti minimize,,, control cost(u, y)
%(u::) oY Uini
Y U (m 4 )T subjectto y = K* | yini
Y} uture U
. . . Up
ID of optimal multi stepUpre-Td|ctor where K* = argming ||[Ye — K | Y,
as in SPC: K*:YF[Yg} Ut
Ut

The above is equivalent
to regularized DeePC

minimize, ., controlcost(u,y) + A, HProj (Zj) g
: 2

where Proj (ZZ) projects WUini

) U, ) d ini

orthogonal to ker[YS] subjectto %(Z") g = y;r.
Us

Y
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Performance of regularizers applied
to a stochastic LTI system
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Performance of regularizers applied
to a stochastic LTI system
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Case study: wind turbine

unknown system

detailed industrial model: 37 states &
highly nonlinear (abc < dg, MPTT,
PLL, power specs, dynamics, etc.)

turbine & grid model unknown to
commissioning engineer & operator

weak grid + PLL + fault — loss of sync

disturbance to be rejected by DeePC
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Case study wind turbine s

— h(9) = llgl3
oscillation data h
— g 9
observed  collection (9) = llgl
unknown system

h(g) = HPIO] qH

DeePC activated

54
©
@

active power (p.u.)
)

o o

o ©

=}
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Case study: wind turbi

unknown system

outer
control loops
1.
S

current outputs

control loop

detailed industrial model: 37 states &
highly nonlinear (abc < dg, MPTT,
PLL, power specs, dynamics, etc.)

turbine & grid model unknown to
commissioning engineer & operator

weak grid + PLL + fault — loss of sync

disturbance to be rejected by DeePC

active power (p.u.)

reactive power (p.u.)

closed-loop cost

o
©
5

Il
©
T

o
™
o

ne

oscillation data
observed  collection

—— without additional control
— h(9) = llgl3
— hlg) = llglh s
fud
o= [ ().
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AvAﬁAvﬂvﬁvﬁvl\x

8 10 12
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[

time [s]

regularizer tuning i
<
¢

AL AR]T
8 10 12
— hlg) = llgll3
— h(g) =llglh
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Case study ++ : wind farm

—— without additional control —— subspace ID + control
[(— h(g) = llgllx — h(g) = gl
DeePC + fud 2
|~ hig)= ||Pr01 (‘;4) y”
2
60 —

frequency (Hz)
a
o
©

60
So02fF
s
s
o1 -
= =
€
8 o —

0 10 20 30 40 50 60

time [s]

¢ high-fidelity models for turbines,
machines, & IEEE-9-bus system

rotor speed (p.u.)
o o
(==} ©

ower (p

o o

o o

¢ fast frequency response via

. . ®03f
decentralized DeePC at turbines 5 p " . p 4




DeePC is easy to implement — try it!

— simple script adapted from our ETH Zurich bachelor course on

Computational control: https://colab.research.google.com/
drive/1URdRqr-UpOA6uDMjlUBgumsoAAP11GId?usp=sharing

( & DeePC_Primitive.ipynb
File Edit View Insert Runtime Tools Help Changes will not be saved

+ Code + Text 4 CopytoDrive

Q
~ Simple DeePC Implementation
3
We will implement DeePC on a double integrator system. This script is adapted from an exercise in our bachelor lecture Computational Control

] Systems.
[ 1 import numpy as np # For linear algebra
import cvxpy as cp
import matplotlib.pyplot as plt # For plots
np. random.seed(1) # Generate random seed
np.set_printoptions(precision=1) # Set nice printing format

Initialize discrete-time double integrator system:

[] dt=.1
mass = 1
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Towards a theory for nonlinear systems

idea: lift nonlinear system to large/oco-dimensional bi-/linear system
— Carleman, Volterra, Fliess, Koopman, Sturm-Liouville methods
— nonlinear dynamics can be approximated by LTI on finite horizon

regularization singles out relevant features / basis functions in data

¥ 9ﬁtcps://ww.reseaxch—cou 0.11850/493419
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Works very well across case studies

pos 2

T quadruped by Fawoets, Afsari o ‘combined cycle power plant (by P Mahdavipour et. al)

charging currnt densy (4/m)
{satify PE condtion)

e [ =

[tae of charge (50C) (9%-100%)

robotic excavator

J. Wang et al) battery charging (by K. Chen et al)

wind turbine control

L (no contol)

grid-connected converter synchronous motor drive energy hub & building automation

power system oscilation damping
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regularization
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robustification



