
Circuits & Power Grids

Advanced Topics in Control 2018: Distributed Systems & Control

Florian Dörfler

In this lecture we demonstrate how various tools acquired in the previous sections can be used
to analyze circuits. Conversely, we will also show how concepts from circuit theory such as effective
resistance again inform network and graph theory. In fact, history took the reverse path, that is, a
lot of modern algebraic graph theory as well as network dynamics grew out of circuit analysis. In
fact, Kirchhoff is by many regarded as one of the first graph theoreticians.

We will show how the insights from circuit theory can be constructively used to design controllers
for stand-alone DC power grids. These control strategies are prototypical for distributed control
over undirected graphs and can be used analogously in robotic coordination and other applications.
A scientific and bibliographical exposition of part of the results in this lecture can be found in [7].

1 Circuit modeling

Consider a circuit composed of n+1 nodes V ∈ {1, . . . , n}∪{0} and m undirected edges E ⊂ V×V,
which are often referred to as buses and branches in circuit theory and the power systems/electronics
literature. The 0-node is the common electrical ground, which is typically treated as a separate
node. We associate with each node i ∈ {1, . . . , n} ∪ {0}

• a nodal current injection Ii ∈ R, and

• a potential (sometimes also referred to as a nodal voltage) Vi ∈ R.

Let us choose an arbitrary orientation for each undirected edge {i, j} ∈ E , and define for each
associated directed edge (i, j)

• a directed current flow fij ∈ R, and

• a directed voltage drop uij ∈ R.

Our notation in this section follows the convention that nodal variables are denoted by capital
letters whereas edge variables are denoted by lower case letters.

Fundamental laws: The topology of the circuit is encoded by the associated (oriented) incidence
matrix B ∈ Rn×m which relates the nodal variables and the edge variables by Kirchhoff’s laws:

(i) Kirchhoff’s current law (KCL): Ii =
∑

j∈N (i) fij for all i ∈ {1, . . . , n} ∪ {0}. Equivalently, in
vector form we have I = Bf .

(ii) Kirchhoff’s voltage law (KVL): 0 =
∑
{i,j}∈cycle k uij for all distinct cycles k ∈ {1, . . . ,m −

n+ 1}. Equivalently, in vector form we have u = B>V .
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Kirchhoff’s two laws define n + m linear equations relating the 2n + 2m variables (V, I, f, u), and
they need to be complemented by further equations relating these quantities through constitutive
relations for any pair of connected nodes {i, j} ∈ E . According to the least action principle (see
exercise E6.13), the constitutive relation for a resistor is given by Ohm’s law. This and more general
constitutive relations are as follows:

(iii) Constitutive relations:

• Resistor (Ohm’s law): uij = rijfij , where rij > 0 is a resistance;

• Inductor (Faraday’s law): `ij
d
dtfij = uij , where `ij > 0 is an inductance; and

• Capacitor (charge balance): cij
d
dtuij = fij , where cij > 0 is a capacitance.

The three devices are illustrated with their circuit symbols in Figure 1.

i j
rij

(a) resistive branch

i j
ℓij

(b) inductive branch

i j
cij

(c) capacitive branch

Figure 1: Circuit symbols for resistors, inductors, and capacitors

Ground, load, and source models: Observe that Kirchhoff’s laws and the constitutive rela-
tions define the potential V only up to an arbitrary reference. Often it is convenient to define the
potential of the electrical ground as zero-valued: v0 = 0. In this case, a resistor ri0 to ground draws
a current fi0 = Vi/ri0 and we drop the index “0” henceforth.

(iv) Ground: the ground has zero potential V0 = 0, and we drop the index “0” in ri0, li0, ci0.

For example, a resistor ri to ground is often used to model a load connected to node i. These are
often termed shunt resistors. Whereas a resistor draws a current ii0 = Vi/ri, another popular load
or device model is a constant current demand I∗i ∈ R≤0 as depicted in Figure 2(a). The overall
current injection at node i is then Ii = I∗i − Vi/ri.

Ideal sources can be modeled in a similar way:

(v) Sources: a device that provides a constant current injection I∗i ∈ R≥0 or a constant potential
V ∗i ∈ R≥0 at node i is termed an ideal current source or an ideal voltage source, respectively.

An ideal current source and voltage source are depicted in Figure 2(b). We show those in combi-
nation with a resistor ri to ground and with a series resistance rki, respectively, for the following
reason: By Ohm’s law these two models are equivalent upon equalizing ri = rki. Thus, an ideal
voltage source can always be converted to an ideal current source and vice versa. In the following,
we focus without loss of generality on constant current sources.

Kirchhoff’s laws, the constitutive relations, and the models for loads and sources provide all
ingredients to model a linear circuit. Nonlinear circuits can be modeled by means of nonlinear
constitutive relations specifying more general relationships between the variables uij , fij , and their
derivatives. For example, a load at node i demanding constant power P ∗i ≤ 0 can be modeled as
P ∗i = Ii Vi, and it can be analyzed also within the present framework; see [7, 3] for further reading.
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i

riI∗i

Ii

(a) Constant current load
and resistive load

i

riI∗i =
+

Ii

(b) Equivalent constant current and constant voltage sources

Figure 2: Circuit elements with connections to ground. Observe our sign convention: for a constant
current load I∗i ≤ 0 whereas for an ideal current source I∗i ≥ 0.

2 Different branch models

In the following, we combine Kirchhoff’s laws and the models for loads and sources together with
different prototypical models for the branch impedances, as depicted in Figure 3.

i j
rij ℓij

ci cj

(a) Π-model of a circuit branch

i j
zij

(b) complex impedance

Figure 3: More complex branch models

Purely resistive circuits: If all branches are purely resistive as depicted in Figure 1(a), then
Kirchhoff’s and Ohm’s laws lead to

I = Bf = Bdiag(1/rij)uij = Bdiag(1/rij)B
>V (1)

or I = LRV , where LR = Bdiag(1/rij)B
> is the circuit conductance matrix, that is, a Laplacian

matrix induced by the adjacency matrix with elements 1/rij . If node i has a constant current
injection I∗i (positive for a source and negative for a load) and a shunt resistance ri drawing a
current Vi/ri as in Figure 2(a), then Ii = I∗i − Vi/ri, and the overall circuit equations read as

I∗ =
(
Bdiag(1/rij)B

> + diag(1/ri)
)
V . (2)

It can be verified that the matrix Bdiag(1/rij)B
> + diag(1/ri) in (2) is positive definite provided

that at least one shunt resistor is present; see Exercise 10. In Chapter 9, we will identify the matrix
Bdiag(1/rij)B

> + diag(1/ri) as a Hurwitz and Metzler matrix and show various properties; for
example its inverse is positive; see Theorem 9.5

Π-model: The popular Π-model of a branch is depicted in Figure 3(a). The Π-model can be
used to model various line characteristics from high-voltage transmission lines to low-voltage un-
derground cables. It consists of a series resistive-inductive impedance modeling the line inductance
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and losses as well as a shunt capacitor to ground at each end of the line modeling the line charging.
Typically, the two shunt capacitors take identical values. Note that if there are multiple branches
connected to a node, each modeled by the Π-model, there will be multiple parallel shunt capacitors
which we can combine into a single one.

