Data-Driven Control in
Autonomous Energy Systems

Florian Dorfler
ETH Zdrich UW Clean Energy Institute Seminar




Acknowledgements

Jeremy Coulson

-
‘John Lygeros

Ivan Markovsky

Ezzat Elokda




Persp

system

&

)
controller

recurring themes

modeling & system |ID
are very expensive

models not always
useful for control

need for end-to-end
automation solutions

ectives on model-based control

— models useful for
system analysis, design,
estimation, ...control
— modeling from first
principles & system ID

From experiment design to closed-loop control

Hékan Hjalmarsson*

1. Introduction

Ever increasing productivity demands and environmental
standards necessitate more and more advanced control meth-
ods to be employed in industry. However, such methods usu-
ally require a model of the process and modeling and system
identification are expensive. Quoting (Ogunnaike, 1996)

“Itis also widely recognized, however., that obtaining the
process model is the single most time consuming task in the
application of model-based control.”

In Hussain (1999) it is reported that three quarters of the
total costs associated with advanced control projects can
be attributed to modeling. It is estimated that models exist
for far less than one percent of all processes in regulatory
control. According to Desborough and Miller (2001), one of
the few instances when the cost of dynamic modeling can

be justified is for the commissioning of model predictive
controllers
It has also been recognized that models for control pose
pecial considerations. Again quoting (Ogunnaike, 1996);
“There is abundant evidence in industrial practice that

when modeling for control is not based on criteria related
10 the actual end use, the results can sometimes be quite
disappointing”

Hence, efficient modeling and system identification tech-
niques suited for industrial use and tailored for control de-
sign applications have become important enablers for indus-
trial advances. The Panel for Future Directions in Control,
(Murray, Astrom, Boyd, Brockett, & Stein, 2003), has iden-
tified automatic synthesis of control algorithms, with inte-
grated validation and verification as one of the major future
challenges in control. Quoting (Murray et al.. 2003):

“Researchers need o develop much more powerful design
1ools that automate the entire control design process from
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Control in a data-rich world

¢ ever-growing trend in CS & applications:
data-driven control by-passing models

e canonical problem: black/gray-box
system control based on I/O samples

Q: Why give up physical modeling &
reliable model-based algorithms ?

Data-driven control is viable alternative when

® models are too complex to be useful
e.g., wind farm interactions & building automation

e first-principle models are not conceivable
e.g., human-operator-in-the-loop & demand control

® modeling & system ID is too cumbersome
e.g., drives & electronics applications

data-driven
control

Central promise: It
is often easier to learn
control policies directly
from data, rather than
learning a model.

Example: PID [Astrém, 73]
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Snippets from the literature

vt . indirect data-driven control:

e _, _z# sequential system ID + uncertainty
4 ¥ quantification + robust control

— recent end-to-end design pipelines
with finite-sample guarantees
:> &* | + @ o ID seeks best but not most useful

model: “easier to learn policies ...”

unknown system

direct data-driven control:
reinforcement learning / stochastic adaptive

(=]
5 g control / approximate dynamic programming
"(’é reinforcement learning control g
S — spectacular theoretic & practical advances
i =2estimate — more brute force storage/computation/data
; = . .
reward @ not suitable for physical systems:

S real-time, safety-critical, continuous ~ +




today: something very different
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Preview

complex 4-area power system:
large (n=208), few sensors (8),
nonlinear, noisy, stiff, input
constraints, & decentralized
control specifications

control objective: oscillation

damping

(models are proprietary, grid has
many owners, operation in flux, ...)

control
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seek a method that works
reliably, can be efficiently
implemented, & certifiable

— automating ourselves
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Reality check: magic or hoax ?

surely, nobody would put apply such a shaky data-driven method
® on the world’s most complex engineered system (the electric grid),
® using the world’s biggest actuators (Gigawatt-sized HVDC links),
® and subject to real-time, safety, & stability constraints . ..right?

Dear Linbin and Florian, last Friday

| just submitted a very favourable review of your paper [..] which | believe could be of
importance to our work at Hitachi Power Grids. We do have [...] require off-line tuning that [...]

comissisioning engineer can do on his own [...] an adaptive approach would be very interesting.
Pgrid | thi i
If Mw thl_: mor:lrg Intralized DeePC approach with our more detailed HVDC
sys oot 1 e tion problem. Could so some code be made available
[... - (\ (\ pg together to do such a demonstration ? [...]
0 \H

\ [\ /ﬂ PN b

m
\U\/ /m Il

Il

so at least someone believes that DeePC is practically useful ... e



Behavioral view on LTI systems

Definition: A discrete-time dynamical
system is a 3-tuple (Z>o, W, #) where

(i) Z>o is the discrete-time axis,
(i) W is a signal space, and % is the set of
all trajectories

(i) Z C W#=0 is the behavior.