Distributional robustification beyond LTI

-~

* problem abstraction: min,cx c(&,z)

where E denotes measured data
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Distributional robustification beyond LTI

e problem abstraction: min,cx c(g:c) = mingex E. lg[ (&, T)]

where 5 denotes measured data with empirical distribution P= oA

s/,f
?fz

38/53



Distributional robustification beyond LTI

* problem abstraction: mingcx c( E,x) = mingex E. p [c (&, 2)]

where E denotes measured data with empirical distribution P= 55

= poor out-of-sample performance of above sample-average solution z*
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Distributional robustification beyond LTI

* problem abstraction: mingcx c( g,x) = mingex E. p [c(&,2)]

where E denotes measured data with empirical distribution P= 55

= poor out-of-sample performance of above sample-average solution z*
for real problem: E:_p[c (& 2*)] where P is the unknown distribution of ¢

o _distributionally robust formulation accounting for all (possibly nonlinear)
stochastic processes that could have generated the data

infxex SUPqeB. (B) Ecna [C (&, 33)]

[}

hogivize ooer all A whih ax € - choge”
'(0 ha 90\[&} ﬁ
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Distributional robustification beyond LTI

* problem abstraction: mingcx c( {,x) = mingex E, p[c(¢, )]

where ¢ denotes measured data with empirical distribution P = og

= poor out-of-sample performance of above sample-average solution z*
for real problem: E:_p[c (& 2*)] where P is the unknown distribution of ¢

e distributionally robust formulation accounting for all (possibly nonlinear)
stochastic processes that could have generated the data T P

inf _ . supo4gle) Ee~alc(é )]

~

where B.(P) is ah e-Wasserstein ball - [ ;.
centered at empirical sample distribution P :

Be(ﬁ) = {P : irﬁf/”f—é“p dll < 6} :— Y

wr 3pIsp




e distributionally robustness = regularization : under minor conditions

~

-~

distributional robust formulation
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e distributionally robustness = regularization : under minor conditions

Theorem: inf sup E¢q[c(§,2)] = min ¢ (E, m) + eLip(c) - [|=[},
zEXQEB, (P) TEX

distributional robust formulation previous regularized DeePC formulation

Cor: (.-robustness intrajectory space
< /{;-regularization of DeePC
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e distributionally robustness = regularization : under minor conditions

Theorem: inf sup E;q[c(2)] =
zEXQG.S)

reX

min c(f, ) +‘.Ip c) -1zl

distributional robust formulation

Cor: (.-robustness intrajectory space
< /{;-regularization of DeePC

previous regularized DeePC formulation

10°

cost
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e distributionally robustness = regularization : under minor conditions

Theorem: inf sup E¢q[c(§,2)] = min ¢ (E, m) + eLip(c) - [|=[},

z€XQeB. (P) TEX
distributional robust formulation previous regularized DeePC formulation
ijgo‘st
1
Cor: (.-robustness intrajectory space N \‘ /
<= (;-regularization of DeePC S
' /
05 N S / €
. . Tracking Error vs. €
® measure concenfration: average matrix 200
LSV #i(y%) from iid. experiments 5 s
. &
— ambiguity set B.(P) includes true P Zoo
with high confidence if ¢ ~ 1/N/dim(&) . [
N=10
00 0.002 0.004 0.006 0.008 0.01 0.012
Wasserstein ball radius e
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Further ingredients

2 300
-‘% B Unstructured set p,, = 27.39
e more structured uncertainty sets: 32 *® S = OES

tractable reformulations (relaxations) ¢ o JJJJ J

Qo

3
& performance guarantees 5, 1TJJJ)) Lik JJJJJ

<10 1.5 2.( 2.5 3.0

3.5 1.0 > l.S(Xw.‘x,
Realized cost
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Further ingredients