Complex-valued impedances: Often linear circuits are modeled in the Laplace s-domain by
taking Laplace transforms of the constitutive relations. Then the constitutive relations read as

uij(s) = zij(s)fij(s),

where zij(s) is the line impedance depicted in Figure 3(b). For example, for an inductive line we
have uij(s) = s · `ijfij(s). More general line impedances, such as Π-model in Figure 3(a), can be
aggregated in an impedance transfer function zij(s). By analogous calculations as in the resistive
case, we arrive at I(s) = Y (s)V (s), where Y (s) = Bdiag(1/zij(s))B

> is the circuit admittance
matrix, and its pseudo inverse (as calculated in Exercise E6.8) is the so-called impedance matrix.

3 A prototypical circuit

In the following, we consider a prototypical circuit model as it is encountered in many power
distribution and transmission grids. We model each line by the Π-model as in Figure 3(a). When
multiple Π-models are connected to the same node, we lump all parallel capacitors into a single
equivalent capacitance. At each node i ∈ {1, . . . , n} we thus consider an equivalent capacitance
ci > 0 as well as a load/source model given by a constant current injection I∗i and a shunt resistance
ri > 0. In this case, the circuit equations are

KCL: I = Bf , (3a)

KVL: u = B>V , (3b)

ground: I = Iload − CV̇ , (3c)

branch: Lḟ = u−Rf , (3d)

load: Iload = I∗ −GV , (3e)

where R,L,C,G are diagonal matrices of rij , `ij , ci, and gi = 1/ri, and I∗ = (I∗1 , . . . , I
∗
n) is a con-

stant external current injections modeling, e.g., an ideal current source or or a constant current load.

It is convenient to reduce the circuit equations (3) to a state space model that is defined only in
terms of the variables v and f associated to capacitive and inductive storage elements. By inserting
(3a), (3e) in (3c) and (3b) in (3d), respectively, we obtain[

C
L

] [
V̇

ḟ

]
=

([
−B

B>

]
−
[
G

R

])
︸ ︷︷ ︸

=Q

[
V
f

]
+

[
I∗

Om

]
. (4)

A block-diagram of the circuit model (3), respectively, (4), is shown in Figure 4. Notice the
separation of the node and edge dynamics, their interconnection through Kirchhoff’s laws via
the matrices B and B>, as well as the similarity to the block-diagrams in Figure 8.2 (consensus),
Figures E8.1 and E8.2 (relative sensing networks), and Figure 18.2 (potential-based relative motion
control), as well as those in the distributed optimization chapter [4].
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B BT

ℓij
dfij
dt

= uij − rijfij

. . .

. . .

ci
dVi

dt
= I∗i − Ii − giVi

. . .

. . .

V

uf

_
I∗

nodal dynamics

edge dynamics

I

KVLKCL

Figure 4: Block-diagram of the circuit model (3)

Noteworthy special cases: The purely resistive circuit equations (2) can be recovered from the
model (4) in the limit L → O and C → O so that I∗ = Bf + GV and Rf = B>V which can be
combined to I∗ = BR−1B>V +GV . The latter again equals equation (2).

In absence of constant current injections and dissipative elements, that is, for I∗ = On, G = O

and R = O, and for C = In, the Π-model reduces to the Laplacian oscillator (see Exercise 1)

V̈ = −LLV , (5)

where LL = BL−1B> is the inverse-inductance-weighted Laplacian of the underlying circuit.

In case that the circuit branches are made of the same material and thus the ratio of `ij/rij = τ
is constant for all edges {i, j} ∈ E , then it can be shown (see Exercise 1) the circuit model (3)
reduces to a second-order consensus-type model:

τCV̈ + (τG+ C)V̇ + (LR +G)V = I∗ , (6)

where LR = BR−1B> is the conductance matrix. Indeed, for τ = 1, C = In, G = O, and I∗ = On

we recover the standard second-order Laplacian flow (see Section 7.4) from (6):

V̈ + V̇ + LRV = On .

On the other hand, for τ = 0 and C = In, G = O, I∗ = On as before, we recover the standard
Laplacian flow (see Section 7.3)

V̇ = −LRV .

4 Circuit analysis based on energy methods

The matrix Q in the circuit equations (4) contains many structural features that are unveiled when
considering the electric as well as the magnetic energy associated to the storage elements:

H(V, f) =
1

2
V >CV +

1

2
f>Lf . (7)
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The derivative of the energy function (7) along trajectories of (9) is given by the power balance

Ḣ(V, f) =

[
V
f

]> [ −B
B>

] [
V
f

]
︸ ︷︷ ︸

=0 (lossless power circulations)

−
[
V
f

]> [
G

R

] [
V
f

]
︸ ︷︷ ︸
≤0 (power losses)

+V >I∗︸ ︷︷ ︸
(power supplied)

.

The last term in the above power balance equation corresponds to the external power supplied to
the circuit through the current injections, the central term corresponds to dissipation induced by
shunt and branch resistances, and the first term evaluating to zero due to skew-symmetry of matrix
in the quadratic form. To unveil the role of the first term, we consider a circuit without dissipation
or exogenous current injections. The following lemma shows that the dynamic behavior is governed
by lossless energy exchange between the inductive and capacitive storage elements. Thus, the first
term corresponds to lossless power circulations between the storage elements.

Lemma 4.1 (Circulations in non-dissipative circuit). Consider system (4) with I∗ = On,
G = O, R = O. The solution is a superposition of n undamped harmonic signals. Moreover,
if C = In, then the frequencies of these harmonics are

√
λi, i ∈ {1, . . . , n}, where λi are the

eigenvalues of the inverse-inductance-weighted network Laplacian matrix LL = BL−1B>.

Proof. In case that I∗ = On, G = O, and R = O the circuit model (4) reduces to[
C

L

] [
V̇

ḟ

]
=

[
−B

B>

] [
V
f

]
. (8)

The system (8) defines an oscillator in (V, f)-space since the level sets (ellipsoids) of the energy
function (7) are invariant: Ḣ(V, f) = 0. Thus, the level sets of H(V, f) are the images of oscillating
trajectories (V (t), f(t)) satisfying H(V (t), f(t)) = H(V0, f0) for all t ≥ 0.

