Distributed control & optimization for autonomous power grids

Tutorial, European Control Conference 2019

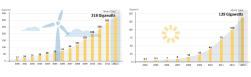
Florian Dörfler

ETH Zürich

Saverio Bolognani

ETH Zürich

John W. Simpson-Porco


University of Waterloo

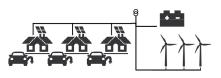
Sergio Grammatico

TU Delft

(recent) power systems control challenges

 \rightarrow integration of renewable sources

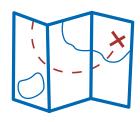
→ changing generation technology


opportunities:

- converter-interfaced sources
- → fast/modular/flexible actuation.
 - technological advances
- → sensing/actuation/communication
- scientific advances
- → control/optimization/learning
- ⇒ end-to-end & real-time automation of cyber-socio-technical power system
- opportunity for control

 \rightarrow scaling

ightarrow distributed generation & prosumption ightarrow liberalized markets



POWER IS NOTHING WITHOUT CONTROL

Selected autonomous control topics today

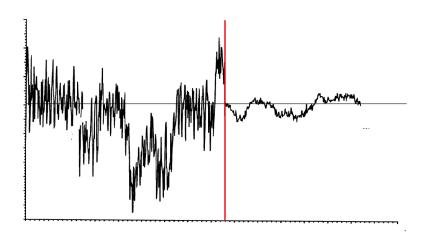
- Decentralized Control of Low-Inertia Power Systems
 Florian Dörfler
- Real-Time Control of Distribution Grids Saverio Bolognani
- Optimal & Distributed Frequency Control of Transmission Grids
 John W. Simpson-Porco
- Coordination of Energy Supply & Demand Sergio Grammatico

Decentralized Control of Low-Inertia Power Systems

Florian Dörfler, ETH Zürich

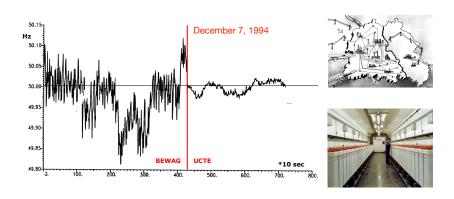
Tutorial, European Control Conference 2019

Replacing the system foundation


fuel & synchronous machines

- not sustainable
- + central & dispatchable generation
- + large rotational inertia as buffer
- + self-synchronize through the grid
- + resilient voltage / frequency control
- slow actuation & control

renewables & power electronics


- + sustainable
- distributed & variable generation
- almost no energy storage
- no inherent self-synchronization
- fragile voltage / frequency control
- + fast/flexible/modular control

What do we see here?

West Berlin re-connecting to Europe

Source: Energie-Museum Berlin

before re-connection: islanded operation based on **batteries** & boiler **afterwards** connected to European grid & **synchronous generation**

The concerns are not hypothetical

issues broadly recognized by system operators, device manufacturers, & academia

key events:

- storm damages two lines
- control not resilient loss of 500 MW wind power
- between lines: conventional grid would have survived

obstacle to sustainability:

- integrating power electronics
- ▶ robust & resilient control

Critically re-visit modeling/analysis/control

Foundations and Challenges of Low-Inertia Systems

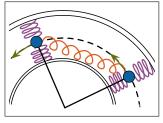
(Invited Paper)

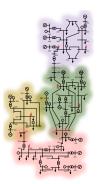
Federico Milano University College Dublin, Ireland email: federico.milano@ucd.ie Florian Dörfler and Gabriela Hug ETH Zürich, Switzerland emails: dorfler@ethz.ch, ghug@ethz.ch David J. Hill* and Gregor Verbič University of Sydney, Australia * also University of Hong Kong emails: dhill@eee.hku.hk, gregor.verbic@sydney.edu.au

The later sections contain many suggestions for further work, which can be summarized as follows:

- New models are needed which balance the need to include key features without burdening the model (whether for analytical or computational work) with uneven and excessive detail;
- New stability theory which properly reflects the new devices and time-scales associated with CIG, new loads and use of storage:
- Further computational work to achieve sensitivity guidelines including data-based approaches;

