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Florian Dörfler

We have already seen in previous lectures that optimization problems defined over a network
of agents with individual cost functions lead to solutions that can be computed via distributed
average consensus; see the least-square estimation (Sections 1.5.1 and 8.4.2), graph partitioning
(Section 6.4), and least-energy network routing (Exercise E6.13). In this lecture, we formalize the
previous examples and outline the framework of distributed consensus-based optimization.

In Section 1, we review constrained convex optimization problems and present a suite of algo-
rithms solve them. We present the algorithms from a control-theoretic perspective and primarily
in a continuous-time setting to avoid tangential discussions on step-size selection. In Section 2, we
consider optimization problems with separable objective functions, each of which encodes the pri-
vate cost of an agent. We show how consensus constraints and the previously introduced algorithms
can be used to coordinate the agents in a distributed fashion to reach a common optimizer.

1 Review of Optimization Theory

In the following we provide a brief review of some elements of convex analysis optimization algo-
rithms. We refer to [18, 3, 2, 15] for further details and extensions. Our presentation is inspired by
[11, 23, 22, 8, 6, 7, 10, 9, 19] treating optimization algorithms from a control-theoretic perspective.

Notation: In the literature there are multiple notations and conventions for the gradient of a
function f : Rn → R. To avoid any ambiguities, we define ∂f

∂x : Rn → Rn as the column vector of

partial derivatives. Accordingly, ∂f(x)
∂x ∈ Rn is the evaluation of the gradient at x ∈ Rn. We will

interchangeably use ∂f(x)
∂x and ∂f

∂x (x) to highlight the evaluation of the gradient ∂f
∂x at x ∈ Rn.

1.1 Unconstrained Optimization

Consider an unconstrained optimization problem of the form

minimizex∈Rn f(x) , (1)

where f : Rn → R is the objective function to be optimized. A point x? ∈ Rn is said to be a (global)
minimizer of the optimization problem (1) if

f(x?) ≤ f(x) for all x ∈ Rn ,

and f(x?) is a (global) minimum. A (global) minimizer and minimum is said to be strict if

f(x?) < f(x) for all x ∈ Rn \ {x?} ,
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in which case we may speak of the global minimizer and minimum. These concepts can also be
defined locally in a neighborhood of x? though we will not do so in this lecture.

While optimization theory has been developed for quite general classes of functions f , we will
put some regularity properties on the function f – most importantly convexity:

• A function f : Rn → R is said be convex if f(αx+ βy) ≤ αf(x) + βf(y) for all x and y in Rn
and for all convex combination coefficients α and β, i.e., coefficients satisfying α, β ≥ 0 and
α + β = 1. A function is said to be strictly convex if the previous inequality holds strictly.
Intuitively, a function f is convex if if the line segment between any two points on the graph
of the function {(x, y) ∈ Rn × R

∣∣ y = f(x)} lies above or on the graph; see Figure 1(a).

• A function f : Rn → R is said be concave if −f is convex. All properties of convex functions
and minima carry over analogously to concave functions and maxima.

• If f is continuously differentiable, then f is convex if and only if

f(y) ≥ f(x) + (y − x)>
∂f(x)

∂x
for all x, y ∈ Rn . (2)

If the above inequality (2) holds strictly for x 6= y, then f is strictly convex. Intuitively,
condition (2) means that the first-order Taylor approximation globally underestimates the
function f , and the function lies above all of its tangents; see Figure 1(b) for an illustration.

• If f is twice continuously differentiable, then f is convex if and only if the symmetric Hessian

matrix Hessf(x) = ∂2f(x)
∂x2

∈ Rn×n with (i, j) element ∂2f(x)
∂xi∂xj

is positive semidefinite for all

x ∈ Rn. If Hessf(x) is positive definite for all x ∈ Rn, then f is strictly convex. The converse
is not necessarily true, see the strictly convex function f(x) = x4.

x y

f(x)

f(y)

(a) illustration of convexity

x y

f(x)

f(y)

(b) underestimator property

Figure 1: Figure 1(a) illustrates the definition of convexity (i.e., the function is below any line segment), and
Figure 1(b) illustrates the underestimator property (2) (i.e., the function is above all of its tangents).

The global minimum of a continuously differentiable and strictly convex function is easily found:

Lemma 1.1 (Algebraic characterization of minimizer). Consider the optimization problem (1)
and assume that f is continuously differentiable and strictly convex. Then x? ∈ Rn is the global
minimizer if and only if

∂f

∂x
(x?) = 0n . (3)
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Proof. By the underestimator property (2), we have f(y) > f(x) + ∂f(x)
∂x

>
(y − x) for all distinct

x, y ∈ Rn. If x satisfies ∂f(x)
∂x = 0n, then f(y) > f(x) for all y ∈ Rn \ {x}. Hence, x = x? is the

global minimizer.

Another useful property of strictly convex functions is that their gradients are one-to-one map-
pings thus giving hope to uniquely solve equations involving ∂f(x)

∂x ; see Exercise 1.

1.2 Gradient Descent Algorithm

Recall that the gradient ∂f
∂x of the function f points orthogonally to any level set, {x ∈ Rn | f(x) =

c} for any c ∈ image(f), in the direction of steepest ascent; see Figure 2(a). Hence, the minimizer
of a strictly convex function can be found via the negative gradient flow

ẋ = −∂f(x)

∂x
. (4)

A block-diagram of the negative gradient flow (4) with an additional gain can be found in Fig-
ure 2(b). The convergence of the negative gradient flow can be established under mild assumptions.

Theorem 1.2 (Convergence of negative gradient flow). Let f : Rn → R be twice continuously
differentiable and strictly convex. Then each solution t 7→ x(t) of the negative gradient flow (4)
converges to the global minimizer: limt→+∞ x(t) = x?.

Proof. Consider the function t 7→ V (x(t)) = 1
2‖x(t) − x?‖2 measuring the Euclidean distance of

x(t) to the optimizer x?. The derivative of the function V (x) along its negative gradient flow is

V̇ (x) = −(x− x?)> ∂f(x)

∂x
≤ f(x?)− f(x) ≤ 0 ,

where the first inequality follows from evaluating the underestimator property (2) for y = x?:

f(x?) ≥ f(x) +
∂f(x)

∂x

>
(x? − x) ⇔ −(x− x?)>∂f(x)

∂x
≤ f(x?)− f(x) ≤ 0 for all x ∈ Rn .

Due to strict convexity of f , we have that V̇ (x) = 0 if and only if x = x?. The statement follows
from the LaSalle Invariance Principle (see Theorem A.1), where as a set W we adopt, for any initial
condition x0 ∈ Rn, the compact and forward invariant sublevel set {x ∈ Rn | V (x) ≤ V (x0)}.

f(x) = const.

x⋆

∂f

∂x

(a) geometry of unconstrained optimization

1

s
K

∂f

∂x

_
xẋ

(b) block-diagram of negative gradient flow (5)

Figure 2: Figure 2(a) illustrates the geometry of an unconstrained, strictly convex, and smooth optimization
problem. Figure 2(b) shows the weighted negative gradient flow (5) in a block-diagram.
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Remark 1.3 (Convergence conditions and convergence rates). An alternative proof method under
even less stringent assumptions (not exploiting convexity) can be found in Theorem 14.13.

The convergence rate of the negative gradient flow is studied in Exercise 2, and it can be made
arbitrary fast by multiplying a positive definite gain matrix K ∈ Rn×n as follows (see Exercise 3)

ẋ = −K ∂f(x)

∂x
. (5)

Of course, in a digital computer the negative gradient flow (4) is implemented in discrete time.

x+ = x− ε ∂f(x)

∂x
, (6)

where the step-size ε > 0 has to be chosen sufficiently small (see Exercise 4). Hence, the discrete-
time convergence rate is inherently limited by a sufficiently small step-size needed for convergence.
This fundamental dilemma can be circumvented by time-varying step-sizes or acceleration methods
incorporating higher-order dynamics, e.g., an Euler-discretized implementation of the dynamics

ẍ+ a ẋ+ b
∂f(x)

∂x
= 0 , (7)

where a, b > 0 are possibly time-varying gains; see Exercise 5. Since we do not want to further
digress in step-size selection methods, we will henceforth study only continuous-time algorithms.
We refer to the Appendix C for a more in-depth treatment of some of these concepts. �

1.3 Equality-Constrained Optimization

In the following, we consider the equality-constrained optimization problem

minimizex∈Rn f(x) (8a)

subject to g(x) = Ax− b = 0m , (8b)

where f : Rn → R is a continuously differentiable objective function, and the constraint equation
is specified by the matrix A ∈ Rm×n and the vector b ∈ Rm. We will generally assume that
rank(A) < n so that the constraint equation leaves some room for optimizing x.