For C = In, the system (8) may be equivalently be written as the Laplacian oscillator in (5):

V̈ = −Bḟ = −BL−1B>V = −LLV ,

Let (λi, wi) be an eigenvalue and eigenvector pair of the symmetric Laplacian LL, then for each
mode i ∈ {1, . . . , n}, we can insert xi = w>i V in the Laplacian oscillator equation (5) and obtain

ẍi = −λixi , i ∈ {1, . . . , n} ,

For higher modes i ∈ {2, . . . , n}, xi(t) is a harmonic signal of the form xi(t) = Ai cos(
√
λit + ϕi)

of frequency
√
λi, where the amplitude Ai and a phase shift ϕi are determined from the initial

conditions (wi(0), ẇi(0)). We now focus on the zero mode λ1 = 0 with eigenvector w1 = 1n. The
solution of the associated differential equation ẍ1 = 0 is x1(t) = x1(0) + ẋ1(0) · t is linearly growing
unless ẋ1(0) = 0. Since ẋ1(0) = w>1 V̇ (0) = 1>n V̇ (0) = 0 from equation (3) for I∗ = On, G = O,
and C = In. Hence, x1(t) = x1(0) is a constant harmonic signal. In summary, V (t) =

∑n
i=1 xi(t)wi

is a superposition of n harmonic signals with frequencies
√
λi, i ∈ {1, . . . , n}.

Circuits with dissipation: In the following, we study the fully dissipative case, where all branch
and shunt elements have resistive contributions.

Lemma 4.2 (Convergence in fully dissipative circuit). Consider system (4) with I∗ ∈ Rn and
positive definite matrices of shunt and branch resistances G and R. The system admits a globally
exponentially stable equilibrium point whose location depends on the constant current injections I∗.
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Proof. We begin by studying the equilibria of (4). Observe that theQ-matrix is composed of a skew-
symmetric minus a positive definite matrix. Thus, Q + Q> is negative definite. and consequently
Q is Hurwitz and invertible. Hence, there exists a unique equilibrium [V ∗ f∗]> = −Q−1 [I∗ Om]>

that depends on the external current injections I∗. The fact that Q is Hurwitz implies that (V ∗, f∗)
is globally exponentially stable; see Exercise E7.2.

This fact can also be proved with a Lyapunov argument that extends to nonlinear circuit models.
Consider the incremental error coordinates (Ṽ , f̃) = (V −V ∗, f − f∗) and rewrite the model (4) as[

C
L

] [ ˙̃V
˙̃
f

]
=

([
−B

B>

]
−
[
G

R

])
︸ ︷︷ ︸

=Q

[
Ṽ

f̃

]
(9)

Akin to the energy function (7), consider the incremental electric as well the incremental magnetic
energy as a Lyapunov function candidate

H(Ṽ , f̃) =
1

2
Ṽ >CṼ +

1

2
f̃>Lf̃ (10)

whose derivative along trajectories of (9) is given by

Ḣ(Ṽ , f̃) =

[
Ṽ

f̃

]>
Q

[
Ṽ

f̃

]
= −

[
Ṽ

f̃

]> [
G

R

] [
Ṽ

f̃

]
=

{
= 0 if (Ṽ , f̃) = On+m

< 0 else
,

where we made use of the skew-symmetry of Q. By Lyapunov’s theorem (Theorem 13.4), the
equilibrium (V ∗, f∗) is asymptotically stable (globally exponentially stable to be precise).

Notice that the stability conclusion in Lemma 4.2 is oblivious of the actual underlying network
topology as encoded in the B matrix. The network affects only the location of the equilibria. Of
course, this somewhat surprising result is a consequence of the fact that the network is considered
to be fully dissipative in Lemma 4.2. Consider now the cases that either G = O or R = O. In these
cases the equilibria of (4) satisfy either B>V = Om or Bf = On, respectively. In words, nodal
voltages reach consensus B>V = Om and are defined up to a translation, or the currents converge
to the cycle space Bf = On and are defined up to a circulating current; see Section 8.4.

Lemma 4.3 (Convergence in partially dissipative circuit). Consider system (4) with I∗ = On

and matrices of shunt and branch resistances G ∈ Rn×n and R ∈ Rm×m.

1. If R = O and G is positive definite, then all trajectories converge asymptotically to stationary
solutions in the equilibrium subspace (V ∗, f∗) ∈ (On, kernel(B)), that is, the equilibria are
uniquely defined up to a subspace corresponding to circulating currents f∗ ∈ kernel(B).

2. If G = O and R is positive definite, then all trajectories converge asymptotically to stationary
solutions in the equilibrium subspace (V ∗, f∗) ∈ (span(1n),Om), that is, the nodal voltages
V ∗ reach consensus and are defined up only to an arbitrary reference.

We refer to the solution of Exercise 2 for the proof details which rely on properties of saddle
matrices as discussed in Lemma 7.9.
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5 Effective resistance

In the following, we are interested in analyzing properties of steady-state circuits – in particular,
the notion of effective resistance has a close connection to various concepts that we studied before.
Consider a static (steady-state) circuit model with resistive branch connections and a connected
graph. Assume without loss of generality that the circuit has no shunt elements as these can be
modeled as branch connections to the 0-node. Hence, the circuit equations are given as in (1) by

I = LV (11)

where I ∈ Rn and V ∈ Rn are the vectors of current injections and potentials, and L = LR ∈ Rn×n

is the Laplacian matrix of the graph with weights 1/rij between a connected pair of nodes {i, j} ∈ E .

Definition 5.1 (Effective resistance). Consider an undirected, connected, and weighted graph.
The effective resistance reff

ij between any pair of (not necessarily neighboring) nodes i, j ∈ {1, . . . , n}
is defined as the potential difference between the nodes i and j when a unit current is injected in i
and extracted in j; see Figure 5 for an illustration.

1 Amp

u

o
+

i

j

reff
ij

+1 A

−1 A

Figure 5: The effective resistance between nodes i and j is the potential difference when a unit
current of 1 A is injected in i and extracted in j.

Fundamental properties of the effective resistance: In the following, we review some fun-
damental properties of the effective resistance and tie those later to the dynamic circuit equations.

Lemma 5.2 (Calculation of the effective resistance). The effective resistance reff
ij between

two nodes i, j ∈ {1, . . . , n} of an undirected, connected, and weighted graph with Laplacian matrix
L can be obtained as

reff
ij , (ei − ej)>L†(ei − ej) = L†ii + L†jj − 2L†ij , (12)

where L† is the Moore-Penrose pseudo inverse of L.