2 300
% B Unstructured set p,, = 27.39
e more structured uncertainty sets: 32 *® S

tractable reformulations (relaxations) 3 o

Qo
& performance guarantees s, 7JJJ JJJJJJ

<10 1.5 2.0 2.5 3.0 3.5 1.0 > l.D(XmJ)
Realized cost

e distributionally robust probabilistic constraints

SUDoep, (B) CVaR?,a <= averaging + regularization + tightening

0.2 T T T T

T T T T

VaR]_,(X)

11—«

CVaRY (X)) |

l—«o
1

ok P(X)<1-—a

0 L
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Further ingredients

2 300
-‘% B Unstructured set p,, = 27.39
e more structured uncertainty sets: 32 *® S

tractable reformulations (relaxations) 3 o

Qo
& performance guarantees s, 7JJJ JJJJJJ

<10 15 3.0 5 40 =45y
Reahzed cost (i

e distributionally robust probabilistic constraints
SUDoep, (B) CVaR _. <= averaging + regularization + tightening

0.2 T T T T

T T T T

VaR]_,(X)

11—«

ot P(X)<1-— .
(X)<1-a CVaR®__ (X)

0 L

¢ replace (finite) moving horizon estimation via (") by recursive Kalman

filtering based on optimization solution g* as hidden state ...
40/53



white elephant



white elephant: how does DeePC
perform against SysID + control ?



white elephant: how does DeePC
perform against SysID + control ?

surprise: DeePC consistently

beats (certainty-equivalence)

identification & control of LTI
models across all real case studies!



white elephant: how does DeePC
perform against SysID + control ?

surprise: DeePC consistently

beats (certainty-equivalence)

identification & control of LTI
models across all real case studies!

why ?1?



Comparison: direct vs. indirect control

indirect ID-based data-driven control
minimize ~ control cost (u, y)
subjectto (u,y) satisfy parametric model
where model € argmin id cost (u?,y?)

subject to model € LTl(n, ¢) class
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Comparison: direct vs. indirect control

indirect ID-based data-driven control ID projects data on

R | the set of LTI models
minimize ~ control cost (u, y) o with parameters (n, 0
subjectto (u,y) satisfy parametric model e removes noise & thus

lowers variance error

e suffers bias error if

where model € argmin id cost (u?,y?) }ID
plant is not LTl(n, ¢)

subject to model € LTl(n, ¢) class

direct fegularized data-driven control

minimize control cost (u,y) + Adfegularizer

subjectto (u,y) consistent with (u?,y?) data

i
[W) e Im H(;«}I)
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Comparison: direct vs. indirect control

indirect ID-based data-driven control ID projects data on
the set of LTI models

® with parameters (n, ¢)

subjectto (u,y) satisfy parametric model e removes noise & thus
lowers variance error

e suffers bias error if
plant is not LTl(n, ¢)

minimize ~ control cost (u, y)

where model € argmin id cost (u?,y?) }ID

subject to model € LTl(n, ¢) class

direct regularized data-driven control ® regularization robustifies

— choosing A makes it work

minimize control cost (u,y) + A- regularizer .
® no projectionon LTI(n, ¢)

subjectto (u,y) consistent with (u?,y?) data ~ no de-noising & no bias
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Comparison: direct vs. indirect control

indirect ID-based data-driven control ID projects data on
the set of LTI models

® with parameters (n, ¢)

subject to (u,y) satisfy parametric model e removes noise & thus
} lowers variance error
ID

minimize ~ control cost (u, y)

where model € argmin id cost (u?,y?)
e suffers bias error if

subject to model € LTl(n, ¢) class plant is not LTI(n, £)

direct regularized data-driven control ® regularization robustifies

L ) — choosing A makes it work
minimize control cost (u,y) + A- regularizer .
® no projectionon LTI(n, ¢)

subjectto (u,y) consistent with (u?,y?) data ~ no de-noising & no bias

hypothesis: ID wins in stochastic (variance) & DeePC in nonlinear (bias) case
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Case study: direct vs. indirect control

stochastic LTI case

* | QR control of 5th order LTI system

® Gaussian noise with varying noise to
signal ratio (100 rollouts each case)

e /i-regularized DeePC, SysID via
N4SID, & judicious hyper-parameters
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Case study: direct vs. indirect control

stochastic LTI case — indirect ID wins
* | QR control of 5th order LTI system
® Gaussian noise with varying noise to
signal ratio (100 rollouts each case)
e /i-regularized DeePC, SysID via
N4SID, & judicious hyper-parameters

