Coordination of Energy Supply and Demand

Sergio Grammatico

Tutorial: "Distributed Control and Optimization for Autonomous Power Grids"

European Control Conference 2019

June 25–28, 2019 – Naples, Italy

- From Secondary/Tertiary Control to Electricity Markets
- Coordination of Energy Supply and Demand
- On Convergence Analysis

Outline

TUDelft

Conclusion and Outlook

From Secondary to Tertiary Control in Power Systems

Ersdal et al., *Model predictive load-frequency control taking into account imbalance uncertainty* (Fig. 1), IEEE CEP, 2016

Outline

- From Secondary/Tertiary Control to Electricity Markets
- Ocordination of Energy Supply and Demand
- On Convergence Analysis
- Conclusion and Outlook

30 Sergio (

From Secondary to Tertiary Control in Power Systems (+)

- 3. **Tertiary** control (offline)
 - optimize operation
 - power scheduling/dispatch
- 2. Secondary control (slow real-time)
 - reference tracking
 - centralized/distributed
 - integral control (AGC)
- 1. Primary control (fast real-time)
 - local asymptotic stability
 - decentralized
 - proportional control (droop)

Courtesy: F. Dörfler

From Secondary to Tertiary Control in Power Systems (++)

(Simplified) Power Systems dynamics

$$\Delta \dot{\theta}_i = \Delta \omega_i$$

$$M_i \Delta \dot{\omega}_i = -D_i \Delta \omega_i + \Delta P_i + u_i - \sum_j B_{i,j} \sin(\Delta \theta_i - \Delta \theta_j)$$

• $u_i = \text{controlled power injection}$

Optimal Economic Dispatch

/

$$\begin{cases} \min_{\{u_i^{\text{ref}}\}_i} & \sum_i J_i(u_i^{\text{ref}}) \\ \text{s.t.} & u_i^{\text{ref}} \in \{\text{limits}\}, \forall i \\ & \sum_i \Delta P_i^{\text{ref}} + u_i^{\text{ref}} = 0 & \longleftarrow \text{ power balance} \end{cases}$$

• (goal) $\forall i: \lim_{t o \infty} u_i(t) = u_i^{ ext{ref}\star} = ext{optimal solution}$

Some Literature on Secondary/Tertiary control

- Simpson-Porco, Dörfler, Bullo, Synchronization and power sharing for droop-controlled inverters in islanded microgrids, AUTOMATICA, 2013
- Li, Zhao, Chen, Connecting automatic generation control and economic dispatch from an optimization view, IEEE TCNS, 2015
- Dörfler, Simpson-Porco, Bullo, *Breaking the hierarchy: Distributed control and economic optimality in microgrids*, IEEE TCNS, 2016
- Mallada, Zhao, Low, *Optimal load-side control for frequency regulation in smart grids*, IEEE TAC, 2017
- **Cai**, Mallada, Wierman, *Distributed optimization decomposition for joint economic dispatch and frequency regulation*, IEEE TPS, 2017
- Dörfler, Grammatico, *Gather-and-broadcast frequency control in power systems*, AUTOMATICA, 2017
- Trip, Cucuzzella, De Persis, Van der Schaft, Ferrara, *Passivity-based design of sliding modes for optimal load frequency control*, IEEE CST, 2018
- Stegink, Cherukuri, De Persis, Van der Schaft, Cortés, Hybrid interconnection of iterative bidding and power network dynamics for frequency regulation and optimal dispatch, IEEE TCNS, 2018

Tertiary Control and Electricity Markets

Optimal Economic Dispatch \implies **Cooperative** optimization

Nowadays:

- Distributed generation & flexible prosumption
- Retailers: Aggregation of small prosumers
- Deregulated electricity markets
- \Rightarrow Generators operated by **Competing**/Non-Cooperative firms

Wholesale Electricity Markets

TenneT, Dutch Transmission System Operator (TSO), Annual market update 2018, tennet.eu

Day ahead and Intraday Electricity Markets

Examples of Day-Ahead/Intraday Electricity Markets:

- European Power Exchange (EPEX) [DE, FR, UK, ..., NL, CH]
- Amsterdam Power Exchange (APX) [NL, BE, UK]

- Gestore Mercati Energetici (GME) [IT]
- Nord Pool [UK, NO, SE, FI, ...]

Day ahead and Intraday Electricity Markets

Generators:

$$(\forall i) \ \mathbb{P}_i: \left\{ \begin{array}{cc} \max_{s_i, u_i} & \underbrace{p(\sum_j s_j)}_{\text{nodal prices}}^\top s_i & -\underbrace{c_i(u_i)}_{\text{generation cost}} - \underbrace{\operatorname{diag}(\lambda)(s_i - u_i)}_{\text{fees}} \\ \text{s.t.} & (s_i, u_i) \in \{\text{limits}\} \end{array} \right.$$