Proof. When a unit current is injected at node i and extracted at node j the current-balance
equations are I = ei − ej = LV or V = L†(ei − ej). The effective resistance reff

ij defined as
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the potential difference between nodes i and j, reff
ij = (ei − ej)>V , can then be obtained via the

impedance matrix L† as

reff
ij = (ei − ej)>V = (ei − ej)>L†(ei − ej) = L†ii + L†jj − 2L†ij ,

where we have used the fact that the Moore-Penrose inverse of a Laplacian matrix is again a
symmetric matrix (see exercise E6.7) and thus L†ij = L†ji for all i, j ∈ {1, . . . , n}.

Often it is more convenient to work with a regular matrix and its inverse rather than the singular
Laplacian L and its pseudo-inverse L†. We can give an alternative formula to compute the effective
resistance based on a regularized Laplacian matrix.

Lemma 5.3 (Effective resistance from a regular matrix). Consider an undirected, connected,
and weighted graph with Laplacian L ∈ Rn×n, and define the matrix Q = L+ 1

n1n1
>
n . The matrix

Q is regular, and the effective resistance (12) satisfies

reff
ij = (ei − ej)>Q−1(ei − ej) = Q−1

ii +Q−1
jj − 2Q−1

ij , (13)

Proof. Recall the following identity from Exercise E6.8 (or derive it immediately from the singular
value decomposition; see Exercise 15):

L† +
1

n
1n1

>
n =

(
L+

1

n
1n1

>
n

)−1

= Q−1 .

We multiply the above equation from the left by (ei − ej)> and from the right by (ei − ej). Since
(ei − ej)>1n1>n = O>n , we arrive at reff

ij = (ei − ej)>L†(ei − ej) = (ei − ej)>Q−1(ei − ej).

Distance and monotonicity properties: The effective resistance is sometimes also referred to
as the resistance distance [11] since it defines a proper distance metric on a graph, that is, it is a
symmetric and nonnegative map from V × V to R≥0 that satisfies the triangle inequality.

Lemma 5.4 (Effective resistance is a distance). The effective resistance of an undirected,
connected, and weighted graph satisfies

1. non-negativity: reff
ij ≥ 0 for all i, j ∈ {1, . . . , n} and reff

ij = 0 if and only if i = j,

2. symmetry: reff
ij = reff

ji for all i, j ∈ {1, . . . , n}, and

3. triangle inequality: reff
ij ≤ reff

ik + reff
kj for all i, j, k ∈ {1, . . . , n},

that is, the effective resistance is a proper distance metric.

The proof of Lemma 5.4 is deferred to Exercise 5. Compared to other distance metrics on
graphs, e.g., the topological distance given by the length of the shortest (possibly weighted) path
between nodes, the effective resistance takes into account all parallel paths. For example, in the
left panel of Figure 6, nodes 1 and 2 are connected by two parallel paths each of resistance r.
They have a resistance distance reff

ij = r/2 whereas the weighted shortest path takes the value r.
Hence, the effective resistance is the preferred distance metric in electrical networks and also in
other applications where parallel paths need to be taken into account, e.g., disease spreading.
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r/3 r/3

r/3

r/3 r/3

r/3

1 2

+-

r/3 r/3

r/3

r/3 r/3

r/3

1 2

+

re↵
12 = r/3

-

r

re↵
12 = r/2

Figure 6: Adding an edge to the circuit on the panel lowers the effective resistance between nodes
{1, 2} in the circuit on the right panel. In other words, the effective resistance takes parallel paths
into account and is a monotonically non-increasing function of topology and weights.

Another property of the effective resistance visible in Figure 6 is Rayleigh’s monotonicity law:

“The effective resistances are monotone functions of the branch resistances.”

We will state Rayleigh’s monotinicity law in the language of algebraic graph theory below.

Lemma 5.5 (Rayleigh’s monotonicity law). Consider two symmetric and irreducible adjacency
matrices A, Ã ∈ Rn×n corresponding to two undirected, connected, and weighted graphs with iden-
tical node sets but possibly different edge sets and edge weights. Consider the associated matrices
of effective resistances Reff, R̃eff ∈ Rn×n. If ãij ≥ aij for all i, j ∈ {1, . . . , n}, then r̃eff

ij ≤ reff
ij for all

i, j ∈ {1, . . . , n}.

Proof. We will prove Rayleigh’s monotonicity law by appealing to a classic circuit-inspired proof
technique [8]. The circuits associated with the graphs induced by A and Ã have branch resistances
rij = 1/aij ≥ 0 and r̃ij = 1/ãij ≥ 0, where r̃ij ≤ rij since ãij ≥ aij . Observe that a non-existing
edge {i, j} 6∈ E with aij = 0 corresponds to a infinite resistance rij = ∞ which is consistent with
our intuition. We denote the current flows in both circuits by fij and f̃ij for all {i, j} ∈ E .

We first show an energy interpretation of the effective resistance. Consider a unit current
injection at node i and a unit current extraction at node j. Then the current-balance equations are
I = ei − ej = LV , and the effective resistance reff

ij defined as the potential difference (ei − ej)>V
between nodes i and j can be manipulated as follows:

reff
ij = (ei − ej)>V = V >LV =

1

2

∑n

i,j=1

1

rij
(Vi − Vj)2 =

1

2

∑n

i,j=1
rijf

2
ij .

Thus, for a unit current injection at node i and a unit current extraction at node j, the effective
resistance reff

ij equals the energy dissipated in the network branches. The same reasoning applies to

the effective resistances r̃eff
ij in the other network. Recall also the Thompson principle from exercise

E6.13 which states that the flows fij = 1
rij

(Vi − Vj) are the unique branch flows that minimize the

energy dissipation 1
2

∑n
i,j=1 rijf

2
ij in the network.
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By using the energy interpretation of the effective resistance, the Thompson principle, and our
starting assumption r̃ij ≤ rij , we obtain the claimed monotonicity law:

r̃eff
ij =

1

2

∑n

i,j=1
r̃ij f̃

2
ij ≤

1

2

∑n

i,j=1
r̃ijf

2
ij ≤

1

2

∑n

i,j=1
rijf

2
ij = reff

ij .

Effective resistance and Laplacian eigenvalues: We refer to the quantity

Rtot =
n∑

i,j=1,i<j

reff
ij (14)

as the total effective resistance of the graph (or sometimes also as the Kirchoff index). In view of
Lemma 5.4, the effective resistance is a distance measure. Thus, the reciprocal of the total effective
resistance, 1/Rtot, should be a graph connectivity metric similar to the second-smallest Laplacian
eigenvalue, the algebraic connectivity λ2. The following result relates the Laplacian eigenvalues
including the algebraic connectivity to the total effective resistance.

Lemma 5.6 (Total effective resistance and Laplacian eigenvalues). Consider an undirected,
connected, and weighted graph, its Laplacian matrix L ∈ Rn×n with Laplacian spectrum spec(L) =
{0, λ2, . . . , λn}, its effective resistances reff

ij in (11) for all i, j ∈ {1, . . . , n}, as well as the total
effective resistance Rtot in (14). It holds that

Rtot =
n∑

i,j=1,i<j

reff
ij = n

n∑
i=2

1

λi
.

