

Real-Time Control of Distribution Grids

Saverio Bolognani

ETH Zurich

Future power distribution grids

Micro-generation

Most of the renewable generators are

- interfaced to the grid via power converters
- small in size (rated power)
- connected to medium- and low- voltage levels
- connected to resistive distribution grids (limited transfer capacity)

Power distribution grid congestion

Power distribution feeders have limited **power transfer capacity**:

- overvoltage
- line current limits
- transformer power rating

Set-point scheduling

- (S6) Set-points P_{ref}, Q_{ref}, v_{ref} need to
 - be consistent with the physics of the grid
 - satisfy operational constraints
 - minimize an economic dispatch criterion
 - react to changing demands
 - react to time-varying primary sources

THE SET-POINT SCHEDULING PROBLEM

Nonlinear power flow equations

•
$$x = \begin{bmatrix} v & \theta & p & q \end{bmatrix}$$

Set of all grid states that satisfy the AC power flow equations

 \rightarrow power flow manifold $\mathcal{M} := \{x \mid f(x) = \mathbf{0}\}$

Regular submanifold of dimension 2n

 \rightarrow Bolognani & Dörfler (2015)

"Fast power system analysis via implicit linearization of the power flow manifold"

Set-point specifications as an OPF

Real-time Optimal Power Flow (OPF)

 Minimize cost of generation 	minimize	cost(p _G)
Satisfy AC power flow laws	subject to	$\begin{bmatrix} p_0 \\ p_G \\ p_L \end{bmatrix} + j \begin{bmatrix} q_0 \\ q_G \\ q_L \end{bmatrix} = diag(\nu) \overline{Y\nu}$
Respect generation capacity		$p_G^{min} \leq p_G \leq p_G^{max}, \;\; q_G^{min} \leq q_G \leq q_G^{max}$
No over-/under-voltage		$v^{\min} \leq v \leq v^{\max}$
No congestion		$ p_{kl} + iq_{kl} < s_{kl}^{\max}$

Prototype of real-time OPF

minimize J(x)

subject to $x \in \mathcal{K} = \mathcal{M} \cap \mathcal{X}$

$$\begin{split} \phi &: \mathbb{R}^n \to \mathbb{R} & \text{objective function} \\ \mathcal{M} &\subset \mathbb{R}^n & \text{AC power flow equations} \\ \mathcal{X} &\subset \mathbb{R}^n & \text{operational constraints} \end{split}$$

Transmission vs distribution grids

Transmission grids

- grid model
- power demand predictions
- \rightarrow offline programming (OPF)

Distribution grids

- poor models
- unknown demands
- time-varying parameters
- faster than tertiary control
- sparse actuation
- sparse measurements
- \rightarrow real-time (feedback) decision

A feedback approach to set-point scheduling

Feedforward optimization

- complex optimal decision
- operational constraints
- MIMO (multi-input/output)
- highly model-based

Feedback control

- robust to model uncertainty
- fast response
- requires exogenous set-points
- suboptimal resource use

Autonomous optimization

An **autonomous feedback** approach to **optimal** real-time operation to inherit the best of the two worlds

Related works

power system operations (& other infrastructures)

- Frequency Control
- Voltage Control
- general AC OPF

Work from 2013-now by:

Low, Li, Dörfler, Bolognani, Simpson-Porco, Zhao, Dall'Anese, Simonetto, De Persis, Gan, Topcu, Bernstein, Jokic, ... \rightarrow **survey [Molzahn et al., 2018]**

other related approaches:

- process control: reducing the effect of model uncertainty in succ. optimization Optimizing Control [Garcia & Morari, 1981/84], Self-Optimizing Control [Skogestad, 2000], Modifier Adaptation [Marchetti et. al, 2009], Real-Time Optimization [Bonvin, ed., 2017], ...
- extremum-seeking: derivative-free, but hard for higher dimensions & constraints [Ariyur & Krstic, 2003], [Grushkovskaya et al., 2017], [Feiling et al., 2018], ...
- congestion control in communication networks [Kelly et al. 1998], [Low et al. 2002] real-time iteration [Diel et al. 2005], real-time MPC [Zeilinger et al. 2009]

FEEDBACK OPTIMIZATION DESIGN

Design of optimizing feedback

- Algebraic constraints on the state x
 - Implicit: power flow equations f(x) = 0
 - Explicit: steady state of local controllers + physics y = h(u, w)
 - u controllable inputs (generator P/V set-points, controllable loads, etc.)
 - w uncontrollable inputs (loads, uncontrollable generators, etc.)
 - y measured state on the grid (possibly filtered through state estimator)