- $s_i =$ sale, $u_i =$ generation (at all nodes)
- λ = transmission fees

TSO/ISO:

$$\mathbb{P}_{iso}: \left\{ \begin{array}{ll} \max_{\boldsymbol{\lambda}} & \mathsf{revenue}(\boldsymbol{\lambda}, \boldsymbol{s}, \boldsymbol{g}) \\ \mathsf{s.t.} & (\boldsymbol{s}, \boldsymbol{u}) \in \{\mathsf{transmission capacities}\} \end{array} \right.$$

Some Literature on Electricity Markets

- Hobbs, Metzler, Pang, *Strategic gaming analysis for electric power systems: An MPEC approach*, IEEE TPS, 2000
- Day, Hobbs, Pang, Oligopolistic competition in power networks: a conjectured supply function approach, IEEE TPS, 2002
- Niu, Baldick, Zhu, *Supply function equilibrium bidding strategies with fixed forward contracts*, IEEE TPS, 2005
- Hobbs and Pang, Nash–Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints, OPERATIONS RESEARCH, 2007
- Conejo, Carrion, Morales, Decision making under uncertainty in electricity markets, SPRINGER, 2010
- Sabriel, Conejo, Fuller, Hobbs, Ruiz, Complementarity modeling in energy markets, SPRINGER, 2012

Coordination of energy supply and de

Morales, Conejo, Madsen, Pinson, Zugno, Integrating renewables in electricity markets: Operational problems, SPRINGER, 2014

Outline

Demand Side Management:

de-synchronize/*flatten* net energy demand of prosumers

- Mohsenian-Rad et al., Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid, **IEEE TSG, 2010**
- Saad, Han, Poor, Başar, Game-theoretic methods for the smart grid, IEEE MSP, 2012

From Secondary/Tertiary Control to Electricity Markets

2 Coordination of Energy Supply and Demand

- On Convergence Analysis
- Conclusion and Outlook

Cooperative Balancing & Duality

Optimal Economic Dispatch:

$$\mathbb{P}_{0}: \begin{cases} \min_{\{u_{i}^{\mathrm{ref}}\}_{i}} & \sum_{i} J_{i}(u_{i}^{\mathrm{ref}}) \\ \text{s.t.} & u_{i}^{\mathrm{ref}} \in \{\mathrm{limits}\}, \,\forall i \\ & \sum_{i} \Delta P_{i}^{\mathrm{ref}} + u_{i}^{\mathrm{ref}} = 0 \quad \longleftarrow \text{ power balance} \end{cases}$$

(ease notation: drop ^{ref})

Lagrangian function:

$$L(\boldsymbol{u},\boldsymbol{\mu}) := \sum_{i} \left\{ J_{i}(u_{i}) + \iota_{i}(u_{i}) \right\} + \boldsymbol{\mu}^{\top} \sum_{i} \left\{ \Delta P_{i} + u_{i} \right\}$$

• $\iota_i = indicator function$ for $u_i \in \{\text{limits}\}$

Cooperative Balancing & Duality (+)

KKT Theorem: *u* solves \mathbb{P}_0 iff (for some μ)

$$\text{KKT}_0: \begin{cases} 0 \in \partial_u L(u, \mu) & \longleftarrow \text{ stationarity} \\ 0 = \sum_i \Delta P_i + u_i & \longleftarrow \text{ feasibility} \end{cases}$$

Separability:

$$L(\boldsymbol{u},\boldsymbol{\mu}) = \sum_{i} \underbrace{J_{i}(u_{i}) + \iota_{i}(u_{i}) + \boldsymbol{\mu}^{\top} (\Delta P_{i} + u_{i})}_{L_{i}(u_{i},\boldsymbol{\mu})} = \sum_{i} L_{i}(u_{i},\boldsymbol{\mu})$$

$$\implies 0 \in \partial_{u_i} L(\boldsymbol{u}, \boldsymbol{\mu}) = J'_i(u_i) + \underbrace{\partial_{\iota_i}(u_i)}_{\text{normal cone}} + \boldsymbol{\mu}$$

$$\implies u_i = \operatorname{sat}\left(-J_i'^{-1}(\boldsymbol{\mu})\right)$$

Cooperative Balancing & Duality (++)

Cooperative Balancing & Duality (+++)

price

 μ

 μ^*

•
$$u_i(\boldsymbol{\mu}) = \operatorname{sat}\left(-J_i'^{-1}(\boldsymbol{\mu})\right)$$

From Convexity to Monotonicity:

- J_i strictly convex
- $\Rightarrow J'_i$ strictly increasing $\Rightarrow J'^{-1}_i$ strictly increasing
- $\Rightarrow -J_i'^{-1}$ strictly decreasing $\Rightarrow sat(-J_i'^{-1}(\cdot))$ strictly decreasing

μ = Imbalance price:

$$\mu \nearrow \implies u_i(\mu) \searrow \implies \underbrace{\sum_i \Delta P_i + u_i(\mu)}_{\text{imbalance}} \searrow$$

(Market) Clearing: $\sum_i \Delta P_i + u_i(\mu^*) = 0$

Cooperative Balancing & Duality (multi-stage)