Definition: The dynamical system (Z>(, W, &) is
(i) linear if W is a vector space & 4 is a subspace of WZ=o

(i) and time-invariant it 8 C 0%, where cw; = wi1.

LTI system = shift-invariant subspace of trajectory space
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LTI systems and matrix time series

foundation of state-space subspace system ID & signal recovery algorithms

\\‘,
(%)

Ug

(u(t),y(t)) satisfy recursive

difference equation
bour+b1usi1+. . . +bptpin+

apyi+aryiy1+. . +apyiin =0

(ARX/kernel representation)

=

under assumptions

[O bo ag by ai ...

of trajectory matrix (collected data)

Y3
Y4
! \Ys Y7

% NSt
Yo

¥
Ye

bn an 0] in left nullspace

i uil,l “g.l “g,l )
Uf.l ?/g,l ?/:[;,.1
“11,2 “g72 Ugg
Yl o Y3 o vio )

0 . d d
Ui, U, T Uz, T
d d d
L\ Y17 Y2, 7 Yz, T .

where yﬁt is tth sample from ith experimegt
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Fundamental Lemma [Willems et al. '05], [Markovsky & Dérfler '20]

u(t)
Uy g
Uy uz e Uy
l K L o
\\‘, ur.\./ t
U9 ’ Ue
H . ud m+ . |ag V4
Given: data ( ' ) € R™*? & LTI complexity parameters
Y; order n
set of all T-length trajectories = (;/‘:’::) (u’l> (u"}?)
{(u, y) € R™PT . Jp c R? gf, ———— colspan <u1> (I/;f:,)> <v'f:>
2t = Az + Bu,y=Cxz+ Du } <“;11T> (ug‘T) <”§{-T> -
i1 vs 1 vir)
parametric state-space model non-parametric model from raw data

if and only if the trajectory matrix has rank m - T +n forall T > ¢
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set of all T-length trajectories = (ul’j> (/j’j> (/3511)

uf 5 ) (“g.z ) ( ug » >
{(“7 y) € R™PT . 3p e R™ 5.t  —— colspan (;/1’2 i) \vs2/) "
2t =Ax+ Bu,y=Cx+ Du } (u;',,,> (ug,,.> (m;,,‘)
vie ) \vir) \vsr) "
parametric state-space model non-parametric model from raw data

all trajectories constructible from finitely many previous trajectories

® can also use other matrix data structures: (mosaic) Hankel, Page, ...

® novelty (?): motion primitives, DMD, dictionary learning, subspace
system id, ... all implicitly rely on this equivalence — c.f. “fundamental”

e standing on the shoulders of giants: _ —
A note on persistency of excitation
CIaSSiC Wi”ems, result was Only “if” & Jan C. Willems*, Paolo Rapisarda®, Ivan Markovsky® *, Bart L.M. De Moor*
required further assumptions: Hankel, o e s i
persistency of excitation, controllability

Rec
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Control from matrix time series data

A note on persistency of excitation
Jan C. Willems?, Paolo Rapisardab, Ivan Markovsky**, Bart L.M. De Moor*

4ESAT, SCD/SISTA, K.U. Leuven, Kasteelpark Arenberg 10, B 3001 Leuven, Heverlee, Belgium
bl)e]mrtrrzenf of Mathematics, University of Maastricht, 6200 MD Maastricht, The Netherlands

Received 3 June 2004; accepted 7 September 2004
Available online 30 November 2004

We are all writing merely the dramatic corollaries ...

implicit & stochastic explicit & deterministic

— Ivan Markovsky & ourselves — Claudio de Persis & Pietro Tesi

— lots of recent momentum (~ 1 ArXiv/week) with contributions by
Scherer, Allgéwer, Camlibel, Trentelman, Pappas, Fischer, Pasqualetti, Goulart, Mesbahi, ...