‘—Direct —— Indirect + mean‘

Ob v d P Tataidie @, &, 5 0.5, 5,5,7
0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%11%12%13%14%15%
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Case study: direct vs. indirect control

stochastic LTI case — indirect IDwins nonlinear case
¢ LQR control of 5th order LTI system e Lotka-Volterra + control: % = f(z,u)
® Gaussian noise with varying noise to e interpolated system

signal ratio (100 rollouts each case) T = € finearized (T, 1) + (1 —€) - f(z,u)

e /;-regularized DeePC, SysID via e same ID & DeePC as on the left
N4SID, & judicious hyper-parameters & 100 initial =, rollouts for each e
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stochastic LTI case — indirectIDwins nonlinear case
¢ LQR control of 5th order LTI system e Lotka-Volterra + control: % = f(z,u)
® Gaussian noise with varying noise to e interpolated system
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Case study: direct vs. indirect control

stochastic LTI case — indirect IDwins nonlinear case — direct DeePC wins
¢ LQR control of 5th order LTI system e Lotka-Volterra + control: % = f(z,u)
® Gaussian noise with varying noise to e interpolated system

signal ratio (100 rollouts each case) T = € finearized (T, 1) + (1 —€) - f(z,u)

e /;-regularized DeePC, SysID via e same ID & DeePC as on the left
N4SID, & judicious hyper-parameters & 100 initial =, rollouts for each e

‘—Direct —— Indirect + mean‘ ‘—Direct ——Indirect + mean
4 x10°
g x10 . 9
i ¢
= 7
<6
g : 6
Ss ¢
S5
4
Zs3
- +
B
c2 <A 2
£ N 105
&1 ) & i
- Top Ok . iod : LA
NUOFIE L FEF ST T T S - -~ 0
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Power system case study revisited

B s 1
Phase-Locked Loop Vie u? Vou 565 @b v| | 7 7 V. ,_{'M =HO s67
1 ine I

-
Vo= [ ] e LY
e T o (T o LA RV .
DC Voltage Control Loop | {12
!
T el s
Vaahe Vaa, Vaq \"‘”4;?—-@ .
Vag Va, » -
Taane oI ” “ y % -
Voltage Control Loop Current Control Loop i P
”T AL o
04
& pa 15 4
oof
VSC-HVDC -
Station 1 e

Control Diagram of VSC-HVDC Station 2

Phase-Locked Loop Pex

- w - g
Vig—{ P} o Pg‘;xg—-{ P > S
Power Control Loop d 2
I - N
, Iy 4= un Py N
Vinhe Via Vil b ’H?—HE - L — s
Tia Lahy Vaa . Via o1 O }—.:.— G [ juers _.:,_{ STOses
) " 1! Voltage Control Loop Currefit Contro| Loop 562 O+ | = — I 1R sca
2 tin s E g
Control Diagram of VSC-HVDC Station 1 Area 1 Lo 37—11(“- F:f%, 2 Area2

® complex 4-area power system: large (n = 208), few measurements (8),
nonlinear, noisy, stiff, input constraints, & decentralized control

. :
e L tme(

® control objective: damping of inter-area oscillations via HVDC link
¢ real-time MPC & DeePC prohibitive — choose T', Tini, & Tiuture Wisely
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Centralized control

08} - DeePC
P (p.u.) ol - PEM'M PC
0.4

= Prediction Error
Method (PEM)
System ID + MPC

0.2}

0.6

0.4

P (p.u.) 0:2_ t < 10s: open loop

data collection with

0.0} white noise excitat.

t > 10s: control

0.6

0.4
P; (p.u.) 02

0.0

0 5 10 15 20 25 30
time (s) 44/53



Performance: DeePC wins (clearly!)

s 100 — : : : : : :
5 DeePC

& 9 I PEM-MPC |
>

£ 60 1
(%]

S 40 ]
(]

€ 20 .
2 [
= m = W . =

0
5000 5500 6000 6500 7000 7500 8000
Measured closed-loop cost = 3, [lyx — il + llurll %
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DeePC hyper-parameter tuning