- **Input saturation:** $u \in U$ at all times (hard constraint)
- **Closed-loop trajectory:** $y = h(u, w) \in \mathcal{Y}$ at steady state
- Optimality: The closed-loop system converges to the solution of the OPF

Online optimization in closed loop

Optimization perspective

Algorithms as dynamical systems [Lessard et al., 2014], [Wilson et al., 2018] → implemented via the physics

"Certainty equivalence" design

- $\mathcal{Y} \rightarrow$ penalty function in J(u, y)
- **assume steady-state** y = h(u, w)

minimize_{*u*}
$$\underbrace{J(u, h(u, w))}_{:=\phi(u)}$$

subject to $u \in U$

Projected gradient descent

- Existing feedback systems interpreted as solving opt. problem
- \rightarrow general objective + constraints

Feedback optimizer

$$\dot{u} = \Pi_{T_u \mathcal{U}} \left[-Q \nabla \phi(u) \right] \qquad \qquad \phi(u) = J(u, h(u, w)) = J(u, y)|_{y=h(u,w)}$$
$$= \Pi_{T_u \mathcal{U}} \left[-Q \underbrace{\left(\nabla_u J(u, y) + \nabla_u h(u, w)^\top \nabla_y J(u, y) \right)}_{:= \widehat{\nabla \phi}(u, y)} \right]$$
feedback evaluation of the gradient

- Input saturation: $u \in U$ at all times
- Metric: $Q \ge 0$, possibly state-dependent
- **Robust / Model-free:** $\nabla_u h(u, w) \approx$ sensitivities, *w* unknown
- Feasibility: guaranteed by stability of local controllers + physics

Existence of $\nabla_u h(u, w)$ depends on the existence of the explicit map *h*

 $f(y, u, w) = 0 \rightarrow y = h(u, w) \rightarrow \text{invertibility of Jacobian } \nabla_y f$

 We recover standard voltage "stability" results for power systems [Tamura 1983] [Sauer 1990] [Dobston 2011]

Optimization algorithms as dynamical systems

Design of **feedback optimizer** → continuous-time limit of iterative algorithms

Gradient Flows on Matrix Manifolds

[Brockett, 1991], [Bloch et al., 1992], [Helmke & Moore, 1994], ...

Interior-point methods

[Karmarkar, 1984], [Khachian, 1979], [Faybusovich, 1992], ...

Acceleration & Momentum methods

[Su et al., 2014], [Wibisono et al, 2016], [Krichene et al., 2015], [Wilson et al., 2016], [Lessard et al., 2016], ...

Saddle-Point Flows

[Arrow et al., 1958], [Kose, 1956], [Feijer & Paganini, 2010], [Cherukuri et al., 2017], [Holding & Lestas, 2014], [Cortés & Niederländer, 2018], [Qu & Li, 2018], ...

In continuous-time, most algorithms reduce to either (projected) gradient flows (w/ w/o momentum), (projected) Newton flows, or (projected) saddle-point flows.

CLOSED-LOOP STABILITY

Stability

Two reasons why it may not converge to the OPF solution

Irregularity of the domain

```
→ Hauswirth, Bolognani, & Dörfler (2018)

"Projected Dynamical Systems on Irregular, Non-Euclidean Domains

for Nonlinear Optimization"
```

Interplay with the dynamics of the grid $(y \approx h(u, w))$

 \rightarrow Hauswirth, Bolognani, Hug, & Dörfler (2019) "Timescale Separation in Autonomous Optimization"

Gradient-based feedback optimization

Optimization Dynamics

Variable-metric gradient descent

 $\dot{u} = -Q(u)\nabla\phi(u)$

where

- $Q(u) \succ 0$ for all $u \in \mathbb{R}^p$
- $\phi(u) := J(u, h(u, w))$
- $\nabla \phi(u) = \nabla_u J + \nabla h^T \nabla_y J$

Plant Dynamics

Exponentially stable system

 $\dot{x} = f(x, u)$

with steady-state map x = h(u, w)

Interconnection

$$\dot{x} = f(x, u)$$

$$\dot{u} = -Q(u) \left(\nabla_{u} J(u, x) + \nabla h^{T} \nabla_{y} J(u, x) \right)$$

Gradient-based Feedback Optimization

Theorem

Assume

• Physical system exponentially stable with Lyapunov function W(x, u) s.t.

 $\dot{W}(x,u) \leq -\gamma \|x - h(u)\|^2$ $\|\nabla_u W(x,u)\| \leq \zeta \|x - h(u)\|.$

• J(u, x) has compact level sets and *L*-Lipschitz gradient.