— more classic subspace predictive control (De Moor) literature

11/34



D ata'd rlve n p red ICtI O n [Markovsky & Rapisarda’08]

Problem : predict future output i € RPTiuwe based on

® input signal v € R™ Tt — to predict forward
* past data col(ud,y%) € %z, — to form trajectory matrix
Solution: given (u, ..., un,,,) — compute g & (yi,...,yn,,.) from
[ ,,d d d 7 - -
Uy 1 U1 U3,1 T U1
d d d .
ud ul s Tiuture U2 s Thuture U;S s Thuture quulure
t%Tfmure yd g = d d d g =
Y11 Y21 Y31 T Y
d d d . ,
_yl s Thuture Y2 s Thuture y3yTiuture i LY Tiuure

Issue: predicted output is not unique — need to set initial conditions !
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Data-driven prediction & estimation

Refined problem : predict future output y € RP"Tiuue based on
e initial trajectory col(uini, yini) € R™1P) T — to estimate initial iy
e input signal u € R™ Tiuue — to predict forward

* past data col(ud,y%) € %7, — to form trajectory matrix

Solution: given u & col(uini, yini) — compute g & y from

d d. d
T, Yo T, s, T,
d d d
Yi, Ys Ys w
d . o ini
ﬂTII"II( d) g d a _
g = Y., T, Y, T, Y5, T, g Yini
d Y Ty Yo, Tyt M3, Tt u
2 w :
Ttyture yd : ,
‘LLd ud -y
1T+ T 2, T+ T, 3, T+ T,
Y, T Yo, T oo Ty
d : d . d :
LY, Tt T Y2, TutTone Y3, Tt T

= observability condition: if Ti,; > lag of system, then y is unique 133



Output Model Predictive Control

The canonical receding-horizon MPC optimization problem:

ﬂu‘ure_l ) .
inimi 3 gk = rerld + el quadratic cost with
ey k=0 e K R>0,Q=0&ref. r

subject to xp41 = Axy + Bug, Vk € {0,...,Ttuture — 1},  model for prediction
Yk = ka + D’Uk;, vk € {Oa oo o aT}UtUI’e - l}a over k € [0’ Tfuture N l]

Tpy1 = Avg + Bug, Vk € {=Thi —1,..., =1}, model for estimation
yr = Cxp, + Duy, Vk€ {—Tini -1,..., _1}, (many variations)
Uk Gu, Vke {Ow-wauture_l}a

hard operational or
yr €Y, Vke{0,..., Tiure — 1} safety constraints

For a deterministic LTI plant and an exact model of the plant,
MPC is the gold standard of control: safe, optimal, tracking, ...
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Data-Enabled Predictive Control

DeePC uses Hankel matrix for receding-horizon prediction/ estimation:

TU urefl . B
T Hz: lys — 7 ”2 +llu ”2 quadratic cost with
gy e W Tk TR R>-0,Q > 08&ref. r
Pl non-parametric
subject to (“j) g = Yini , model for prediction
g @ and estimation
Y
ug €U, Vk€{0,..., Tuure — 1}, hard operational or
yr €Y, Vke{0,..., Tiyure — 1} safety constraints

collected offline

from past data (could be adapted online)

d
0 u
P Titure yd

. . d WTEnT( uj)
e trajectory matrix %(Zd) = ;

¢ past Tini > lag samples (uini, yini) for zini estimation updated online
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Consistency for LTI Systems

Theorem: Consider DeePC & MPC optimization problems. If the
rank condition holds (= rich data), then the feasible sets coincide.

Corollary: closed-loop behavior under DeePC and MPC coincide.

Aerial robotics case study :

05




Thus, MPC carries over to DeePC
...at least in the nominal case.

(see e.g. [Berberich, Kdhler, Miller, & Allgéwer '19] for stability proofs)

Beyond LTI, what about measurement noise,
corrupted past data, and nonlinearities ?



Noisy real-time measurements

Tiyture —1 Solution: add /,-slack
minimize > gk — rerllfy + luellF + Ayllowil teasibili
0.y = Q R y P oini to ensure feasibility
— receding-horizon
Uini 0 X
. . . least-square filter
3 u _ ni Ini
subject to A (y") g=1u| o — for A, > 1: constraint
Yy 0 is slack only if infeasible
R b —1 e .
ug €U, Vk €10, Thuture — 1}, c.f. sensitivity analysis
ye €Y, Yk €{0,... Tuure — 1} over randomized sims
Cost 0 Constraint Violations
1010 @
— 3
é 108 .gwo
o
'-'é 5
10° g