- New control methodologies, e.g. new controller to mitigate the high rate of change of frequency in low inertia systems;
- A power converter is a fully actuated, modular, and very fast control system, which are nearly antipodal characteristics to those of a synchronous machine. Thus, one should critically reflect the control of a converter as a virtual synchronous machine; and
- The lack of inertia in a power system does not need to (and cannot) be fixed by simply "adding inertia back" in the systems.


a key unresolved challenge: control of power converters in low-inertia grids

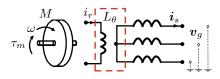

 \rightarrow industry & power community willing to explore green-field approach (see MIGRATE) with advanced control methods & theoretical certificates

Focus of today's tutorial

all references can be found in the paper

synchronous generators & power converters

modeling, similarities & differences, & control limitations


power system control specifications

· focus: decentralized control on fast time scales

decentralized control of power converters

- grid-forming & grid-following specifications
- droop, virtual inertia, virtual oscillator, & matching control

Modeling: synchronous generator

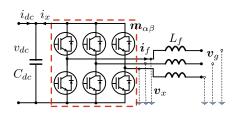
$$egin{aligned} rac{\mathsf{d} heta}{\mathsf{d} t} &= \omega \ & M rac{\mathsf{d} \omega}{\mathsf{d} t} &= -D\omega + au_m + L_\mathsf{m} i_r \left[rac{-\sin heta}{\cos heta}
ight]^ op i_s \ & L_\mathsf{S} rac{\mathsf{d} i_s}{\mathsf{d} t} &= -R_s i_s + oldsymbol{v}_g - L_\mathsf{m} i_r \left[rac{-\sin heta}{\cos heta}
ight] \omega \end{aligned}$$

- 1. **primary energy supply** τ_m from turbine converting thermal to mechanical energy (neglected)
- 2. mechanical (θ, ω) swing dynamics of rotor (flywheel) with inertia M
- electro-mechanical energy conversion through rotating magnetic field with inductance matrix

$$L_{\theta} = \begin{bmatrix} L_{\text{S}} & 0 & L_{\text{m}} \cos \theta \\ 0 & L_{\text{S}} & L_{\text{m}} \sin \theta \\ L_{\text{m}} \cos \theta & L_{\text{m}} \sin \theta & L_{\text{r}} \end{bmatrix}$$

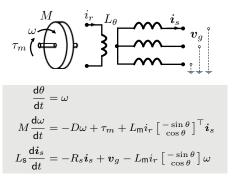
(neglected i_r rotor current dynamics)

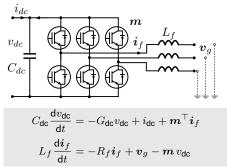
- 4. *i*_s **stator flux dynamics** (sometimes including additional damper windings)
- 5. connection to grid with voltage v_q

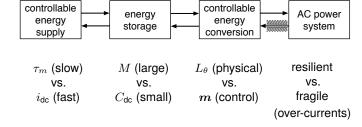

Modeling: voltage source converter

- primary energy supply i_{dc} from upstream DC boost converter or storage (neglected)
- 2. $v_{\rm dc}$ DC charge dynamics with capacitance $C_{\rm dc}$
- 3. power electronics modulation

$$i_x = - oldsymbol{m}^ op oldsymbol{i}_f$$
 and $oldsymbol{v}_x = oldsymbol{m} v_{ ext{dc}}\,,$

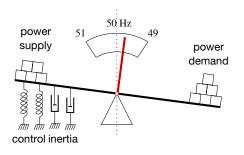

with averaged & normalized duty cycle ratios $m \in [-\frac{1}{2},\frac{1}{2}] \times [-\frac{1}{2},\frac{1}{2}]$


- 4. i_f AC filter dynamics (sometimes also LC or LCL filter)
- 5. connection to grid with voltage $oldsymbol{v}_g$



$$egin{align} C_{ extsf{dc}} rac{ extsf{d} v_{ extsf{dc}}}{ extsf{d}t} &= -G_{ extsf{dc}} v_{ extsf{dc}} + i_{ extsf{dc}} + m{m}^{ extsf{T}} m{i}_f \ & \ L_f rac{ extsf{d} i_f}{ extsf{d}t} &= -R_f m{i}_f + m{v}_g - m{m} \, v_{ extsf{dc}} \ & \ \end{array}$$