Then, all trajectories converge to the set of KKT points whenever

$$\sup_{u\in\mathbb{R}^p}\|Q(u)\|<\frac{\gamma}{\zeta L}\,.$$

Furthermore,

- Asymptotically stable equilibrium \Rightarrow strict local minimizer
- Strict local minimizer \Rightarrow stable equilibrium

 \rightarrow If J convex and h(u, w) linear, then convergence to set of global minimizers.

Gradient-based Feedback Optimization

Vanilla GD

Choose $Q = \varepsilon I_n$. Stability is guaranteed if

 $\varepsilon \leq \frac{\gamma}{\zeta L}$

 \Rightarrow prescription on global control gain

Projected GD

Control signal u constrained to set \mathcal{U} (in case of actuator saturation).

 $\dot{\boldsymbol{u}} = \boldsymbol{\Pi}_{T_{\boldsymbol{u}} \mathcal{U}} [-\varepsilon \nabla \phi(\boldsymbol{u})]$

 \Rightarrow stable if $\varepsilon \leq \frac{\gamma}{CL}$ (same bound)

Newton GD

Choose $Q(u) = (\nabla^2 J(u, h(u)))^{-1}$ (if $J \mu$ -strongly cvx and twice diff'ble) Stability is guaranteed if

 $\frac{L}{\mu} \leq \frac{\gamma}{\zeta}$

 \Rightarrow invariant under scaling of J

Not

- Subgradient methods
- Accelerated gradient method

Saddle flows

Primal gradient descent / Dual gradient ascent

$$\begin{split} \dot{u} &= \Pi_{T_u \mathcal{U}} \left[-\nabla_u \mathcal{L}(u, \lambda) \right] \\ &= \Pi_{T_u \mathcal{U}} \left[-\nabla_u J(u, y) - \underbrace{\nabla_u h(u, w)^\top}_{\text{model}} \nabla_y J(u, y) + \underbrace{\nabla_u h(u, w)^\top}_{\text{model}} \nabla_y g(y)^\top \lambda \right] \\ \dot{\lambda} &= \Pi_{\geq 0} \left[\nabla_\lambda \mathcal{L}(u, \lambda) \right] \\ &= \Pi_{\geq 0} \left[g(y) \right] \end{split}$$

Stability analysis requires special care (exponential stability of saddle flows).

ENGINEERING

Experimental result

Experimental distribution feeder SYSLAB at DTU, Denmark.

u **control inputs:** reactive power injection PV1, PV2, Battery *y* **measurement:** voltage magnitude PV1, PV2, Battery

minimize
$$\sum_{i} q_i / q_i^{\max}$$

subject to $q_i \in [q_i^{\min} q_i^{\max}]$ \mathcal{U}
 $v_i \in [v^{\min} v^{\max}]$ \mathcal{Y}

optimization problem

Feedback optimization (experiment)

Feedforward OPF (experiment)

Distributed feedback

Example: projected gradient

$$\dot{u} = \Pi_{T_u \mathcal{U}} \left[- \frac{Q}{Q} \left(\nabla_u J(u, y) + \nabla_u h(u, w)^\top \nabla_y J(u, y) \right) \right]$$

- Cost function *J*(*u*, *y*) is usually **separable** in *y*
- Choose *Q* in order to make both $Q \nabla_u J(u, y)$ and $Q \nabla_u h(u, w)^\top$ sparse
- Warning: $\Pi_{T_u \mathcal{U}}$ needs to be computed according to the same metric

$$\Pi_{T_u\mathcal{U}}[z] = \arg\min_{\xi\in T_u\mathcal{U}} \|\xi - v\|_Q$$

■ If *Q* is sparse, then $\Pi_{T_u U}$ is a **QP** with sparse linear constraints → distributed solver (no sensing/actuation)

> \rightarrow Bolognani, Carli, Cavraro, & Zampieri (2019) "On the Need for Communication for Voltage Regulation of Power Distribution Grids"

Distributed feedback optimization (experiment)

From distributed to decentralized?

Impossible.

ightarrow Bolognani, Carli, Cavraro, & Zampieri (2019)

"On the Need for Communication for Voltage Regulation of Power Distribution Grids"

CONCLUSIONS

Conclusions

- Generator set-points need to be dynamically generated in order to
 - relief congestion in the distribution grid
 - respond dynamically to time-varying parameters
- Feedback optimization / autonomous optimization schemes
 - are essentially model-free
 - do not require full-state monitoring
 - have certified performance / stability
- The design of feedback optimization schemes taps directly into iterative optimization methods
 - performance / tuning is well-understood
 - potential for distributed (but not decentralized) implementation

→ Dörfler, Bolognani, Simpson-Porco, & Grammatico (2019) "Distributed Control and Optimization for Autonomous Power Grids"

Saverio Bolognani

http://control.ee.ethz.ch/~bsaverio

bsaverio@ethz.ch