The constrained problem (8) can be reduced to an unconstrained one by modifying it to

minimizex∈Rn f(x) + I(‖g(x)‖)

where I(·) is the indicator function that evaluates to 0 whenever ‖g(x)‖ = 0 and ∞ otherwise.
Whereas this approach formally leads to an unconstrained problem, it is impractical for the methods
developed in Sections 1.1 and 1.2 requiring differentiability of the objective function. Alternatively,
the constraint g(x) = 0m can be enforced through a soft penalty of the form

minimizex∈Rn f(x) +
ρ

2
‖g(x)‖2 , (9)

where ρ > 0. Clearly, this soft penalty method does generally not perfectly enforce the constraint
g(x) = 0m unless ρ → ∞, but we will frequently return to this idea in the following subsections.
In the following, we first resort to a geometrically inspired approach to constrained optimization.
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1.4 Duality theory

The geometry of the constrained optimization problem (8) is illustrated in Figure 3. Figure 3
suggests that x is a strict minimizer provided that the constraint g(x) = 0m is met, and the level
sets of the objective function and the constraint equation are tangent (or equivalently, their normal

vectors ∂f(x)
∂x and ∂g(x)

∂x are linearly dependent). These two conditions can be formalized as follows:
if x ∈ Rn is a minimizer of (8), then there is λ ∈ Rm so that (x, λ) satisfy the following conditions:

(i) feasibility condition: 0m = g(x) = Ax− b , (10a)

(ii) tangency condition: 0n =
∂f(x)

∂x
+
∂g(x)

∂x

>
λ . (10b)

The conditions (10), termed KKT conditions (after Karush, Kuhn, and Tucker), are necessary
conditions for optimality of x. The variable λ ∈ Rm is termed a Lagrange multiplier or dual
variable. Analogously, x is termed the primal variable. Additionally, if f is convex, then the KKT
conditions (10) are sufficient for optimality and their solutions (x?, λ?) specify all minimizers and
optimal dual variables. If f is strictly convex and A has full rank, then the KKT conditions admit
only a single solution (x?, λ?), namely the strict global minimizer and associated dual variable.

1.5 Linearly-constrained quadratic programs

For the following developments, it is instructive to consider, as a running example, the linearly-
constrained quadratic (LQ) program

minimizex∈Rn f(x) =
1

2
(x− x)>P (x− x) (11a)

subject to g(x) = Ax− b = 0m , (11b)

where x ∈ Rn and P ∈ Rn×n is a positive semidefinite matrix. Since Hessf(x) = P , the LQ program
is convex (respectively strictly convex) if P is positive semidefinite (respectively, positive definite).
In either case, the KKT conditions (10) are

[
−P −A>
A 0

]

︸ ︷︷ ︸
=A

[
x
λ

]
=

[
−Px
b

]
(12)

The matrix A is a so-called saddle matrix [1]. The reasons for this terminology will become clear
in the next section. The following lemma summarizes some properties of saddle-matrices for the
general case when P is positive semidefinite. We leave the proof for the reader; see Exercise 12.

f(x) = const. g(x) = 0

g(x) = const.x⋆

∂f

∂x
(x⋆)

∂g

∂x

Figure 3: Geometry of a strictly convex, smooth, and equality-constrained optimization problem

5



Advanced Topics in Control 2018 Distributed Consensus-Based Optimization

Lemma 1.4 (Spectrum of saddle matrices). Consider a positive semidefinite matrix P ∈ Rn×n
and a not necessarily square matrix A ∈ Rm×n with n ≥ m forming the composite saddle-matrix

A =

[
−P −A>
A 0

]
.

The saddle matrix A has the following properties:

1) all eigenvalues are in the closed left half-plane: spec(A) = {λ ∈ C | <(λ) ≤ 0}. Moreover, all
eigenvalues on the imaginary axis have equal algebraic and geometric multiplicity;

2) if kernel(P )∩ image(A>) ⊆ {0n}, then A has no eigenvalues on the imaginary axis except for
0; and

3) if P is positive definite and A has full rank, then A has no eigenvalues on the imaginary axis.

Observe that as a consequence of Lemma 1.4, if P is positive definite and A has full rank m,
then the KKT equations deliver a unique solution (x?, λ?).

1.6 Lagrangian function

It is convenient to consider the Lagrangian function L : Rn × Rm → R for the problem (8):

L(x, λ) = f(x) + λ>g(x) = f(x) + λ>(Ax− b) . (13)

Observe that the Lagrangian function is (strictly) convex in x whenever f is (strictly) convex and
linear (and thus concave) in λ. In this case, the Lagrangian function admits a set of saddle points
(x?, λ?) ∈ Rn × Rm satisfying

L(x?, λ) ≤ L(x?, λ?) ≤ L(x, λ?) for all (x, λ) ∈ Rn × Rm . (14)

Since L(x, λ) is differentiable, the saddle points in (14) can be obtained as solutions to the equations

0n =
∂L(x, λ)

∂x
=
∂f(x)

∂x
+
∂g(x)

∂x

>
λ (15a)

0m =
∂L(x, λ)

∂λ
= g(x) = Ax− b . (15b)

Observe that the saddle-point equations (15) coincide with the KKT conditions (10) (or (12) in the
LQ case), and thus also reveal the minimizers and the optimal dual variables. In the literature on
optimization, the dual variable λ is often interpreted as the price of the constraint entering linearly
in the Lagragian (13). For the subsequent algorithmic development we rely on the Lagrangian
function (13) and develop algorithms that seek its stationary points (15).

Example 1 (LQ program). Consider the LQ program (11) with x ∈ R2 and with the matrices

P =

[
2.6 0.8
0.8 1.4

]
, x =

[
0
0

]
, A =

[
1 2

]
, b = 1

describing the objective and the constraint. The matrix P is positive definite with eigenvalues {1, 3}.
The KKT conditions (12) determine the optimizer as x? = [−0.0233 0.5116]> and the optimal
multiplier as λ? = −0.3488. The geometry of the optimization problem depicting the level sets of the
objective, the constraint equation, as well the optimizer are shown in Figure 4(a). The Lagrangian
L(x, λ) projected on x1 = 0 is shown in Figure 4(b) clearly depicting the saddle point. �
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Figure 4: Figure 4(a) illustrates the geometry of of the LQ program including the ellipsoidal level sets of the
objective and the linear equality constraint. Figure 4(b) shows the Lagrangian L(x, λ) projected on x1 = 0.
Both figures show the optimizer x? and associated multiplier λ? as red dots.

1.7 Primal-Dual Saddle-Point Algorithm

Since the Lagrangian function is convex in x and concave in λ, we can compute its saddle points
by following the so-called saddle-point flow, consisting of a positive and negative gradient flow:

ẋ = −∂L(x, λ)

∂x
= −∂f(x)

∂x
− ∂g(x)

∂x

>
λ = −∂f(x)

∂x
−A>λ (16a)

λ̇ = +
∂L(x, λ)

∂λ
= g(x) = Ax− b. (16b)

The convergence of the saddle-point flow (16) can now be proved analogously to the proof of the
negative gradient flow (4) in Theorem 1.2. The proof is left for the reader in Exercise 6.

Theorem 1.5 (Convergence of saddle-point flow). Let f : Rn → R be twice continuously dif-
ferentiable and strictly convex. Then each solution t 7→ (x(t), λ(t)) of the saddle-point flow (16)
converges to the set of saddle points (x?, λ?).

Similarly to the weighted gradient flow (5), additional positive definite convergence gain matrices
K1 and K2 can be added to improve the convergence of the saddle-point flow (16) (see Exercise 7):

ẋ = −K1
∂L(x, λ)

∂x
= −K1

∂f(x)

∂x
−K1A

>λ (17a)

λ̇ = +K2
∂L(x, λ)

∂λ
= K2 (Ax− b) . (17b)

The resulting block-diagram is shown in Figure 5 and reveals the saddle-point flow (17) as a skew-
symmetric interconnection of the primal gradient dynamics (5) (see Figure 2(b)) together with an
integral controller for the dual dynamics penalizing the constraint violation.
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1

s
K1

∂f

∂x

_
xẋ

AT A

1

s
K2

_

λ λ̇
b

Ax− b

_

primal gradient dynamics

dual integrator dynamics

skew-symmetric interconnection   

Figure 5: The block-diagram of the saddle-point flow (17) is composed of a skew-symmetric interconnection
(through the matrices A and −A>) of the primal gradient dynamics (5) and an integrator for the dual
dynamics integrating (and thus penalizing) the constraint violation: λ̇ = Ax− b.