Comparison: conversion mechanisms



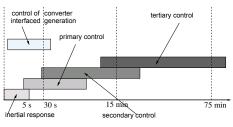
physical & robust vs. controlled & agile signal/energy transformer

Deceiving similarities & control limitations

power balances (neglecting small storage elements & losses):

$$\underbrace{\frac{d}{dt} \ \frac{1}{2} \boldsymbol{\omega}^{\top} \boldsymbol{M} \boldsymbol{\omega}}_{\text{internal energy}} \quad \underbrace{\boldsymbol{\omega}^{\top} \boldsymbol{\tau}_{m} - \boldsymbol{i}_{s}^{\top} \boldsymbol{v}_{g}}_{\text{demand conversion}} + 0$$

$$\underbrace{\frac{d}{dt} \ \frac{1}{2} \boldsymbol{v}_{\text{dc}}^{\top} \boldsymbol{C}_{\text{dc}} \boldsymbol{v}_{\text{dc}}}_{\text{dc}} = \boldsymbol{i}_{\text{dc}}^{\top} \boldsymbol{v}_{\text{dc}} - \boldsymbol{i}_{s}^{\top} \boldsymbol{v}_{g} + 0$$


Antipodal control characteristics

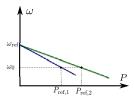
- large M vs. negligible C_{dc} energy storage for disturbance rejection
- slow \(\tau_m\) vs. fast \(i_{\text{dc}}\) actuation of the energy supply (though \(i_{\text{dc}}\) constrained)
- limited vs. full actuation of the energy conversion via L_{θ} & modulation m

 state constraints: tolerance to large vs. no over-currents

> robust vs. agile resilient vs. fragile slow vs. fast actuation physical vs. control system

Control specifications

- nominal synchronous operation:
 - constant DC states: $\dot{\omega} = \dot{v}_{\sf dc} = 0$
 - synchronous AC states at ω_{ref} :


$$\dot{ heta} = \omega_{\mathsf{ref}}, \, rac{\mathsf{d}}{\mathsf{d}t} oldsymbol{i}_s = \left[egin{matrix} 0 & \omega_{\mathsf{ref}} \ -\omega_{\mathsf{ref}} & 0 \end{smallmatrix}
ight] oldsymbol{i}_s, \ldots$$

- set-points: $\| oldsymbol{v}_g \| = oldsymbol{v}_{\mathsf{ref}},$

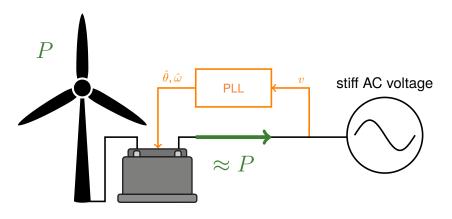
$$P \triangleq \boldsymbol{i}_s^{\top} \boldsymbol{v}_g = P_{\mathsf{ref}},$$

$$Q riangleq oldsymbol{i}_s^ op \left[egin{smallmatrix} 0 & -1 \ 1 & 0 \end{smallmatrix}
ight] oldsymbol{v}_g = Q_{\mathsf{ref}}$$

- transient disturbance rejection & stabilization: passively via physics (inertia) & actively via control
- perturbed synchronous operation at $\omega \neq \omega_{\text{ref}}$ & power: deviations with specified sensitivities $\partial P/\partial \omega$ (similar for v)
- ightarrow decentralized droop/primary control $P-P_{\mathsf{ref}} \propto \omega \omega_{\mathsf{ref}}$
 - secondary control: regulation of $\omega \to \omega_{\mathsf{ref}}$ (similar for v)
 - tertiary control: (re)scheduling of set-points

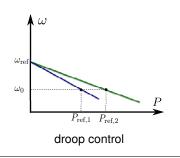
covered in other tutorials

Baseline: virtual inertia emulation

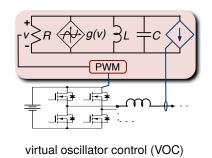

- ▶ PD control on $\omega(t)$: $M \frac{d}{dt} \omega(t) + D(\omega(t) \omega_0) = P_{\text{generation}}(t) P_{\text{demand}}(t)$
- ► there are **smarter implementations** at the cost of algorithmic complexity