Proof. In vector form, the matrix of effective resistances reff
ij can be calculated according to (12) as

R =
(

diag(L†)1n

)
1>n + 1n

(
1>n diag(L†)

)
− 2L† ,

where we used the shorthand diag(L†) = diag(L†ii) reducing L† to its diagonal entries. Thus, the
total effective resistance (14) evaluates to

Rtot =
1

2
1>nR1n

=
1

2
1>n diag(L†)1n1

>
n1n +

1

2
1>n1n1

>
n diag(L†)1n − 1>nL†1n

=n · 1>n diag(L†)1n = n · trace(L†) = n
n∑

i=2

1

λi
,

where we used that L†1n = On (see exercise E6.8), 1>n1n = n, and the fact that trace(L†) is the sum
of eigenvalues of L† which is the sum of the reciprocals of the nonzero Laplacian eigenvalues.

Note that the effective resistance is thus proportional to the H2 norm of a Laplacian flow as
identified in exercise E10.6. Hence, just like the algebraic connectivity quantifies the worst-case de-
cay rate of a Laplacian flow, the total effective resistance quantifies an average performance metric
in terms of the H2 norm. Additionally, just like the algebraic connectivity is a monotone function
of the edge weights (see Exercise E6.11), the total effective resistance enjoys this property as well

11
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by Rayleigh’s monotonicity law; see Lemma 5.5.

We refer to [8, 14, 11, 10, 5, 1, 9] for further reading on the properties of the effective resis-
tance and its connections to random walks, network dynamics, as well as distributed control and
estimation.

6 Circuit reduction

Every scholar of engineering is familiar with the reduction of a circuit composed of a series of two
resistors to a single resistor, as depicted in Figure 7. Another well-know circuit reduction is the
transformation of a cyclic ∆-circuit to an acyclic Y -circuit akin the to the ∆− Y -transformation,
as depicted in Figure 8. In the following, we will analyze this reduction process, termed Kron
reduction [12] after the engineer Gabriel Kron, from the viewpoint of algebraic graph theory.

8 830

8 8

1 13 32

r12 r23 rred
13

Figure 7: Reduction of a resistive series circuit to a single resistor with value rred
13 = r12 + r23

8

8

8

30

8

8

81 1

22

33
4

r14

r24

r34
rred
12 rred

23

rred
13

Figure 8: Reduction of a resistive and cyclic ∆-circuit to an acyclic Y -circuit with resistances
rred

23 = r14r34+r34r24+r24r14
r14

, rred
12 = r14r34+r34r24+r24r14

r34
, and rred

13 = r14r34+r34r24+r24r14
r24

.

Consider a connected and resistive circuit partitioned with nodes V = {1, . . . , n} into two sets
of V = V1 ∪V2 that we term boundary nodes and interior nodes (depicted as red and blue nodes in
Figures 7 and 8). The associated partitioned current-balance equations are[

I1

I2

]
=

[
L11 L12

L>12 L22

] [
V1

V2

]
, (15)

where L = L> is the associated conductance matrix — an irreducible Laplacian matrix satisfying
L1n = On — and the external current injections I ∈ Rn are balanced: 1>n I = 0. Observe that the
lower-right block L22 is a loopy Laplacian matrix and thus non-singular; see Exercise 10.

By eliminating the voltages V2 of the interior nodes as V2 = L−1
22 I2 − L−1

22 L
>
12V1, we obtain

I1 − L12L
−1
22 I2︸ ︷︷ ︸

Ired

=
(
L11 − L12L

−1
22 L

>
12

)
︸ ︷︷ ︸

Lred

V1 . (16)

In the following, we will establish that the reduced equations (16) are indeed well-defined circuit
equations, as suggested by the examples in Figures 7 and 8.

12



Advanced Topics in Control 2018 Circuit & Network Theory

Lemma 6.1 (Kron reduction). Consider the resistive circuit equations (15) parameterized by
the irreducible conductance matrix satisfying L1n = On and the balanced current injections I ∈ Rn

satisfying 1>n I = 0. Consider also the associated reduced circuit equations (16) parameterized by
Ired = I1 − L12L

−1
22 I2 and Lred = L11 − L12L

−1
22 L

>
12. The following statements hold:

1. The matrix −L12L
−1
22 is nonnegative and column-stochastic, and the reduced current injections

Ired = I1 − L12L
−1
22 I2 are balanced: 1>Ired = 0.

2. The reduced conductance matrix Lred = L11 − L12L
−1
22 L

>
12 is a nonnegative, symmetric, and

irreducible Laplacian matrix satisfying Lred1 = O.

3. The graph associated to the Laplacian Lred has an edge between nodes i, j ∈ V1 if and only if

(i) either {i, j} was an edge in the original graph associated to L,

(ii) or there was a path {i, k1, . . . , km, j} in the original graph between nodes i and j passing
through only interior nodes k1, . . . , km ∈ V2.

Proof. We prove Lemma 6.1 by subsequently eliminating one boundary node at a time, and show
that the three claimed properties hold, i.e., the Laplacian and current balance properties remain
preserved. Consider a removal of the nth voltage (observe that Lnn 6= 0 due to irreducibility) as

Vn =
1

Lnn

In − n−1∑
j=1

LjnVj

 .

In this case, the current balance equation I = LV simplifies to

 I1

...
In−1

+

 −L1n/Lnn

...
−Ln−1,n/Lnn


︸ ︷︷ ︸

=A

In =


. . .

... . .
.

. . . Lij − Lin·Ljn

Lnn
. . .

. .
. ...

. . .


︸ ︷︷ ︸

=B

 V1

...
Vn−1

 , (17)

where the (i, j)-element of B is given by Bij = Lij −Lin · Ljn/Lnn. In the following, we will prove
the claimed three properties for the A and B matrices in (17).

With regards to the properties of A, observe that Lnn > 0 and −Lin ≥ 0 for all i ∈ {1, . . . , n−1}.
Thus, A is non-negative. At least one element of A is strictly positive since at least one −Lin > 0
due to irreducibility (at least one node i ∈ {1, . . . , n− 1} is connected to node n). Moreover,

n−1∑
i=1

Ai = −
n−1∑
i=1

Lin/Lnn = −(−Lnn/Lnn) = 1 ,

where we used the fact that L has zero row and column sums. Hence, the matrix A (corresponding
to the matrix −L12L

−1
22 in the lemma) is nonnegative and column-stochastic. Thus, the overall

current balance is preserved in the equations (17):

1>n−1

 I1

...
In−1

+ 1>n−1AIn = 1>n−1

 I1

...
In−1

+ In = 1>n I = 0 .