1.8 Primal-Dual Algorithms with Augmented Lagrangians

To ensure convergence of saddle-point flow and to improve its transient performance, it is beneficial
to re-consider the soft penalty method in (9) and define the augmented Lagrangian function

Laug(x, λ) = f(x) + λ>g(x) +
ρ

2
‖g(x)‖2 = f(x) + λ>(Ax− b) +

ρ

2
(Ax− b)>(Ax− b) , (18)

where ρ > 0. Note that the augmentation term ρ‖g(x)‖2 evaluates to zero at optimality and merely
serves the purpose to improve the algorithm performance by penalizing the constraint violation and
thus adding (i) additional convexity as well as (ii) damping. Indeed, even if f(x) was not strictly
convex, the function f(x) + ρ

2 (Ax − b)>(Ax − b) may be strictly convex. Regarding additional
damping, the saddle-point flow (17) applied to the augmented Lagrangian function (18) yields

ẋ = −K1
∂

∂x
Laug(x, λ) = −K1

∂f(x)

∂x
−K1A

>λ− ρK1A
>(Ax− b) (19a)

λ̇ = +K2
∂

∂λ
Laug(x, λ) = K2 (Ax− b) . (19b)

An interesting control-theoretic perspective on augmentation is revealed when analyzing the block-
diagram of the augmented saddle-point flow (19); see Figure 6. In comparison to the regular saddle-
point flow (17) shown in Figure 5 (where we understood the dual dynamics as integral control), the
augmentation term ρ

2‖g(x)‖2 induces an additional proportional control on the constraint violation.
We leave the analysis of the augmented saddle-point flow (19) to the reader; see Exercise 8.

Remark 1.6 (Alternative augmentation). If A = A> is a symmetric matrix and b = 0m so that
g(x) = Ax, then another popular augmentation not affecting the saddle points is the following.

Laug,2(x, λ) = f(x) + λ>g(x) +
ρ

2
x>g(x) = f(x) + λ>Ax+

ρ

2
x>Ax . (20)
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Figure 6: The block-diagram of the augmented saddle-point flow (19) is composed of a skew-symmetric
interconnection (through the matrices A and −A>) of the primal gradient dynamics (5) and a proportional-
integral control for the dual dynamics penalizing the constraint violation.

All previous comments concerning the first augmentation (18) apply here as well. Note that a
particular feature of the latter augmentation (20) is that (20) results in a sparse saddle-point flow
(provided that A sparse) whereas the prior augmentation (18) gives a saddle-point flow involving
the matrix A>A which is typically more dense than A. We will revisit this theme in Section 2.2.�

Example 2 ((Augmented) saddle-point flow of LQ program). For the LQ program (11) in Exam-
ple 1 the saddle-point flow (17) is a linear system governed by the saddle matrix A in (12):

[
K−11 ẋ

K−12 λ̇

]
=

[
−P −A>
A 0

]

︸ ︷︷ ︸
=A

[
x
λ

]
−
[
−Px
b

]
(21)

A representative simulation is shown in Figure 7(a) for the gains K1 = I2 and K2 = 3. The oscil-
lations are due to the skew-symmetric off-diagonal elements of the saddle-matrix A. A simulation
of the augmented saddle-point flow (19) is shown in Figure 7(b) with the gain ρ = 1. Observe the
qualitative difference between the augmented and non-augmented flows. In particular, the augmen-
tation induces an over-damped behavior and much faster convergence. Thus, due to their superior
performance, augmented Lagrangians are generally preferred in saddle-point algorithms. �

1.9 Dual Ascent Algorithm

Observe that the saddle-point flow (17) converges for any positive definite gain matrices K1 and
K2. In the following, we consider the limit where the gain K1 becomes arbitrary large (compared

9



Advanced Topics in Control 2018 Distributed Consensus-Based Optimization

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x
1

x
2

(a) saddle-point flow (17)
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(b) augmented saddle-point flow (19)

Figure 7: Trajectories of the saddle-point flow (17) and the augmented saddle-point flow (19).

to K2) so that the primal dynamics (17a) converge instantaneously to their equilibria

0n =
∂L(x, λ)

∂x
=
∂f(x)

∂x
+A>λ , (22)

The equilibria (22) correspond to the tangency condition in the KKT equations (10). After solving

the algebraic equations (22) for x = x(λ) (recall from Exercise 1 that ∂f(x)
∂x is invertible for a

strictly convex function), we are left with the dual gradient dynamics (17b). In summary, this
scheme termed dual gradient or dual ascent may also be written as

x? = argminx∈Rn L(x, λ) = argminx∈Rn

(
f(x) + x>A>λ

)
(23a)

λ̇ = K
∂

∂λ
L(x?, λ) = K (Ax?(λ)− b) , (23b)

where K ∈ Rm×m is positive definite, and we emphasized that the minimizer x? = x?(λ) is a
function of λ. If f is strictly convex, the minimizer x?(λ) is obtained as the unique solution of (22).

The block-diagram of the dual ascent (23) in Figure 8 is composed of a primal minimization
step interconnected with a dual integrator through a symmetric coupling. The dual ascent (23)
converges under strict convexity and additional regularity assumptions on f and g. We refer to
[2, Chapter 3] for a detailed analysis and consider the linearly-constrained quadratic program (11)
here.

Theorem 1.7 (Convergence of dual ascent). Consider the LQ program (11). Then each solution
t 7→ (x(t), λ(t)) of the dual ascent (23) converges to the set of saddle points (x?, λ?).

Proof. For the optimization problem (11), the minimizer x?(λ) of L(x, λ) is found from (22) as

0n = P (x?(λ)− x) +A>λ ⇔ x?(λ) = −P−1A>λ+ x . (24)

The set of associated optimal dual variables λ? is found from the KKT conditions (10):

0m = Ax?(λ)− b = −AP−1A>λ? +Ax− b . (25)

10
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argminx∈Rn

(
f(x) + xTu

)

Ax⋆ − b

u = ATλ

Figure 8: The block-diagram of the dual ascent algorithm (23) is composed of a symmetric interconnection
(through the matrices A and A>) of the primal minimization step (23a) and an integrator for the dual
dynamics integrating (and thus penalizing) the constraint violation: λ̇ = Ax? − b.

Observe that equation (25) admits a unique solution λ? if and only if A has full rank. The associated
dual gradient ascent dynamics (23b) can be written as

K−1λ̇ = Ax?(λ)− b = −AP−1A>λ+Ax− b = −AP−1A>(λ− λ?) . (26)

The matrix AP−1A> ∈ Rm×m is positive semidefinite. Consider the Lyapunov function

V (λ− λ?) =
1

2
(λ− λ?)>K−1(λ− λ?)

with derivative along trajectories of (26) given by

V̇ (λ− λ?) = −(λ− λ?)>AP−1A>(λ− λ?) .

If A has full rank m, then AP−1A> is positive definite, and the dual gradient ascent (26) is an
asymptotically stable linear system. In this case, λ(t) converges exponentially fast towards λ?, and
x(t) = x?(λ(t)) converges exponentially towards x?. This concludes the proof if A has full rank.
We leave the general proof in the rank-deficient case to the reader (see Exercise 9).

We remark that the dual ascent (23) can also be defined for the augmented Lagrangian (18)
(Exercise 10) as well as in discrete time (Exercise 11). An indicative simulation is shown in Figure 9.

2 Distributed Optimization

2.1 Distributed Optimization Setup

Consider a network of n agents that can perform local computation and communicate with another.
The communication architecture is modeled by an undirected and connected graph with n nodes
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Figure 9: Dual ascent (23) applied to the LQ program from Example 1 with K = 1.

and m edges. The objective of the multi-agent network is to solve the optimization problem

minimizex∈R f(x) =
∑n

i=1
fi(x), (27)

where fi : R→ R is a private cost function known only to agent i ∈ {1, . . . , n}. We assume that each
fi is strictly convex and twice continuously differentiable. Note that each agent’s cost is a function
of the global variable x which is why the agents need to coordinate to solve the problem (27).