108
14000
12000
g 10° 2
4 S 10000
8 3
3 g 8000
8 10* 8
o o
6000
4000
3
1010-2 10° 102 10% 10° 0 20 40 60 80 100 120
Ag Tini &9
q,regularizer Ag estimation horizon Ty,
o for distributional robustness o for model complexity = lag
~ radius of Wasserstein ball : -
® T, > 50 is sufficient & low
* wide range of sweet spots computational complexity

— choose \; = 20 — choose T = 60
46/53



x10°

25 6000

5000

4000

3000

Closed-loop cost
&

2%, 50 100 15k 200
0.5 !
oiss
0 50 100 150 200
Ttuture

prediction horizon Tiyre

¢ nominal MPC is stable if
horizon Tire lONg enough

— choose Tiyiure = 120 &
apply first 60 input steps

Closed-loop cost

8000

7000

6000

5000

4000

3000

2000

1000 1500 2000 2500 3000 3500
T

data length T

long enough for low-rank
condition but card(g) grows

— choose T' = 1500
(data matrix =~ square)

47/53



Computational cost

0.8 +

06 4
Py (p.u.) 04
ozl
0 5 10 15 20 25 30
0.6]>
0.4
P (p.u.) o2l al
0.0F
0 5 10 15 20 25 30
0.6} [
0.4} q
Ps3 (p.u.) 0.2
0.0+
L L L L L
0 5 10 20 25 30

15
time (s)

=

T = 1500
Ag =20
Tini =60

Tiuture = 120 & apply
first 60 input steps

sampling time = 0.02s

solver (OSQP) time = 1s
(on Intel Core i5 7200U)

implementable
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Comparison: Hankel & Page matrix

x10% x103
25 8

Hankel matrix

Hankel matrix with
SVD (Tthreshhold = 1)

W Page matrix

Averaged Closed-loop Cost

Page matrix with
SVD (othreshhold = 1)

10 20 30 40
Control Horizon k Control Horizon k

e comparison baseline: Hankel and Page matrices of same size
e perfomance: Page consistency beats Hankel matrix predictors

offline denoising via SVD threshholding works wonderfully for
Page though obviously not for Hankel (entries are constrained)

e effects very pronounced for longer horizon (= open-loop time)

® price-to-be-paid: Page matrix predictor requires more data
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Decentralized implementation

MU MGX

3 T3 o/ 7S | control [
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Current Control

Phase-Locked Loop
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Power Control Loop ¥ ol
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Vit Viao Vg | Vi —ag—{FT]
Tiabe Ty hia Vi v N
Voltage Control Loop Currefit Controf Loop

Control Diagram of VSC-HVDC Station 1 Area 1 ) jIl B C f?7 ac
control

® plug’n’play MPC: treat interconnection P5 as disturbance variable w
with past disturbance win measurable & future wyyre € W uncertain

e for each controller augment trajectory matrix with disturbance data w
¢ decentralized robust min-max DeePC: min, , , max,cyw
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Decentralized control performance

0.8}

0.6

: e colors correspond
P (p.u.) 04

to different hyper-
02f 1 parameter settings
(not discernible)

0 5 10 15 20 25 30

® ambiguity set W
is co-ball (box)
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0.4

Py (p.u.
2 (P1) gl ¢ for computational

0.0F efficiency W is
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0.4} e solver time ~ 2.6s
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Conclusions

main take-aways
® matrix time series as predictive model
® robustness & side-info by regularization

method that works in theory & practice
o focus is robust prediction not predictor ID

IEEE nine-bus system
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Conclusions

main take-aways
® matrix time series as predictive model
® robustness & side-info by regularization

method that works in theory & practice
o focus is robust prediction not predictor ID

Lot
/

ongoing work

— certificates forjadaptive & nonlinear cases

— applications with a true “business case”,
push TRL scale, & industry collaborations

questions we should discuss
e catch? violate no-free-lunch theorem ? — more real-time computation

e when does direct beat indirect ? — |d4Control & bias/variance issues ?
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past . future
output constraint
reference .- —

--o--predicted outputs

offline initial
data collection trajetories; optimal control
—_— ——— et

input constraint

[current time stage time
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Florian’s version of

past . future
output constraint
reference .- —
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Thanks!
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