13
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With regards to the properties of B, we first analyze the off-diagonal elements for i 6= j:

Bij = Lij︸︷︷︸
< 0 if {i, j} ∈ E and = 0 else

− Lin · Ljn/Lnn︸ ︷︷ ︸
> 0 if {i, n}, {n, j} ∈ E and = 0 else

We conclude that Bij ≤ 0 always holds, and Bij < 0 if and only if either {i, j} was an edge in the
original graph associated to L, or there was a path {i, n, j} in the original graph between nodes i
and j passing through the eliminated node n. Next, we analyze the row sums of B given by∑n−1

j=1
Bii =

∑n−1

j=1
Lij −

Lin · Ljn

Lnn
=
∑n−1

j=1
Lij −

Lin

Lnn

∑n−1

j=1
Ljn = −Lin −

Lin

Lnn
(−Lnn) = 0 ,

where we used that the row and column sums of L are zero. We conclude that B has non-positive
diagonals, zero row sums, zero column sums (due to symmetry), and thus also positive diagonal
elements. Hence, B is a Laplacian matrix that induces a topology as in the third claimed property.

Hence, we have proved the three properties of the lemma for a single reduction step, and showed
that the reduced equations (17) can still be associated to a connected circuit, that is, the irreducible
Laplacian property and the balanced current injections are preserved by iterating these arguments
for the elimination of one boundary node at a time, we arrive at the claimed statement.

Observe that, due to the third property of Lemma 6.1, the graph associated to the Kron-reduced
network is always denser than the original graph. These results can also be adapted to the case
when the network features resistive loads; see Exercise 16. We refer to [5] for further interesting
properties of Kron reduction and its connection to other concepts such as the effective resistance.

7 Control of DC power grids

In the following, we consider some basic operation and control strategies for a linear and direct
current (DC) power system inspired by [15]. Our derivations extends either directly or at least
conceptually to nonlinear DC power grids [3] or alternating current (AC) power systems [6, 13].

Modeling and droop control: Consider a direct current DC power grid with modeled by a
circuit with n nodes of which nL are loads and nS = n − nL are controllable sources which we
denote by the sets L and S, respectively. The circuit consists of m resistive lines with resistors rij ,
incidence matrix B ∈ Rn×m, admittance (Laplacian) matrix L = Bdiag(1/rij)B

>, constant current
loads IL ∈ RnL

≤0, and controllable sources IS ∈ RnS . The governing circuit equations are as in (1)[
IS

IL

]
=

[
LSS LSL

LLS LLL

] [
V S

V L

]
, (18)

where we partitioned the circuit equations according to sources and loads, and V S and V L are the
respective vectors of nodal voltages. By multiplying the circuit equations (18) from the left by 1>n
we obtain the balance of external injections

1>nS
IS + 1>nL

IL = 0 . (19)

Observe that the balance of sources and loads in (19) is a necessary condition for feasibility of the
equations (18). However, unless the loads IL are directly measured, or at least the overall load
1>nL

IL is measured, it is not possible to schedule the sources IS accordingly so that (19) is satisfied.

14
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In order to learn the overall load balance, we attach a dynamic controller to every node as

ISi = Iref
i − ciV̇i , i ∈ S , (20)

where Iref≥ 0 is a vector of nominal current injection and ci > 0 is a control gain. From a circuit
perspective, the controller (20) corresponds to adding a capacitance ci to ground as well as a
constant current injection Iref

i to each source; see Figure 9 for an analog circuit realization of
(20). The control (20). is a variation of the well-known and widely adopted DC droop control

ciIref
i

ISi

Figure 9: Circuit realization of the controller (20)

strategy that proportionally trades off the local current injection and nodal voltage [15]. This
controller stabilizes a drifting steady state which reveals locally to every node the global balance
of generation and demand: 1>nS

Iref + 1>nL
IL.

Theorem 7.1 (Convergence of voltage drifts). Consider the DC power grid model (18) with
the feedback controller (20). All voltage drifts asymptotically synchronize as

lim
t→∞

V̇ (t) = V̇drift1n =
1>nS

Iref + 1>nL
IL

1>nS
C1nS

1n . (21)

Proof. The closed-loop system (18),(20) is given by[
CV̇ S

OnL

]
=

[
Iref

IL

]
−
[
LSS LSL

LLS LLL

] [
V S

V L

]
, (22)

where C = diag(ci). Assume that there is a solution to system (22) with a common synchronized
voltage drift that satisfies V̇ (t) = V̇ ∗(t)1n, where V̇ ∗(t) ∈ R is a scalar signal. Then by inserting
this hypothetical solution into (22) and multiplying this equation from the left by 1>n we obtain

1>nS
C1nS · V̇ ∗(t) = 1>nS

Iref + 1>nL
IL .

Hence, if a solution with synchronized voltage drifts V̇ ∗(t) ∈ R exists, then V̇ ∗(t) must take the
constant value V̇drift as claimed in (21). To show that this solution with synchronized voltage drifts
actually exists and is asymptotically stable, define (x(t), y(t)) = (V̇ S(t), V̇ L(t)). By taking one
more derivative of the closed-loop system (22), we obtain the consensus-type system[

Cẋ
OnL

]
= −

[
LSS LSL

LLS LLL

] [
x
y

]
. (23)

System (23) consists of coupled differential equations in the variable x and algebraic equations in
the variable y. To construct a system of pure differential equations, we perform successive Gaussian

15
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elimination of the algebraic variables (y1, y2, . . . , ynL). Observe that the matrix L ∈ Rn×n in (23)
is a symmetric and irreducible Laplacian matrix. Recall from Lemma 6.1 that successive Gaussian
elimination of each the y-variables renders the Laplacian matrix L into new matrix (of smaller
dimension) that is also a symmetric and irreducible Laplacian matrix. Thus, an elimination of all
algebraic variables (y1, y2, . . . , ynL) results in the system

Cẋ = −Lredx , (24)

where Lred ∈ RnS×nS is a symmetric and irreducible Laplacian matrix1. Observe that system (24)
is a standard directed consensus system with Laplacian C−1Lred associated to a strongly connected
and bidirectional graph with non-symmetric weights. By Theorem 7.3, we have x(t→∞) = x∗1nS

where x∗ is a constant depending on the initial conditions. Observe that if x(t→∞) = x∗1nS , then
from equation (23) we must also have that y(t → ∞) = x∗1nL . Hence, all solutions (x(t), y(t)) =
(V̇ S(t), V̇ L(t)) converge to the voltage drift x∗1n which is given in (21).

Balancing control: Observe that the common voltage drift V̇drift under the controller (20) re-
veals the total imbalance of the total nominal source injections 1>nS

Iref and the total load 1>nL
IL.