To find a distributed approach for solving the optimization problem (27), we associate a local
estimate yi ∈ R of the global variable x ∈ R to every agent and solve the equivalent problem

minimizey∈Rn f̃(y) =
∑n

i=1
fi(yi) (28a)

subject to C(y) , (28b)

where C(y) is a consensus constraint that assures yi = yj for all i, j ∈ {1, . . . , n}, that is, the local
estimates of all processors coincide. Different choices for the consensus constraint are, for example,

(i) Laplacian constraint: 0n = Ly , (29a)

(ii) incidence constraint: 0m = B>y , (29b)

where L ∈ Rn×n is a weighted Laplacian matrix and B ∈ Rn×n is an incidence matrix associated
with the communication graph among the processors. The different choices of consensus constraints
C(y) are useful in different algorithmic applications to constrained optimization, and they give rise
to fundamentally different computation and communication architectures as we will see below.

Example 3 (Quadratic distributed optimization). As a running example for distributed optimiza-
tion, we consider the quadratic cost functions fi(x) = (x− xi)

>Pi(x− xi), where Pi > 0 and xi ∈ R
is the minimizer of the cost fi(x). Thus, the cost can be reformulated up to an additive constant as

f(x) =
1

2

∑n

i=1
(x− xi)

>Pi(x− xi) =
1

2

∑n

i=1
(x− xw-avg)

>Pi(x− xw-avg) +O(x0) , (30)

where the weighted average xw-avg = (
∑n

i=1 Pi)
−1∑n

i=1 Pixi is the global minimizer of f(x); see
Exercise 14. In the following, we will frequently revisit the quadratic objective f(x) either in its
original form 1

2

∑n
i=1(x− xi)

>Pi(x− xi) or as 1
2

∑n
i=1(x− xw-avg)

>Pi(x− xw-avg). �

12
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2.2 Distributed Primal-Dual Saddle-Point Algorithm

We begin our analysis of the the distributed optimization problem (28) by means of a primal-dual
saddle-point algorithm from Section 1.7. We consider here the Laplacian-based consensus constraint
(29a) and refer to Exercise 16 for an analysis of the incidence-based constraint (29b):

minimizey∈Rn f̃(y) =
∑n

i=1
fi(yi) (31a)

subject to Ly = 0n . (31b)

For problem (31) an augmented Lagrangian function L : Rn × Rn → R of the form (20) is

L(y, λ) = f̃(y) + λ>Ly +
1

2
y>Ly , (32)

and the associated saddle-point flow (16) reads as

ẏ = −∂L(y, λ)

∂y
= − ∂

∂y
f̃(y)− Ly − Lλ , (33a)

λ̇ = +
∂L(y, λ)

∂λ
= Ly , (33b)

In components, for processor i ∈ {1, . . . , n} the saddle-point flow (33) reads as

ẏi = − ∂

∂yi
fi(yi)−

∑n

j=1
aij(yi − yj)−

∑n

j=1
aij(λi − λj),

λ̇i =
∑n

j=1
aij(yi − yj) ,

where aij ≥ 0 are the (possibly non-binary) weights of the communication graph among the agents.
The block-diagram of the saddle-point flow (33) is shown in Figure 10 including further gains for
the augmentation, primal, and dual dynamics. The saddle-point dynamics (33) can be implemented
in a distributed processor network using only local knowledge of fi(yi), local computation, nearest-
neighbor communication, and after time-discretizing the dynamics (33) (see Exercise 15). The
reasons for preferring the augmentation (20) over the standard choice (18) is that the augmentation
(18) results in the term L>Ly in (33a) (instead of Ly) hindering a distributed implementation.

The saddle points of the augmented Lagrangian (32) and the equilibria of the saddle-point flow
(33) are characterized by the following lemma whose proof is left to the reader in Exercise 13.

Lemma 2.1 (Properties of saddle points). Let L = L> ∈ Rn×n be a symmetric Laplacian associated
to an undirected, connected, and weighted graph. Consider the augmented Lagrangian function (32),
where each fi is strictly convex and twice continuously differentiable for all i ∈ {1, . . . , n}. Then

1. if (y?, λ?) ∈ Rn × Rn is a saddle point of L, then so is (y?, λ? + α1n) for any α ∈ R;

2. if (y?, λ?) ∈ Rn×Rn is a saddle point of L, then y? = x?1n where x? ∈ R is a solution of the
original optimization problem (27); and

3. if x? ∈ R is a solution of the original optimization problem (27), then there are λ? ∈ Rn and
y? = x?1n satisfying Lλ? + ∂

∂y f̃(y?) = 0n so that (y?, λ?) is a saddle point of L.

The following result characterizes the convergence of the distributed saddle point flow (33).

13
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skew-symmetric network coupling   

Figure 10: Block-diagram of the distributed saddle-point flow (33).
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Theorem 2.2 (Convergence of distributed saddle-point flow). Let f̃ : Rn → R be twice continuously
differentiable and strictly convex. Then each solution t 7→ (y(t), λ(t)) of the distributed saddle-point
flow (33) converges to a saddle point (y?, λ?) uniquely characterized by

1. y? = x?1n where x? ∈ R is the solution of the original optimization problem (27); and

2. λ? = λ̄+ average(λ0)1n where λ̄ ⊥ 1n satisfies Lλ̄+ ∂
∂y f̃(y?) = 0n.

Proof. The general convergence to the set of saddle points (y?, λ?) follows from Theorem 1.5.
From Lemma 2.1, the saddle points (y?, λ?) are identified as y? = x?1n where x? ∈ R is the
solution of the original optimization problem (27) and λ? = λ̄ + α1n with α ∈ R and λ̄ ⊥ 1n
satisfying Lλ̄+ ∂

∂y f̃(y?) = 0n. From the dual dynamics (33b), we conclude that 1>n λ̇ = 0 and thus
average(λ(t)) = average(λ0) for all t ≥ 0. It follows that the saddle-point dynamics (33) converge
to a unique saddle point (y?, λ?) satisfying y? = x?1n and λ? = λ̄+ average(λ0)1n.

Example 4 (Distributed LQ saddle point optimization). As shown in [22, 8, 6, 4], the distributed
saddle-point flow (33) is a versatile and robust setup that extends to directed graphs and non-
differentiable objective functions. In the following, we restrict ourselves to the quadratic cost func-
tions discussed in Example 3. In this case, the saddle-point flow (33) reduces to the linear system

[
˙̃y

λ̇

]
=

[
−P − L −L

L 0n×n

]

︸ ︷︷ ︸
=A

[
ỹ
λ

]
, (34)

where ỹ = y − xw-avg1n and P = diag({Pi}i∈{1,...,n}). In the following, we analyze the kernel of A:

[
0n
0n

]
=

[
−P − L −L

L 0n×n

] [
ỹ
λ

]
=⇒ (P + L)ỹ + Lλ = 0n and Lỹ = 0n =⇒ ỹ ∈ span(1n)

=⇒ multiplying (P + L)ỹ + Lλ = 0n by ỹ>: ỹ>P ỹ = 0n
=⇒ ỹ = 0n and λ = α1n , where α ∈ R.

Thus, the saddle matrix A has a zero eigenvalue with multiplicity 1, and the associated eigenvector[
0>n 1>n

]>
corresponds to the set of saddle points. From Lemma 1.4, we conclude that the remaining

eigenvalues must be asymptotically stable, and thus (34) converges to the set of saddle points. In
the chosen error coordinates, we have that ỹ(t→∞) = 0n and λ(t→∞) = average(λ0)1n. �

2.3 Distributed Dual Ascent

In the following, we seek to apply the dual ascent (23) to distributed optimization.
As in Section 1.9, we restrict ourselves to the LQ setup and adopt the quadratic cost functions

(30). Observe from the block-diagram in Figure 8 that the dual ascent (23) can be implemented in
a distributed fashion as long as the constraint matrix (the A matrix in Figure 8) and its transpose
are sparse and encode the information exchange encoded in the communication graph. We can thus
resort to either the Laplacian or the incidence consensus constraints in (29). In the following, we
adopt the incidence consensus constraint (29b) giving rise to the distributed optimization problem

minimizey∈Rn f̃(y) =
1

2

∑n

i=1
(yi − xi)

>Pi(yi − xi) (35a)

subject to B>y = 0m . (35b)
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In this case, the primal minimization step (24) reduces to solving the equation

0n = P (y?(λ)− x) +Bλ ⇔ y?(λ) = −P−1Bλ+ x , (36)

where P = diag({Pi}i∈{1,...,n}) and x = [x1 . . . xn]>. The minimization (36) can be performed
locally at each agent provided that it has access to the multipliers λ associated to the adjacent
communication links. The multipliers are updated via the dual gradient step (26), that is,

K−1λ̇ = B>y?(λ) = −B>P−1Bλ+B>x (37)

by simply taking differences of the values y?(λ) at the neighboring agent. In short, the incidence-
based dual ascent (36)-(37) can be implemented in a distributed fashion amongst the agents pro-
vided that every communication link has an associated multiplier; see Figure 11. This alternation
of updates at agents and communication links is a general feature of the incidence constraint (29b)
and also occurs for incidence-based saddle-point flows (see Exercise 16). In a real-world distributed
computing setting, the nodal computation could be performed by individual processors whereas
the edge computations are performed by routers linking these computers.

y⋆

B BT

1

s
K

λ λ̇

primal minimization step at every processor

dual integrator dynamics at every communication link

symmetric network coupling   

y⋆ = −P−1u+ x

BT y⋆

u = Bλ

nodal dynamics

edge dynamics

Figure 11: Block-diagram of the incidence-based dual ascent (36)-(37).

