
Power Systems Control – from Circuits to Economics Exercise set

REMARK: All exercises are referred to in the lecture slides, at

places indicated by the sign , what helps to give them a proper

context.

Exercise 1

A function f : R → R is convex on an interval [a, b], a < b, if for any

x1, x2 ∈ [a, b] and α with 0 ≤ α ≤ 1 we have f(x1 + α(x2 − x1)) ≤ (1 −
α)f(x1) + αf(x2). Starting from the above definition, show the following:

a) f : R→ R is convex on [a, b], if and only if

f(x)− f(a)

x− a
≤ f(b)− f(a)

b− a
≤ f(b)− f(x)

b− x
(1)

for all x ∈ (a, b).

b) Use results from (a) to show: i) A differentiable function of one vari-

able is convex on an interval if and only if its derivative is monotoni-

cally non-decreasing on that interval. ii) A differentiable function of

one variable is concave on an interval if and only if its derivative is

monotonically non-increasing on that interval.

d) A non-decreasing offer curve in case of perfect competition (price-

takers) implies convex (possibly non-differentiable) cost function, while

non-increasing bid curve implies concave (possibly non-differentiable)

benefit function.

Exercise 2

Let the bids be piecewise constant functions (constant on intervals with non-

empty interior) which are non-decreasing for supply bids and non-increasing

for demand bids. Formulate the market clearing problem as an optimization

problem (primal). Remark: from previous exercise we know it has to be

convex optimization problem.

1



Power Systems Control – from Circuits to Economics Exercise set

Exercise 3

Consider a BRP (e.g., a microgrid registered as BRP) with the following

portfolio

• m generators, where i-th generator is characterised by: Ci(pi) as the

production cost function; p
i

and pi as lower and upper bounds on

power production, respectively;

• n controllable loads, {Bi(di), di, di}i=1,...,n; Bi(di) is benefit function;

di and di are lower and upper limit for consumption;

• aggregated price inelastic power injection g.

Let pEX denote the total (aggregated) net power injection from a BRP into

the grid, and let λ denote the corresponding electricity price. Consider the

following two approaches for calculating market bid curve βBRP (pEX) for

the BRP.

Approach I Treat λ (market price) as parameter which varies in some interval, and

calculate pEX by solving the following optimization problem

min
{pi},{dj},pEX

m∑
i=1

Ci(pi)−
n∑

j=1

Bj(dj)− λpEX

subject to
m∑
i=1

pi −
n∑

j=1

dj + q = pEX

p
i
≤ pi ≤ pi, i = 1, . . . ,m

dj ≤ dj ≤ dj j = 1, . . . , n

Create the bid curve by setting β(pEX) = λ, for each solution pair

(λ, pEX).

Approach II Treat pEX as parameter which which varies in some interval and cal-

culate the Lagrange multiplier λ related to the constraint (♣) in the
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Lagrange dual problem to the following (primal) optimization problem

min
{pi},{dj},pEX

m∑
i=1

Ci(pi)−
n∑

j=1

Bj(dj)

subject to
m∑
i=1

pi −
n∑

j=1

dj + q = pEX (♣)

p
i
≤ pi ≤ pi, i = 1, . . . ,m

dj ≤ dj ≤ dj j = 1, . . . , n

Create the bid curve by setting β(pEX) = λ, for each solution pair

(λ, pEX).

Show equivalence between Approach I and Approach II.

Exercise 4

The goal of this exercise is to illustrate a case when the load factor cannot

be one. Recall that the load factor defined over some finite time horizon is

given by

load factor =
average demand

peak demand
.

We make the following definitions

• p(k)=controllable power production at time k

• q(k)=uncontrollable load or negated uncontrollable power

• d(k)=controllable load
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• C(p)=cost function for producing at power level p

• B(d)=benefit function of consuming at power level d

Consider time horizon k ∈ {1, 2, . . . , N} and suppose that the control-

lable load is energy constrained in a sense that the following constraint has

to hold
∑N

k=1 d(k) = EN , for some given positive EN . Suppose that the

power profile of uncontrollable load q over the horizon is known, that is, we

know q = (q(1), . . . , q(N)). Formulate optimization problem in which the

goal is to maximize the social welfare over the considered time horizon, tak-

ing into account the energy constraint of a controllable load. Note that the

solution to this optimization problem coincides to the result of market-based

scheduling under perfect competition. The tasks are as follow:

a) Suppose that C(·) is strictly convex and B(·) strictly concave. Con-

sider the optimal power production/consumption profile over the time

horizon. Show that if q is not constant over the time horizon, the load

factor is necessarily smaller than 1.

b) With B(·) ≡ 0 and C(·) strictly convex, optimal load shifting of en-

ergy constrained loads leads to power factor 1 even with q not being

constant.

Exercise 5

Related to the slides on “Nodal pricing”. Consider nodal pricing with DC

power flow. Prove that the congestion revenue (merchandise surplus) is

always nonnegative.

Exercise 6

Consider simple power system presented in Figures 1 and 2 with the follow-

ing characteristics
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• The bids (incremental costs) for generators at nodes A, B and C:

βA(pA) = 25 + 0.02pA , βB(pB) = 30 + 0.02pB , βC(pC) = 35 + 0.02pC

• Load is price inelastic with values indicated on the figures.

• All three lines are identical.

For the two scenarios from the figures ((1) No line flow limits; (2) Power

flow in line A − B constrained to ≤ 100MW), calculate the set of nodal

prices, the corresponding power production levels and power flows in lines.

Use DC load flow model. Note: the final results are also presented in the

figure (λA, λB and λC denote the prices).

Figure 1: No line flow constraints.
Figure 2: Power flow in line A − B

constrained to ≤ 100MW.

Exercise 7

This is a MATLAB exercise. For network with topology presented on Fig-

ure 3 and with the numerical data given in the tables below, calculate: nodal

prices, zonal prices, PTDFs for transactions of choice. The coefficients ai

and bi in the right table below define the cost functions of generator at node

i: Ci(pi) = aip
2
i + bipi.
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Figure 3: Net topology with line and node labels.

line i-j xij flow limit

1-2 0.0576 100

1-4 0.092 100

1-3 0.17 100

2-3 0.0586 100

3-4 0.1008 100

4-6 0.072 100

3-5 0.0625 100

3-5 0.161 100

3-5 0.085 100

3-5 0.0856 100

node i ai bi load

1 0.13 1.73 88

2 - - 87

3 0.13 1.86 64

4 0.09 2.13 110

5 0.10 2.39 147

6 - - 203

7 0.12 2.53 172

Exercise 8

Show that ACEi = 0 for each control area i, implies that ∆f = 0 (frequency

deviation is zero) and that total power exchanges among control areas as at

scheduled values.

Hint: Write down the equations for a simple example (e.g. in the Figure 4),
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Figure 4: Network example.

and generalize.
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