Thus, a negative (respectively, positive) value of the drift V̇drift indicates that further (respectively,
less) currents must be injected by the sources. This motivates the following simple decentral-
ized controller that aside from the control action (20) additionally integrates the locally measured
voltage drift:

ISi = Iref
i − ciV̇i − pi

kiṗi = V̇i .
(25)

Here, ki > 0 and i ∈ S. As it turns out the decentralized controller (25) is able to balance generation
and load by means of the additional injection −pi at every source.

Theorem 7.2 (Decentralized generation/load balancing). Consider the DC power grid model
(18) with the control input (25). All voltages asymptotically converge to constant values and all
injections are balanced:

1>nS
Iref + 1>nL

IL = 1>nS
p(t→∞) . (26)

Proof. The closed-loop system (18),(25) is given by[
CV̇ S

OnL

]
=

[
Iref − p
IL

]
−
[
LSS LSL

LLS LLL

] [
V S

V L

]
Kṗ = V̇ S ,

(27)

where K = diag(ki) is positive definite. Observe that if the system (27) features an equilibrium with
ṗ = V̇ S = OnS , then a multiplication of the steady-state equations (27) from the left by

[
1>n O

>
nS

]
yields the load/generation balance (26). In the following, we show that system (27) indeed admits a
steady state. An equivalent formulation of the controller (25) is obtained by integrating kiṗi = V̇ S

i :

ISi = Iref
i − ciV̇i −

1

ki
(Vi − Vi(0))− pi(0) , i ∈ S . (28)

1A Gaussian elimination of the y-variables in (23) reads in vector form as y = −L−1
LLLLSx, where we recall from

Exercise 10 that LLL is positive definite and nonsingular. Thus, Lred in (24) reads as Lred = LSS − LSLL
−1
LLLLS .
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With the formulation (32), the closed loop (27) simplifies to[
CV̇ S

OnL

]
=

[
Iref + 1

ki
Vi(0)− pi(0)

IL

]
−
[
LSS +K−1 LSL

LLS LLL

] [
V S

V L

]
.

As in the proof of Theorem 7.1, by successively eliminating the algebraic variables V L, we obtain
the reduced system

CV̇ S = −(Lred +K−1)V S +

(
Iref +

1

ki
Vi(0)− pi(0)− LSLL

−1
LL I

L

)
, (29)

where Lred is the same symmetric and irreducible Laplacian matrix as in (24). System (29) is
linear with constant input term and system matrix A = −C−1(Lred +K−1), where Lred ∈ RnS×nS

is a symmetric and irreducible Laplacian matrix. Observe that the matrix Lred + K−1 is positive
definite, see Exercise 10. Hence, the Lyapunov equation PA + A>P = Q is fulfilled with positive
definite matrices P = C and Q = (Lred +K−1). We conclude that the system (29) converges to an
exponentially stable equilibrium and the claim follows.

The equivalent formulation (32) of the controller (25) admits (up to initial values) an analog
circuit realization shown in Figure 10. We conclude that the decentralized controller (25) learns
the overall load/generation balance and asymptotically compensates for the unknown loading in
(26). However, the decentralized controller (25) may suffer from robustness issues (see Exercise 9)
which is why distributed strategies involving communication between controllers are preferred; see
the PI consensus controller in Exercise E8.6 as well as Exercises 11, E6.17, and E17.10).

riIref
i ci

ISi

Figure 10: Circuit realization of the controller (25)

In alternating current (AC) power networks, the above control strategies (20) and (25) are often
referred to as primary droop control and secondary integral control, respectively. They provide the
basis for operation of an AC power grid. We refer to [15, 3] for further details on the operation of
DC power grids using consensus strategies, and to [6, 13] regarding their extensions to AC networks.
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8 Exercises

1. Exercise 1 (Special circuit models): Consider the circuit model (6). Your task is to derive
some special instances under certain assumptions.

a) Assume the absence of constant current injections and dissipative elements, that is,
I∗ = On, G = O and R = O. Show that, under these assumptions and for C = In, the
circuit equations (3) reduce to the Laplacian oscillator (5).

b) Assume homogeneous L/R ratios. that is, `ij/rij = τ is constant for all edges {i, j} ∈ E .
Derive the second-order consensus-type model (6).

2. Exercise 2 (Circuit with partial dissipation): Consider the circuit model (4) without
external current injections: I∗ = On. In the following we study the equilibria of the system
when the underlying graph is connected and either G = O or R = O:

a) Show that for R = O and G is positive definite, equilibria are defined uniquely up to a
subspace corresponding to currents circulating in the network: (V ∗, f∗) ∈ (On, kernel(B)).

b) Show that for G = O and R is positive definite, equilibria are defined uniquely up to to
a subspace corresponding to voltages reaching consensus: (V ∗, f∗) ∈ (span(1n),Om).

c) Show that the equilibria found in a) and b) are asymptotically stable.
(Hint: try to apply Lemma 7.5. or an analysis via energy functions)

d) How would you modify these proofs for I∗ 6= On Would you still reach a steady-state ?

3. Exercise 3 (Parallel RL branch dynamics): Repeat the analysis in Section 4 for the case
that the branch dynamics (3d) are given by a parallel connection of resistive and inductive
elements.

4. Exercise 4 (Mechanical analog): Provide a mechanical analog of the circuit model (3) using
masses, springs, and dampers.

5. Exercise 5 (Resistance distance): Prove Lemma 5.4 and show that the effective resistance
is a distance measure.

6. Exercise 6 (H2-norm and effective resistance): Consider a connected resistive circuit,
where each node has a capacitor to ground of unit capacitance. We equip this circuit with
inputs and measurement outputs. The inputs are exogenous nodal current injections I∗i (t),
that we assume to be white noise signals affecting each node i ∈ {1, . . . , n}. The output is
the deviation from voltage consensus y(t) = (In − 1n1>n /n)V (t).

• Model the circuit by a set of differential equations; and

• show that the H2 performance of the circuit dynamics equals the average effective resis-
tance 1

n

∑n
i,j=1,i<j r

eff
ij .

7. Exercise 7 (Control of inductive power grids): Extend the results of Theorems 7.1 and
7.2 from a circuit with purely resistive branches to a circuit whose branches are composed of
a series R− L circuit with constant ratios rij/`ij for all {i, j} ∈ {1, . . . , n}.
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8. Exercise 8 (Load sharing): Consider the DC power grid model (18) with the control input
(20) as well as a set of positive numbers w1, . . . , wnS depicting the rating of the sources.
Provide conditions on the control parameters Iref

i and ci for i ∈ {1, . . . , n}S so that the source
injections are asymptotically shared between sources proportional to their ratings:

ISi (t→∞)

ISj (t→∞)
=
wi

wj
, i, j ∈ {1, . . . , nS} .