Theorem 2.3 (Convergence of distributed dual ascent). Consider the LQ program (35). Then
each solution t 7→ (y(t), λ(t)) of the distributed dual ascent (36)-(37) converges to a saddle point
(y?, λ?) uniquely characterized by

1. y? = xw-avg1n where xw-avg = (
∑n

i=1 Pi)
−1∑n

i=1 Pixi is the solution of the original optimiza-
tion problem with the quadratic cost (30); and

2. λ? = λ̄+ λ̃, where λ̄ ∈ image(B>) satisfies 0n = Bλ̄+ P (y? − x) and λ̃ ∈ kernel(B).

Proof. The closed-loop dual ascent (36)-(37) reads as

K−1λ̇ = −B>P−1Bλ+B>x = −Ledge(λ− λ?) , (38)
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where Ledge = B>P−1B is an edge Laplacian matrix (see Exercise E8.2), and we used the fact that
the optimal dual variable λ? satisfies the KKT conditions (10):

0m = B>y?(λ) = −B>P−1Bλ? +B>x . (39)

By Theorem 1.7, the final update equation (38) converges exponentially to an optimal dual variable
λ?, and the primal minimizer y?(λ(t)) from (36) converges exponentially to the global minimizer.

From the KKT condition (39), we have that y? = c · 1n for some c ∈ R. When we multiply
the other KKT condition (36) from the left by 1>n , we obtain 0 =

∑n
i=1 Pi c −

∑n
i=1 Pixi, that is,

c = xw-avg, and y? = xw-avg1n. Concerning the optimal dual variable λ?, the KKT condition (36)
shows that λ? = λ̄ + λ̃, where λ̃ ∈ kernel(B) and λ̄ ∈ image(B>) satisfies 0n = Bλ̄ + P (y? − x).
To further investigate λ̃ ∈ kernel(B), consider any vector v ∈ kernel(B) and multiply (38) by v>K
to obtain v>λ̇ = 0, that is, v>λ(t) = v>λ̃(t) = v>λ̃(0) = v>λ(0) for all t ≥ 0. Thus, any vector
λ̃(0) ∈ kernel(B) remains constant under the dynamics (38). Hence, the final saddle point (y?, λ?)
is uniquely characterized by 0n = Bλ̄+ P (y? − x) and the initial condition λ̃(0) ∈ kernel(B).

We refer to Exercises 17 and 18 for a Laplacian-based and discrete-time implementations.

2.4 Distributed Gradient Descent

Recall the block-diagram of the distributed saddle-point algorithm (33) in Figure 10. In the follow-
ing, consider the case of taking the dual gain K2 in Figure 10 to zero. As a result, Figure 10 reduces
to Figure 12, and the primal update reads as a distributed gradient flow with Laplacian coupling:

K1ẏ = −∂f̃(y)

∂y
− ρLy . (40)

Inspired from the soft-penalty method (9), one may also view the distributed gradient flow (40)

1

s
K1

∂f̃

∂y

_
yẏ

primal gradient dynamics

L

+

consensus constraint forcing via augmentation

ρ

Figure 12: This figure shows the block-diagram of the distributed gradient flow (40). It is instructive to
compare this block diagram to that of the distributed saddle-point flow (33) in Figure 10

with Laplacian coupling as the regular gradient flow of the optimization problem

minimizey∈Rn

∑n

i=1
f̃i(yi) +

ρ

2
y>Ly , (41)
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where the soft-penalty ρ
2 y
>Ly is tasked with enforcing a Laplacian consensus-constraint. Observe

that the minimizer of (41) is generally different from that of the distributed optimization problem
(31). Nevertheless, it can be shown that the algorithm (40) converges to the correct solution of the
distributed optimization problem (31) provided that the gains are time-varying. This idea has been
first proposed in [14] in the discrete-time case dating back to earlier work in [21], and variations of
the continuous flow (40) have later been studied in continuous time [13, 12, 10].

We follow ideas in [10, 13] and present an independent analysis. Consider the time-varying flow

ẏ = −α(t)
∂f̃(y)

∂y
− Ly , (42)

where the time-varying positive gain α : R≥ → R>0 satisfies the persistence condition

α(t) > 0 ,

∫ ∞

0
α(τ) dτ =∞ , and limt→∞ α(t) = 0 , (43)

that is, over time the Laplacian coupling in the distributed gradient flow (42) dominates the gradient
descent with a decaying yet non-integrable gain α(t), e.g., α(t) = (t+ 0.1)−1.

Theorem 2.4 (Convergence of distributed gradient flow). Consider the distributed gradient flow
(42) where α : R≥ → R>0 satisfies the persistence condition (43), and f̃ : Rn → R is assumed
to be twice continuously differentiable, strictly convex, and radially unbounded. Then each solution
t 7→ y(t) of the distributed gradient flow (42) converges to the unique optimizer y? = x?1n.

Proof. The proof consists of three subsequent analysis steps:
Step 1: boundedness of the state: Consider the Lyapunov function V (y) = 1

2‖y − y?‖22 =
1
2‖y − x?1n‖22 whose derivative along trajectories of (42) is

V̇ (y) =− α(t) (y − y?)> ∂f̃(y)

∂y
− (y − y?)> Ly

=− α(t)
(
f̃(y)− f̃(y?)

)
− (y − y?)> L (y − y?) ≤ 0 ,

where we leveraged the underestimator property (2) and the fact that Ly? = Lx?1n = 0n. Thus,
the state y is bounded, and the distance to the optimizer is non-increasing: ‖y(t)−y?‖ ≤ ‖y0−y?‖.

Step 2: asymptotic consensus: Consider the change of coordinates

[
δ
ξ

]
=

[
U>

1>n /n

]
y ⇔ y =

[
U 1n

] [δ
ξ

]
,

where the matrix U ∈ Rn×(n−1) collects the n−1 Laplacian eigenvectors orthogonal to 1n and with
associated eigenvalues λ2, . . . , λn > 0. In these coordinates, the dynamics (42) read as

d

dt

[
δ
ξ

]
=

[
U>LU 0n−1
0>n−1 0

] [
δ
ξ

]
− α(t)


 U

> ∂f̃(y)
∂y

1
n1
>
n
∂f̃(y)
∂y


 .

In the following, we focus on the first set of equations, which read as

δ̇ = U>LUδ − α(t)U>
∂f̃(y)

∂y
= −diag(λ2, . . . , λn)δ + η(t) ,
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where we defined η(t) = −α(t)U> ∂f̃(y)∂y . Note that η(t) is a bounded signal (since y is bounded) that
is decaying to zero (since α(t) is decaying to zero). Hence, the δ-dynamics are an exponentially
stable linear system subject to the bounded and convergent input η(t). Thus, the δ-coordinate
converges asymptotically to zero, and consensus y(t→∞) ∈ span(1n) is achieved asymptotically.