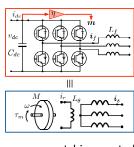
Grid-forming & following converter control

	grid-following	grid-forming
converter-type (loose but very common definition)	current-controlled & frequency-following	voltage-controlled & frequency-forming
	P_{ref} Q_{ref} Q_{ref} Q_{ref} Q_{ref} Q_{ref} Q_{ref} Q_{ref}	$egin{array}{cccccccccccccccccccccccccccccccccccc$
measurement	$(\omega,\ oldsymbol{v}\)$	(P,Q)
set-point	(P,Q)	$(\omega,\ oldsymbol{v}\)$
dynamic reachability	needs a stiff grid to track frequency	can operate in islanded mode & black-start grid

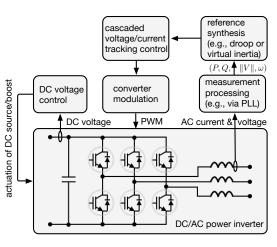

 \dots feedforward-controlled (constant) power and voltage sources are forming & following \to for many reasons feedback control is preferable

Limitations of grid-following control



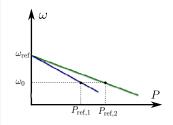

- is good for transferring power to a strong grid (main underlying assumption)
- is not good for providing a voltage reference, stabilization, or black start
- prevalent today, but not tomorrow: what if everyone is a follower ...?

Overview of grid-forming control strategies

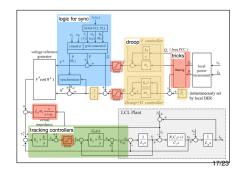


Standard approach to converter control

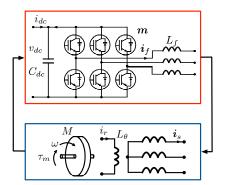
- acquiring & processing of AC measurements
- synthesis of references (voltage/current/power)
 "how would a synchronous generator respond now?"
- cascaded PI controllers to track references
- 4. actuation via modulation
- hidden assumption:
 DC-side supply can instantaneously provide unlimited power


Droop as simplest reference model

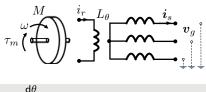
• frequency control by mimicking $P-\omega$ droop property of synchronous machine:

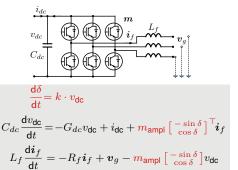

$$D(\omega - \omega_{\text{ref}}) = P - P_{\text{ref}}$$

▶ voltage control via Q - ||v|| droop:


$$\frac{d}{dt}||v|| = -c_1(||v|| - v_{\text{ref}}) - c_2(Q - Q_{\text{ref}})$$

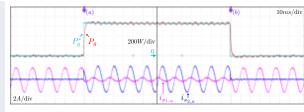
- ightarrow direct control of (P,ω) and $(Q,\|v)$ assuming they are independent (approx. true only near steady state)
- \rightarrow ignores DC source dynamics
- → requires tricks in implementation: low-pass filters for dissipation, virtual impedances for saturation, limiters,...


Virtual synchronous machine emulation


To Control Con

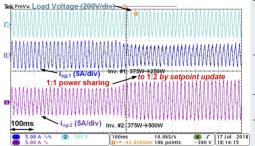
- reference: detailed model of synchronous generator + controls
- implementation similar as droop but with even more inner loops ... tricks
- most commonly accepted solution in industry (backward compatibility)
- → over-parametrized & ignores DC source dynamics and limits
- → poor fit for converter:
 - converter: fast actuation & no significant energy storage
 - machine: slow actuation & significant energy storage
- ightarrow stability **analysis** is **hopeless**
- → performs poorly post-fault

