Power Systems Control Discussion of **Future** Research Topics

Florian Dörfler

Andrej Jokić

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

> dutch institute of systems and control

University of Zagreb

We talked about a whole range of topics

"Power Systems Control – from Circuits to Economics"

All these topics have been expensively studied in the past, and they remain important in the future — possibly with a different emphasis:

- increasing uncertainty in generation
- deregulated markets & pricing schemes
- more and more power electronics sources
- new technologies for sensing/comm/actuation
- new elasticity in demand and batteries
- advances in distributed control & optimization
- . . .

2 / 21

Other very important topics that we did not touch upon

- wide-area estimation: PMUs, load identification, etc.
- DC components in HVDC transmission, microgrids, etc.
- power system optimization using latest start of the art tools
- role of **battery storage** for balancing
- load control & demand response (vehicle charging, thermostatically-controlled loads, etc.)

"There are more papers on electric vehicles than there are electric vehicles out there."

– [Alejandro Garcia-Domingiez, Allerton '15]

3/21

A little summary of almost everything we talked about

System operation centered around synchronous generators

At the beginning was Tesla with the synchronous machine:

$$M \, rac{d}{dt} \, \omega(t) \; = \; P_{ ext{generation}}(t) - P_{ ext{demand}}(t)$$

change of kinetic energy = instantaneous power balance

The AC power grid has been designed around synchronous machines.

All of power system operation has been designed around them as well.

Recently: increasing renewables = retiring synchronous machines

Fundamental challenge: operation of low-inertia systems

We slowly loose our giant electromechanical low-pass filter:

Ν

$$m{\Lambda} \, rac{d}{dt} \, \omega(t) \; = \; P_{ ext{generation}}(t) - P_{ ext{demand}}(t)$$

change of kinetic energy = instantaneous power balance

6 / 21

 $P_{\text{generation}}$

 P_{demand}

decentralized & plug-and-play (passive mechanical loop)
 suboptimal, wasteful in control effort, & need for new actuators

Classification & choice of actuators

Feasibility: what are the key actuators to emulate inertia or other transient control approaches? (how) can this be realized in large?

It actually matters where you emulate inertia!

Optimal Placement of Virtual Inertia in Power Grids

Bala Kameshwar Poolla Saverio Bolognani Florian Dörfler*

January 14, 2016

Abstract

A major transition in the operation of electric power grids is the replacement of bulk generation based on synchronous markets [10]. In this article, we pursue the questions raised 9 2

synthetic) inertia [4-6] through a variety of devices (ranging from wind turbine control [7] over flywheels to batteries [8]), as well as inertia monitoring schemes [9] and even inertia machines by distributed generation based on low-inertia in [3] regarding the detrimental effects of spatially heteropower electronic sources. The accompanying "loss of ro-geneous inertia profiles, and how they can be alleviated by 13/21

Heuristics outperformed by \mathcal{H}_2 - optimal allocation

Scenario: disturbance at #4

- locally optimal solution outperforms heuristic uniform allocation
- optimal allocation \approx matches disturbance
- inertia emulation at all undisturbed nodes is actually **detrimental**
- \Rightarrow **location** of disturbance & inertia emulation matters

A control perspective of almost everything we talked about

Classic power electronics control: emulate generator physics & control

$$\underbrace{M\dot{\omega}(t)}_{\leftarrow} = P_{\text{mech}} - D\omega(t) - \underbrace{\int_{0}^{t} \omega(\tau) d\tau}_{0} - P_{\text{elec}}$$

(virtual) inertia tertiary control primary control secondary control

Essentially all **PID** + setpoint control (simple, robust, & scalable)

$$\underbrace{M\dot{\omega}(t)}_{\text{D}} = \underbrace{P}_{\text{set-point}} - \underbrace{D\omega(t)}_{\text{P}} - \underbrace{\int_{0}^{t} \omega(\tau) \, d\tau}_{\text{I}} - \underbrace{P_{\text{elec}}}_{\text{I}}$$

Control engineers should be able to do better

When searching for solutions remember John and Göran

 Inertia as market commodity? Or obligation? Who buys? Single sided market? Double sided markets for balancing? (Why should I buy a flywheel or install more complex control on my wind turbine?)

- from predictability and **repetitiveness** to uncertainty
- Power flow volatility. Trade-off: spatial resolution versus aggregation of uncertainties. Challenge: Exploit the networking! (old idea, currently often neglected in research). How to manage uncertainity on global (EU) level?

- There is a benefit from aggregation: BRPs as building blocks on macro-scale with good incentives. Good incentives for atomic end-users?
- Challenge: Economical incentives and built-in feedbacks for "good level of" localisation of "desirable macroscopic properties" (inertia, controllable primary and secondary power). "Good level" ← exploit the networking by mastering and controlling inherent trade-offs
- Challenge: Solution architecture is crucial ("hidden" and "invisible": local incentives form global behaviour), together with well defined modules as open systems with well defined protocols and distributed information / algorithms.

21 / 21