Step 3: asymptotic optimality: The remaining coordinate ξ = average(y) has the dynamics

ξ̇ = −α(t)

n
1>n

∂f̃(y)

∂y
= −α(t)

n

∑n

i=1

∂fi
∂y

(yi) = −α(t)

n

∑n

i=1

∂fi
∂y

(
(Uδ)i + ξ

)
,

where we used yi = (Uδ)i + ξ. Consider the time-scaling τ =
∫ t
0 α(σ) dσ so that dτ

dt = α(t). Note
that α(t) > 0 assures that τ is strictly monotonically increasing in t, and the integral persistence
condition (43) guarantees surjectiveness: t ∈ [0,∞] is mapped to τ ∈ [0,∞]. Hence, the change of
time-scales is invertible. In the τ -time-scale, the ξ-dynamics read as

d

dτ
ξ = − 1

n

∑n

i=1

∂fi
∂y

((Uδ)i + ξ)

Consider the Lyapunov function W (ξ) = 1
2(ξ − ξ?)2, where ξ? = x? is the global minimizer of

f(x) =
∑n

i=1 fi(x). The derivative of W (x) is

d

dτ
W (ξ) = −(ξ − ξ?) ·

∑n

i=1

∂fi
∂y

(ξ) + (ξ? − ξ) ·
∑n

i=1

(
∂fi
∂y

((Uδ)i + ξ)− ∂fi
∂y

(ξ)

)

By the underestimator property (2), the first term of Ẇ (ξ) is upper-bounded by f(ξ?)−f(ξ). Since
the state is bounded (see Step 1), the second term can be upper-bounded as

(ξ? − ξ) ·
∑n

i=1

(
∂fi
∂y

((Uδ)i + ξ)− ∂fi
∂y

(ξ)

)
≤ |ξ? − ξ| ·

∑n

i=1
Li · |(Uδ)i|

where Li = max‖y−y?‖≤‖y0−y?‖Hessfi(y) is the maximal Lipschitz constant of ∂fi
∂y evaluated in the

compact invariant set {y ∈ Rn | ‖y − y?‖ ≤ ‖y0 − y?‖} calculated in Step 1. By Step 2, for each
ε ≥ 0, there is a τε so that for all τ ≥ τε we have

∑n
i=1 Li · |(Uδ)i| ≤ ε. In summary, for each τ ≥ τε

d

dτ
W (ξ) ≤ f(ξ?)− f(ξ) + ε · |ξ? − ξ| ≤ 0 .

Due to radial unboundedness and strict convexity of f̃ (and thus also of f), we have that there is
|ξε| so that d

dτW (ξ) is strictly negative for sufficiently large |ξ−ξ?| ≥ |ξε| and thus W (ξ(τ →∞)) ≤
W (ξε). Moreover, ξε → 0 as ε → 0. Hence, for each ε̃ ≥ 0, there is ε sufficiently small so that for
τ ≥ τε, W (ξ(τ)) ≤ ε̃. Spoken differently, W (ξ(τ)) converges to 0. Equivalently, ξ(τ) converges to
the optimal value ξ? as τ →∞ and so does ξ(t) as t→∞.
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3 Exercises

1. Exercise (One-to-one property of the gradient of a strictly convex function): Show
that if f : Rn → R is strictly convex and continuously differentiable, then the gradient
∂f
∂x : Rn → Rn is a one-to-one mapping, that is, for all x1, x2 ∈ Rn

∂f

∂x
(x1) =

∂f

∂x
(x2)

implies x1 = x2. Hence, the function ∂f(x)
∂x is invertible on its range.

2. Exercise (Convergence rate of gradient algorithms): Consider the gradient flow

ẋ = −∂f(x)

∂x
.

Show the following convergence rate measured in terms of sub-optimality:

f(x(t))− f(x?) ≤ ‖x0 − x
?‖2

2 t
.

Hint: Consider the following function and its derivative to estimate the convergence rate:

E(t) = t (f(x(t))− f(x?)) +
1

2
‖x(t)− x?‖2 .

3. Exercise (Gradient flows with gains): Consider the weighted negative gradient flow

ẋ = −K ∂f(x)

∂x
,

where K ∈ Rn×n is a general positive definite matrix and f is a continuously differentiable
and strictly convex function. Your tasks are as follows:

(a) Show that the the weighted negative gradient flow converges to the global minimizer x?.

(b) Show that the convergence estimate in Exercise 2 can be made arbitrary fast by picking
K appropriately.

4. Exercise (Convergence of discrete-time gradient descent): Consider the discrete-time
negative gradient flow

x+ = x− ε ∂f(x)

∂x
,

where f is a strictly convex and Lipschtiz-continuously differentiable function, that is, there
is L > 0 so that ∣∣∣∣

∂f

∂x
(y)− ∂f

∂x
(z)

∣∣∣∣ ≤ L|y − z| for all y, z ∈ Rn .

Show that the time-discrete negative gradient flow converges to the strict global optimizer x?

of f if

0 < ε <
2

L
.

Hint: If you cannot prove the above convergence condition, then try to show it for the
quadratic objective function f(x) = x>Px, where P ∈ Rn×n is positive definite.
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5. Exercise (Acceleration of gradient algorithms): Consider the so-called Nesterov-accelerated
gradient flow [20]

ẍ+
3

t
ẋ = −∂f(x)

∂x
.

Show the following convergence rate measured in terms of sub-optimality:

f(x(t))− f(x?) ≤ 2‖x0 − x?‖2
t2

.

Hint: Consider the following function and its derivative to estimate the convergence rate:

E(t) = t2 (f(x(t))− f(x?)) + 2 ‖x(t) + tẋ(t)/2− x?‖2 .

6. Exercise (Convergence of saddle-point flow): Prove Theorem 1.5.

7. Exercise (Saddle-point flow with gains): Prove that the saddle-point flow (17) with
positive definite gain matrices K1,K2 converges to the set of saddle points.

8. Exercise (Convergence of augmented saddle-point flow): Prove that the augmented
saddle-point flow (19) with positive definite gain matrices K1,K2 converges to the set of
saddle points.

9. Exercise (Proof of Theorem 1.7 in rank- deficient case): Complete the proof of Theorem
1.7 in case that A ∈ Rm×n does not have full rank.

10. Exercise (Dual ascent with augmented Lagrangian): Consider the linearly-constrained
quadratic problem (11) and its augmented Lagrangian as defined in (18). Show that the dual
ascent (23) applied to to the augmented Lagrangian converges to the set of saddle points.

11. Exercise (Dual ascent in discrete time): Consider the linearly-constrained quadratic
problem (11), and the discrete-time dual ascent algorithm

x? = argminx∈Rn L(x, λ) (44a)

λ+ = λ+ ε
∂

∂λ
L(x?, λ) , (44b)

where ε > 0 is a sufficiently small step-size. Give conditions on the step-size ε > 0 so that
the discrete-time dual ascent (44) converges.

12. Exercise (Spectrum of saddle matrices): Prove Lemma 1.4.

13. Exercise (Properties of saddle points): Prove Lemma 2.1.

14. Exercise (Centralized formulation of sum-of-squares cost): Consider a distributed
optimization problem with n agents, where the cost function fi(x) of each agent i ∈ {1, . . . , n}
is described by fi(x) = (x− xi)

>Pi(x− xi), where Pi > 0 and xi ∈ R is the minimizer of the
cost fi(x). Consider the joint sum-of-squares cost function

fsos(x) =
∑n

i=1
(x− xi)

>Pi(x− xi) .

Calculate the global minimizer x? of fsos(x), and show that the sum-of-squares cost fsos(x)
is, up to constant terms, equivalent to the centralized cost function

fcentralized(x) = (x− x?)>
(∑n

i=1
Pi

)
(x− x?) .

21



Advanced Topics in Control 2018 Distributed Consensus-Based Optimization

15. Exercise (Discrete-time saddle-point algorithm for distributed optimization): As
in Example 3, consider the distributed optimization problem (31) with the quadratic local
cost functions from Exercise 14 and with the Laplacian constraint (29a) corresponding to a
connected and undirected network:

minimizey∈Rn f̃(y) =
1

2

∑n

i=1
(yi − xi)

>Pi(yi − xi) (45a)

subject to Ly = 0n , (45b)

(a) Formulate the augmented Lagrangian L(y, λ) in (32) as well as the KKT conditions (10)
for this problem. Show that a generic pair (y?, λ?) is a solution of the KKT system if
and only if y? = x?1n and λ? = λ̄ + α1n where x? ∈ R is unique and α ∈ R is not
determined uniquely.

(b) Consider a discrete-time distributed saddle-point algorithm obtained by an Euler dis-
cretization of the continuous-time dynamics (33) with sufficiently small step-size τ > 0:

y+ = y − τ ∂L(y, λ)

∂y
, (46a)

λ+ = λ+ τ
∂L(y, λ)

∂λ
. (46b)

Argue why the algorithm (46) can be implemented in a distributed fashion. Show that,
if the algorithm (46) converges, then it converges to a solution (y?, λ?) of Problem (45).

(c) Define the error vector of the algorithm (46) by

e(t) =

[
y(t)− y?
λ(t)− λ?

]
.

Find the error dynamics, that is, the matrix G such that e+ = Ge.