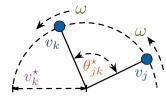
Seeking more natural control



$$egin{aligned} & rac{\mathsf{d} oldsymbol{v}}{\mathsf{d} t} = \omega \ & M rac{\mathsf{d} \omega}{\mathsf{d} t} = -D\omega + au_m + L_\mathsf{m} i_r \left[egin{aligned} -\sin heta \\ \cos heta \end{aligned}
ight]^ op oldsymbol{i}_s \ & L_\mathsf{S} rac{\mathsf{d} oldsymbol{i}_s}{\mathsf{d} t} = -R_s oldsymbol{i}_s + oldsymbol{v}_g - L_\mathsf{m} i_r \left[egin{aligned} -\sin heta \\ \cos heta \end{aligned}
ight] \omega \end{aligned}$$

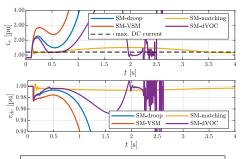
matching energy conversion


- ightarrow duality: $C_{dc} \sim M \sim$ inertia & $v_{dc} \sim \omega \sim$ imbalance
- + energy shaping for $m_{\rm ampl}$
- \rightarrow theoretical certificates
- \rightarrow implementation @ETHZ


Virtual oscillator control (VOC)

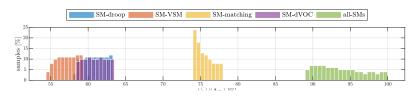
desirable synchronization mechanism:

$$\frac{d}{dt} \boldsymbol{v_k} = \begin{bmatrix} \begin{smallmatrix} 0 & \omega \\ -\omega & 0 \end{smallmatrix} \end{bmatrix} \boldsymbol{v_k} + k_1 \cdot \underbrace{ \left(v_k^{\star 2} - \|\boldsymbol{v}_k\|^2 \right) \boldsymbol{v}_k }_{\text{amplitude regulation to } v_k^{\star}} \\ + k_2 \cdot \sum_{j=1}^n w_{jk} \underbrace{ \left(\boldsymbol{v}_j - \begin{bmatrix} \cos(\theta_{jk}^{\star}) & -\sin(\theta_{jk}^{\star}) \\ \sin(\theta_{jk}^{\star}) & \cos(\theta_{jk}^{\star}) \end{bmatrix} \boldsymbol{v}_k \right)}_{\text{synchronization to desired relative angles } \boldsymbol{\theta}_{jk}^{\star}.$$

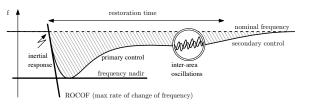


Converter control specifications:

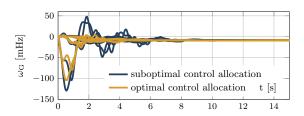
- → decentralized(!) implementation of VOC as a reference model using only local measurements & power set-points
- → almost global stability certificate (also when including inner loops)
- $\rightarrow \ \, {\bf droop\ behavior}\ P \leftrightarrow \omega\ \&\ Q \leftrightarrow \|{\boldsymbol v}\|$
- → experimental validation @NREL shows robust & agile performance

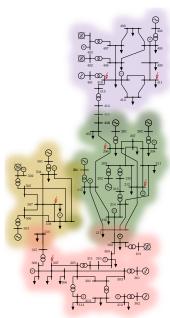

Comparison of control strategies @AIT

Interactions of Grid-Forming Power Converters and Synchronous Machines – A Comparative Study

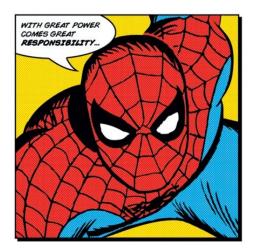

Ali Tayvelt, Dominic Groß, Adolfo Auns, Friederich Kappog and Florian Dietler

- all perform well nominally & under minor disturbances
- relative resilience: matching > VOC > droop > virtual synchronous machine
- → it is a very poor strategy for a converter to emulate a flywheel
 - promising hybrid control directions: VOC + matching




System-level optimization

system-level sizing, allocation, & tuning of converter control to minimize amplification of shocks:


→ total inertia/damping has little effect; rather sizing, tuning, & spatial allocation matters

Conclusions

- low-inertia stability & converter control are major bottlenecks for sustainability
- power system community & industry are open to green-field approaches
- → power systems provide a unique opportunity for the control community