9. Exercise 9 (Decentralized integral control with measurement errors): Consider the
DC power grid model (18) with the decentralized controller (25), and assume that it is im-
plemented by measuring the voltage drift possibly subject to a constant bias

ISi = Iref
i − ciyi − pi ,

kiṗi = yi ,

yi = V̇i + ηi ,

(30)

where ki > 0 is a gain, yi is a measurement, and ηi ∈ R is a measurement drift for each i ∈ S.
Show that this system does not admit a steady state (not even a solution with synchronized
voltage drifts limt→∞ V̇ (t) = V̇drift1n) if the measurement biases are not identical. Can you
think of a possible variation of the integral controller (32) to alleviate this problem?

10. Exercise 10 (Loopy Laplacian matrices): Consider an undirected, connected, and weighted
graph G = (V, E , A) induced by the nonnegative adjacency matrix A ∈ Rn×n. In the follow-
ing, we construct a so-called loopy Laplacian matrix [5] that takes self-loops induced by the
diagonal elements aii ≥ 0 into account. The loopy Laplacian is defined by

Lloopy = Bdiag(aij)B
> + diag(aii).

Show that Lloopy ∈ Rn×n is a positive definite matrix as long as at least one element aii > 0
is strictly positive for i ∈ {1, . . . , n}.

11. Exercise 11 (Distributed averaging-based proportional-integral control): Consider
the DC power grid model (18) with the following distributed averaging-based proportional-
integral (DAPI) controller (see Exercises E6.17 and 17.10)

ISi = Iref
i − ciV̇i − pi ,

kiṗi = ciV̇i −
∑n

j=1
aij

(
pi
wi
− pj
wj

)
,

(31)

where ki > 0 is a control gain for each i ∈ S, wi for i ∈ S are the source ratings from Exercise
8, and the symmetric, nonnegative, and irreducible matrix A ∈ RnS×nS with elements aij ≥ 0
encodes a communication network between the controllers. Show that the DAPI controller
(33) drives the DC power grid model (18) to an asymptotically stable steady state with integral
inputs p(t→∞) satisfying the fair proportional load sharing conditions (see Exercise 8):

pi(t→∞)

pj(t→∞)
=
wi

wj
, i, j ∈ {1, . . . , nS} .
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12. Exercise 12 (Mechanical ring oscillator): Consider the mass-spring network in Figure 11
consisting of four identical particles constrained to move on a circle. Let these masses in
turn be coupled by four identical springs, whose elongation/contraction is also confined to
the same circle. We model the system by the elongations qi ∈ R, i ∈ {1, . . . , 4}, of the four
springs and the linear momenta (product of velocity and mass) pi ∈ R, i ∈ {1, . . . , 4}, of the
four particles. The system dynamics are then described by

q̇ = B>M−1p , (32a)

ṗ = −BKq , (32b)

where B ∈ R4×4 is the incidence matrix of the graph, M = m · I4 with m > 0 is the mass
matrix, and K = k · I4 with k > 0 is the spring constant matrix.

Figure 11: Mechanical ring oscillator

(a) Show that the solution of (36) is a superposition of harmonic signals.

(b) Explicitly calculate the frequencies of these harmonic signals.

13. Exercise 13 (Resistance identities): Let the matrices L, L†, and R represent the Laplacian,
pseudo-inverse of the Laplacian, and the effective resistance of an undirected, weighted, and
connected graph. Show that:

(a) L†RL† = −2(L†)3,

(b) LRL = −2L.

14. Exercise 14 (Circuit feasibility): Write down a state-space model for the circuit in Figure
12 and verify if it can be put in Laplacian oscillator form.

15. Exercise 15 (Regularization of Laplacian matrices): Consider a symmetric and irre-
ducible Laplacian matrix L = L> ∈ Rn×n. Prove by means of the singular value decomposi-
tion that (

L+
1

n
1n1

>
n

)−1

= L† +
1

n
1n1

>
n .

16. Exercise 16 (Kron reduction in presence of loads): Consider a connected and resistive
circuit where each node has an associated resistive load modeled as a conductance-to-ground.
Consider a partition of the nodes V = {1, . . . , n} into boundary nodes V1 and interior nodes
V2. The associated current-balance equations are given by[

I1

I2

]
=

([
L11 L12

L>12 L22

]
+

[
G11

G22

])[
V1

V2

]
,
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Figure 12: Circuit with capacitors at the edges and inductors to ground at the nodes

where G11 and G22 are diagonal and positive definite matrices associated to the load con-
ductances. Consider now a Kron reduction of the boundary nodes V2. Investigate how the
claimed properties in Lemma 6.1 have to be adapted in this case.

17. Exercise 17 Circuit with nonlinear constant power loads: Consider an RC circuit as in
(3) with L = O and constant power loads P ∗i ≤ 0 satisfying Iload,i = −GiVi + I∗ + P ∗i /Vi at
each node i ∈ {1, . . . , n}. Your tasks are as follows:

(a) write the dynamics for the nodal voltages Vi, i ∈ {1, . . . , n}; and

(b) show that the vector V ∈ Rn of voltage dynamics follows a gradient flow CV̇ = −∂W
∂V

for some differentiable potential function W : Rn → R.

In the following, we assume the considered circuit model admits an equilibrium V ∗ ∈ Rn so
that the gradient vanishes: ∂W

∂V

∣∣
V =V ∗ = On.

(a) show that, if Gi + P ∗i /V
2∗
i ≥ 0 for all i ∈ {1, . . . , n} and Gi + P ∗i /V

2∗
i > 0 for at least

one index i ∈ {1, . . . , n}, then the associated Hessian matrix ∂W2

∂V 2

∣∣∣
V =V ∗

evaluated at the

equilibrium is positive definite; and

(b) combine the above insights to show local asymptotic stability of the equilibrium V ∗ ∈ Rn.
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[11] D. J. Klein and M. Randić. Resistance distance. Journal of Mathematical Chemistry, 12(1):81–
95, 1993.

[12] G. Kron. Tensor Analysis of Networks. John Wiley & Sons, 1939.

[13] J. W. Simpson-Porco, F. Dörfler, and F. Bullo. Synchronization and power sharing for droop-
controlled inverters in islanded microgrids. Automatica, 49(9):2603–2611, 2013.

[14] W. Xiao and I. Gutman. Resistance distance and Laplacian spectrum. Theoretical Chemistry
Accounts, 110(4):284–289, 2003.

[15] J. Zhao and F. Dörfler. Distributed control and optimization in DC microgrids. Automatica,
61:18 – 26, 2015.

22


	Circuit modeling
	Different branch models
	A prototypical circuit
	Circuit analysis based on energy methods
	Effective resistance
	Circuit reduction
	Control of DC power grids
	Exercises