(d) Show that, for τ > 0 small enough, if µ is an eigenvalue of G then either µ = 1 or

|µ| < 1 and that

[
0n
α1n

]
is the only eigenvector relative to the eigenvalue µ = 1. Find an

expression for α. Use these results to study the convergence properties of the distributed
algorithm (46). Will y(t)→ y? as t→∞ ?

16. Exercise (Primal-Dual Consensus Optimization with Incidence Constraint):

As in Example 3, consider the distributed optimization problem (28) with the quadratic local
cost functions from Exercise 14 and with the incidence constraint (29b) corresponding to a
connected and undirected network:

minimizey∈Rn f̃(y) =
1

2

∑n

i=1
(yi − xi)

>Pi(yi − xi) (47a)

subject to B>y = 0m . (47b)

(a) Formulate the Lagrangian L(y, λ) as well as the KKT conditions (10) for this problem.
Show that a generic pair (y?, λ?) is a solution of the KKT system if and only if y? = x?1n
and λ? = λp + λh where λh ∈ kernel(B), and x? ∈ R and λh ∈ Rm are unique. Try to
further characterize x? ∈ R and λh ∈ Rm.
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(b) Consider the following continuous-time primal-dual algorithm to solve the problem (47):

ẏ = − ∂L(y, λ)

∂y
(48a)

λ̇ = +
∂L(y, λ)

∂λ
. (48b)

Explain how the algorithm (48) can be implemented in a distributed fashion by means
of a block-diagram indicating which variables need to be communicated and which com-
putations can be performed locally.

(c) In the following, we analyze the algorithm (48). Write the algorithm (48) in error
coordinates (y − y?, λ − λ?), where y? is the unique minimizer of (48) and λ? is the
associated optimal Lagrange multiplier. Show for the particular case of an acyclic graph
that the equilibria are uniquely determined and all trajectories converge to y = y? and
λ = λ?.

17. Exercise (Distributed Dual Ascent Consensus Optimization with Laplacian Con-
straint): As in Example 3, consider the distributed optimization problem (31) with the
quadratic local cost functions from Exercise 14 and with the Laplacian constraint (29a) cor-
responding to a connected and undirected network:

minimizey∈Rn f̃(y) =
1

2

∑n

i=1
(yi − xi)

>Pi(yi − xi) (49a)

subject to Ly = 0n . (49b)

(a) Formulate the Lagrangian L(y, λ) as well as the KKT conditions (10) for this problem.
Analyze the set of saddle points.

(b) Consider the dual ascent (23) algorithm for this problem, argue why it can be imple-
mented in a distributed fashion, and show that this algorithm converges to the set of
saddle points.

18. Exercise (Discrete-Time Dual Ascent Consensus Optimization with Incidence Con-
straint): Consider the distributed optimization problem (35) with the incidence consensus
constraint and the dual ascent algorithm (23) with K = I to solve it. In the following, we
consider a discrete-time implementation by replacing the continuous-time dual gradient step
(23b) by its Euler discretization (44b) with a step-size ε > 0.

(a) Draw a block-diagram of the proposed algorithm.

(b) Give a condition on the step-size ε when this algorithm converges for the particular case
of an acyclic graph.

19. Exercise (Broadcast scheme): As in Example 3, consider the distributed optimization
problem (28) with the quadratic local cost functions from Exercise 14. A clever student
proposes a distributed optimization algorithm based on a broadcast scheme. Each agent has
an associated primal variable yi and a dual variable λi. The update equations are

y? = −P−1λ+ x (50a)

kλ̇ = Πy? , (50b)
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where Π = In − 1
n1n1

>
n and k > 0. Hence, first an entirely local primal update (50a) is

performed. Next, the local variables y? are broadcast so that every agent knows all the y?i
and performs a global averaging of the primal variables (50b).

(a) Draw the block-diagram of the update equations (50).

(b) Argue why the algorithm (50) converges to the strict global minimizer y? and associated
dual variable λ?.

20. Exercise (Exponential convergence of Newton’s method): Consider the algebraic equa-
tion (51) with F : Rn → Rn continuously differentiable, and let Assumptions B.1 hold. Derive
the exponential convergence rate (54) of the Newton flow (53).

21. Exercise (Newton’s method applied to constrained optimization): Consider the con-
strained optimization problem (8). Apply the Newton flow (53) to find the roots of the
associated KKT conditions (10). Under which conditions does the Newton flow (53) con-
verge?

22. Exercise (Derivation of heavy ball method): Consider the second-order continuous-time
gradient flow (7). Show that its Euler discretization is obtained as in equation (58).

23. Exercise (Convergence-rate of heavy ball method): Prove Proposition C.2.
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Appendix

A LaSalle Invariance Principle

Theorem A.1 (LaSalle Invariance Principle). Consider a dynamical system (X, f) with differen-
tiable f . Assume there exist

1. a compact set W ⊂ X that is invariant for (X, f), and

2. a continuously-differentiable function V : X → R satisfying ∂V (x)
∂x f(x) ≤ 0 for all x ∈ X.

Then each solution t 7→ x(t) starting in W , that is, x(0) ∈ W , converges to the largest invariant
set contained in {

x ∈W | ∂V (x)

∂x
f(x) = 0

}
.

Note: If the set S is composed of multiple disconnected components and t 7→ x(t) approaches
S, then it must approach one of its disconnected components. Specifically, if the set S is composed
of a finite number of points, then t 7→ x(t) must converge to one of the points.

B Newton’s Method and Applications in Optimization

Acknowledgment: part of the results in this section originated from discussions with C. de Persis.

An alternative method to find a minimizer of an optimization problem is to directly attack the
algebraic conditions for optimality: (3) in the unconstrained case and the KKT conditions (10) in
the constrained case. A general purpose method to solve a nonlinear algebraic equation of the form

F (x) = 0n (51)

is the well-known Newton’s method or Newton iteration. In this section, we will derive Newton’s
method in continuous time, analyze its convergence rate, and apply it to optimization problems.
We will assume throughout that F : Rn → Rn is continuously differentiable.

B.1 Derivation of the Newton iteration and the Newton flow

Newton’s method can be motivated as follows: assume that we have an initial guess x0 for a root
of the equation (51). If this guess is incorrect, then a better guess x1 can be obtained from a
first-order Taylor expansion of (51) at the initial guess x0:

0n = F (x0) +
∂F (x0)

∂x
(x1 − x0) .

If the Jacobian of F is nonsingular, then the latter equation can be solved for x1 as

x1 = x0 −
∂F (x0)

∂x

−1
F (x0)

By iterating this idea, we arrive at the Newton iteration

x+ = x− ∂F (x)

∂x

−1
F (x) . (52)
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In continuous time, the Newton iteration (52) then reads as the Newton flow

ẋ = −k
(
∂F (x)

∂x

)−1
F (x) , (53)

where k > 0 is a positive gain.

B.2 Exponential convergence of the Newton flow

In the following, we study the convergence properties of the Newton flow (53) under the following
two assumptions:

Assumption B.1. Consider the algebraic equation (51) with F : Rn → Rn continuously differen-
tiable. Assume that

A1) there exists an isolated solution x = x? ∈ Rn of (51): F (x?) = 0n ; and

A2) there exists Br(x?), a ball or radius r and center x?, over which the Jacobian of F is invertible
and satisfies

max
x∈Br(x?)

∥∥∥∥∥

(
∂F

∂x

)−1∥∥∥∥∥ = m(r).

for some positive constant m(r).

Under this assumption, we are able to establish exponential convergence of the Newton flow [16].

Theorem B.2 (Exponential convergence of the Newton flow). Consider the algebraic equation
(51) with F : Rn → Rn continuously differentiable. The following statements hold:

1. If Assumption B.1.A1) holds, then all solutions x(t) of the Newton flow (53) that start from
an initial condition x0 ∈ Rn sufficiently close to the solution x? converge to x?.

2. If additionally, Assumption B.1.A2) holds, then these solutions satisfy

‖x(t)− x?‖ ≤ km(r)L‖x0 − x?‖e−kt , ∀t ≥ 0 , (54)

where L = maxx∈Br(x?) ‖F (x)−F (x?)‖ is the maximum Lipschitz constant of F (x) in Br(x?).