Non-Cooperative Balancing

Electricity market: each generator shall minimize its own cost

demand

 $\sum_{i} \Delta P_{i}$

$$\mathbb{P}_{0}: \begin{cases} \min_{\{u_{i}\}_{i}} & \sum_{i} J_{i}(u_{i}) \\ \text{s.t.} & u_{i} \in \mathcal{U}_{i}, \forall i \\ & \sum_{i} u_{i} = \mathbb{O} & \longleftarrow \text{ multi-stage balance constraint} \end{cases}$$

• $u_i \ (\in \mathbb{R}^n) = deviation$ from nominal reference over time

Lagrangian function $L(\boldsymbol{u}, \boldsymbol{\mu})$ still separable \bigcirc

• μ ($\in \mathbb{R}^n$) = imbalance prices over time

$$(\forall i) \ \mathbb{P}_i(\boldsymbol{u}_{-i}) : \begin{cases} \min_{u_i} & J_i(u_i, \boldsymbol{u}_{-i}) & \longleftarrow \text{ coupled cost} \\ \text{s.t. } & u_i \in \mathcal{U}_i \\ & u_i + \sum_{j \neq i} u_j = 0 & \longleftarrow \text{ balance constraint} \end{cases}$$
$$\bullet \ \boldsymbol{u}_{-i} := (u_j)_{j \neq i}$$

equilibrium

Generalized Nash Equilibrium (GNE):

$$= (u_i^*)_i$$
 s.t.
 $orall i$: u_i^* solves $\mathbb{P}_i(oldsymbol{u}_{-i}^*)$

supply

 $-\sum_{i} u_{i}(\boldsymbol{\mu})$

 \rightarrow each decision is optimal given the others

oordination of energy supply and demand

ECC 2019 19 / 30

 u^*

Sergio Grammatico

Non-Cooperative Balancing & Duality

Coordinated Best Response algorithm

Lagrangian functions:

$$L_i(u_i, \boldsymbol{u}_{-i}, \boldsymbol{\mu_i}) := J_i(u_i, \boldsymbol{u}_{-i}) + \iota_i(u_i) + {\boldsymbol{\mu_i}^{ op}}\left(u_i + \sum_{j
eq i} u_j\right)$$

KKT Theorem: u_i solves $\mathbb{P}_i(\boldsymbol{u}_{-i})$ iff (for some $\mu \in \mathbb{R}^n$)

 $\begin{array}{rcl} (\forall i) & \mathrm{KKT}_i : \left\{ \begin{array}{rcl} \mathbb{0} & \in & \partial_{u_i} \, L_i(u_i, \boldsymbol{u}_{-i}, \boldsymbol{\mu}) & & \longleftarrow \text{ stationarity} \\ \mathbb{0} & = & u_i + \sum_{j \neq i} u_j & & \longleftarrow \text{ feasibility} \end{array} \right. \end{array}$

• $\partial_{u_i} L_i = \nabla_{u_i} J_i(u_i, \mathbf{u}_{-i}) + \partial_{\iota_i}(u_i) + \mu$

Main Problem: How to solve the interdependent KKT systems?

Iterative bidding (index $k \in \mathbb{N}$):

 $\begin{array}{ll} u_i(k+1) &= \operatorname{argmin} L_i(\cdot, \boldsymbol{u}_{-i}(k), \boldsymbol{\mu}(k)) & \longleftarrow \text{ best response} \\ \\ \mu(k+1) &= \mu(k) - \epsilon \, \sum_j u_j(k+1) & \longleftarrow \text{ price adjustment} \end{array}$

Convergence (strong convexity/monotonicity, small step, . . .): $\lim_{k\to\infty} {\pmb u}(k) = {\pmb u}^* \ {\bf GNE}$

- Best response updates run in parallel
- Price adjustment requires aggregate information

Support CommuteCoordinated Projected Gradient algorithmOutlineCoordinated Projected Gradient algorithmIterative bidding (index $k \in \mathbb{N}$): $u_i(k+1) = \operatorname{proj}_{\mathcal{U}_i} [u_i(k) - \epsilon(\nabla_{u_i} J_i(u_i(k), u_{-i}(k)) + \mu(k))]$
 \leftarrow projected gradient step $\mu(k+1) = \mu(k) - \epsilon \sum_j 2u_j(k+1) - u_j(k) \leftarrow$ price adjustmentCoordination of Energy Supply and DemandOn Convergence Analysis $\lim_{k \to \infty} u(k) = u^*$ GNE• Projected gradient step replaces local best response

Coordinated Bidding as Fixed-Point Iteration

From Monotone Operator Theory to Fixed-Point Iterations

Outlook

• Interconnection of

Sergio Grammati

Power Network Dynamics & Equilibrium Seeking Algorithms

- Incremental Passivity is key
- Gadjov, Pavel, *A passivity-based approach to Nash equilibrium seeking over networks*, IEEE TAC, 2019
- De Persis, Monshizadeh, A feedback control algorithm to steer networks to a Cournot–Nash equilibrium, IEEE TCNS, 2019
- Pavel, On incremental passivity in network games, ISDG NETGCOOP, 2019

Thank you for your kind attention

⊠ s.grammatico@tudelft.nl

i sites.google.com/site/grammaticosergio