Proof. Asymptotic stability: We first show that x? is an asymptotically stable equilibrium of (53).
Consider the Krasovskii-type Lyapunov function

V (x) =
1

2
F (x)>F (x).

Under Assumption B.1.A1), the Lyapunov function is positive definite in a suitable open subset of
Br(x?). Moreover, its derivative along the Newton flow (53) equals

V̇ (x) =
∂V

∂x

>
ẋ = F (x)>

∂F

∂x

(
−k
(
∂F

∂x

)−1
F (x)

)
= −k‖F (x)‖2 = −2kV (x) ,

where the right-hand side is nonpositive and equal to zero in a suitable subset of Br(x?) if and only
if x = x?. By Lyapunov’s theorem, x? is a locally asymptotically stable equilibrium.

Exponential convergence: This proof is left as an exercise to the reader; see Exercise 20.
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B.3 The Newton flow in optimization

In the following, we apply the Newton flow (53) to solve the unconstrained optimization problem

(1), that is, we seek the roots of equation (3) where F (x) = ∂f(x)
∂x . We assume that the Hessian

matrix of f , Hessf(x) = ∂2f(x)
∂x2

, exists and is nonsingular. In this case, the Newton flow (53) equals

ẋ = −k (Hessf(x))−1
∂f(x)

∂x
, (55)

Theorem B.3 (Newton’s method in optimization). Consider the unconstrained optimization prob-
lem (1). Assume that f is strictly convex, twice continuously differentiable with a nonsingular Hes-
sian matrix Hessf(x), and that there is an isolated minimizer x?. Then all solutions x(t) of the
Newton flow (55) that start sufficiently close to the minimizer x? satisfy (54).

Newton’s algorithm has the desirable property of converging exponentially to the minimizer, but
it requires the computation of the inverse of the Hessian function, which can be very expensive and
hampers the possibility of a distributed implementation. The other drawback is that convergence is
only local. The careful reader may have noticed that the Newton flow (55) is actually a gradient flow
(5) with a state-dependent gain matrix K = k (Hessf(x))−1. The advantage of this state-dependent
gain is that the convergence rate is uniform in all directions, as illustrated by the following example.

Example 5 (Newton’s method applied to LQ program). Consider the LQ program

minimizex∈R2 f(x) =
1

2
x>Ax− b>x , (56)

where A = [ 1 1000 ] and b = [ 12 ]. The problem (56) is strictly convex with minimizer given by
x? = A−1b. The weighted gradient method (5) with scalar gain k > 0 applied to this optimization
problem (56) reads as ẋ = −k (Ax− b) = −kA(x− x?). In error coordinates x̃ = x− x? we have

˙̃x = −kAx̃ = −k
[
1

1000

]
x̃ .

Hence, depending on the initial condition x0 ∈ R2, the gradient method converges as exp(−kt) or
as exp(−1000kt). Newton’s method (55) applied to problem (56) yields, with Hessf(x) = A,

ẋ = −kA−1 (Ax− b) = −kA−1A(x− x?) = −k(x− x?) .
Thus, independent of initial conditions, the error coordinate x̃ = x − x? converges “uniformly” as
exp(−kt). Thus, Newton’s method can be understood as a pre-conditioning of the problem (56). �

The Newton flow (53) can also be used to solve the constrained optimization problem (8) by
seeking the roots of the associated KKT conditions (10). We leave the detailed analysis as an
exercise to the reader; see Exercise 21.

C Convergence Rates of Discrete-Time Gradient Methods

We focused thus far almost exclusively on continuous-time algorithms — all of which are based
on the negative gradient flow (4). We have briefly touched upon its discrete-time implementation
(5) in Remark 1.3 and in Exercise 4. We have already seen in the continuous-time case that the
second-order implementation (7) involving a momentum term ẍ improves the convergence rate of
the first-order gradient flow (4); see Exercises 2 and 5. Though in continuous time this distinction
is somewhat arbitrary as the gradient flow can be sped up indefinitely by adding a gain as in (5); see
also Exercise 3. In what follows, we take a closer on the convergence rates of different discrete-time
algorithms. Our treatment is motivated particularly from the lecture notes [17] by B. Recht.
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C.1 Discrete-time gradient descent and heavy ball method

Consider again the unconstrained optimization problem (1). An Euler discretization of the standard
gradient descent method (4) with a time-varying step size γk > 0 yields the iteration

xk+1 = xk − γk
∂f(xk)

∂x
. (57)

Consider also the second-order gradient flow (7) and its Euler discretization (see Exercise 22):

xk+1 = xk −
b

a+ 1

∂f(xk)

∂x
+

1

a+ 1
(xk − xk−1) (58)

With the shorthands αk = b
a+1 and βk = 1

a+1 , we arrive at the so-called heavy-ball method

xk+1 = xk − αk
∂f(xk)

∂x
+ βk(xk − xk−1) , (59)

where we allow αk, βk to be time-varying positive sequences. Observe that (59) reads as the
gradient method (57) plus the extra term (xk − xk−1) referred to as momentum. The iteration is
termed heavy ball method as it describes the movement of a point mass in the potential field ∂f

∂x .

C.2 Convergence rate analysis

In the following discussion, we will fine-tune the step-sizes γk, αk, and βk to optimize the respective
convergence rates. We will also demonstrate that the heavy ball method (59) improves over the
gradient method (57) in terms of its convergence rate. To keep our discussion crisp and concise we
restrict the general optimization problem (1) to the unconstrained quadratic optimization problem

minimizex∈Rn f(x) =
1

2
x>Ax− b>x+ c , (60)

where A ∈ Rn×n is a positive definite matrix, b ∈ Rn is a vector, and c ∈ R is a constant. Observe
that the problem (60) admits a unique minimizer given by x? = A−1b.

We denote the maximum (respectively, the minimum) eigenvalue of A by λL (respectively, by
λl), where “L” and “l” stand for the maximum and minimum Lipschitz constants of a map associ-
ated to the A-matrix. We will denote the condition number of A by κ = λL/λl.

We begin our analysis with the gradient method (57). Surprisingly, we find that the optimal
step-size is a constant one, and the convergence rate is determined by the condition number κ.

Proposition C.1. Consider the unconstrained quadratic optimization problem (60) and the gra-
dient method (57) with a positive step-size sequence γk. The per-step convergence of the method is

‖xk+1 − x?‖ ≤ max{|1− γkλL|, |1− γkλl|} ‖(xk − x?)‖ . (61)

The per-step convergence rate (61) is maximized by the constant step-size γk = 2/(λL+λl) yielding

‖xk − x?‖ ≤
(
κ− 1

κ+ 1

)k
‖x0 − x?‖ . (62)
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Proof. We can express the error xk − x? at the kth iteration as

‖xk+1 − x?‖ =

∥∥∥∥xk − γk
∂f(xk)

∂x
− x?

∥∥∥∥ = ‖(I − γkA)(xk − x?)‖

≤‖(I − γkA)‖ ‖(xk − x?)‖ ≤ max{|1− γkλL|, |1− γkλl|} ‖(xk − x?)‖ ,

where we used Ax? = b. The max{·} in the convergence rate is illustrated in Figure 13. Note that
a constant step-size policy γk = 2/(λL + λl) is the lower bound on the maximum and yields

‖xk − x?‖ ≤
(
λL − λl
λL + λl

)k
‖x0 − x?‖

which equals (62) with the condition number κ = λL/λl.

III

γk

γk

Figure 13: Optimal choice of the step-size γk.

For the heavy ball method (59), we specialize the discussion to time-invariant iteration con-
stants. A similar proof as for Proposition C.1 accounting for the two errors (xk+1 − x?, xk − x?)
yields the following result; see Exercise 23.

Proposition C.2. Consider the unconstrained quadratic optimization problem (60) and theheavy
ball method (59) with a positive time-invariant step sizes αk = α and βk = β for all k ∈ N. For
α = 4/(

√
λL +

√
λl)

2 and β = max{|1−√αλL|, |1−
√
αλl|}2 the method converges as

‖xk − x?‖ ≤
(√

κ− 1√
κ+ 1

+ εk

)k
‖x0 − x?‖. , (63)

where limk→∞ εk = 0.

We now compare the number of iterations required by both the the gradient method (57) and
the heavy ball method (59) to arrive within a certain proximity of the optimizer, i.e., ‖xk − x?‖ ≤
µ ‖x0 − x?‖ for µ > 0. The rates (62) and (63) then yield the following number of iterations:

gradient descent: kgd ≥
κ

2
log(

1

µ
)

heavy ball: khb ≥
√
κ

2
log(

1

µ
)

Observe that the heavy ball method considerably speeds up the convergence. As an illustration,
consider κ = 100 and observe that kgd/khb = 10 for the same value of µ, i.e., the gradient method
requires 10 times the number of iterations for similar convergence vis-à-vis the heavy ball method.
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