’\J/ /\J/ 17/34



Trajectory matrix corrupted by noise

Tfulure_l
minimize Y |luk — reaxllgy + luklln + Agllgll
g,u,y -
Uini
: ud _ | Yini
subject to ,%”(yd)g = 1% |
Y
Uk EU, VkE{O,...,Tfuture—l},
Y €Y, Vke€ {Ov'nanuture - 1}
S 2107 Cost
6
5
»4
Ss
2
: J
00 200 400 600 800
Ag

o

Duration violations (s)

o

o

Solution: add a
(1-penalty on g

intuition: ¢, sparsely selects
{trajectory matrix columns}
= {past trajectories}

= {motion primitives}

c.f. sensitivity analysis
over randomized sims

Constraint Violations

o

200 400 600 800
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Towards nonlinear systems

Idea: lift nonlinear system to large/oo-dimensional bi-/linear system
— Carleman, Volterra, Fliess, Koopman, Sturm-Liouville methods
— nonlinear dynamics can be approximated LTI on finite horizons

regularization singles out relevant features / basis functions in data

case study - ,
DeePC
+ oinj Slack . fl u ke
+ |lg||1 regularizer o
+ more columns 0- or
in 7 (U 05
) . solid ?

<08
05 <09
o 19/34



Experimental snippet
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Consistent observations across
case studies — more than a fluke

energy hub & building automation

quad coptor fig-8 tracking

 ument i v spsed. N, Toiss

power system oscillation damping (see later) synchronous motor drive pendulum swing up
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let’s try to put some theory
behind all of this ...



Distributional robust formulation cousoneta. e

® problem abstraction: mingcx ¢ (E, x) where 5 is measured data

e distributionally robust formulation — “mingcy maxe ¢ (&, 2)”

where max accounts for all stochastic processes (linear or nonlinear)

that could have generated the data ... more precisely A p

infwex SUPoep By EQ [c (& 2)]
. A
where B.(P) is an e-Wasserstein ball
centered at empirical sample distribution P:

{P : irﬁf/”ffédeH < e} ik il

Theorem: Under minor technical conditions:

infzex SUPgep () EQ [c(&,%)] = mingex ¢ <E, m) + eLip(c) - ||zl

Yy

B.(P)
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regularization of DeePC
&
distributional robustification
in trajectory space



Further ingredients & improvements

* multiple i.i.d. experiments — sample Tracking Error vs. €
average data matrix £ Y7, J(y%)

n
=3
S

a
S

® measure concentration: Wasserstein

~

ball B.(P) includes true distribution P
with high confidence if € ~ 1/N1/dim(&)

Tracking Error
2
8

o
S

— N
—N

e old online measurements — Kalman % o002 0004 0005 0008 001
filtering with hidden state = explicit g* Wasserstein ball radins ¢

o distributionally robust probabilistic constraints
SUDGep, (B) CVaR? < averaging + regularization + tightening

e’

0.2

0.1

1
10

0.012
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All together in action for nonlinear
& stochastic quadcoptor setup

Trajectory of Quadcopter
2

case study:

distr. robust objective
+ Page matrix predictor
+ averaging

+ CVaR constraints

+ oini slack

— DeePC works much
better than it should !

Meters

0 2 4 6 8

Seconds

— Pz

—p,
Dz

“ Pyref
Py ref
P, ref

- - Constraints

main catch: optimization problems become large (no-free-lunch)

— models are compressed, de-noised, & tidied-up representations
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Power system case study

17 1ls 1‘3
Phase-Locked Loop Vae “,_{M o ser
X w ot =
Vay 0 iy LyERE F==1®scs
i 3 < B e
DC Voltage Control Loop | 112 Py C xI

J
i o
Vaane Vaa. Vag \mw =
Vaa Vaq
T g, Iz, ” " :
Voltage Control Loop Current Control Loop

Control Diagram of VSC-HVDC Station 2

Phase-Locked Loop Py

. w - il
Vi PR PPN W L
Power Control Loop
|

el
Viahe Vi Vig \'“’4-?—>{_ PI 2 ) :
I +®s63
Vi 7 Vig - +
T ha Ty ” ' =1
Voltage Control Loop Currefit Contro| Loop - b +@ s64
H
Control Diagram of VSC-HVDC Station 1 e (*_,If} §
control

® complex 4-area power system: large (n = 208), few measurements (8),
nonlinear, noisy, stiff, input constraints, & decentralized control

® control objective: damping of inter-area oscillations via HVDC link
e real-time MPC & DeePC prohibitive — choose T', Tini, & Tiuture Wisely
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Centralized control

08} - DeePC
P (p.u.) ol - PEM'M PC
0.4

= Prediction Error
Method (PEM)
System ID + MPC

0.2}

0.6

0.4

Ps (p.u.) 0:2_ t < 10s: open loop

data collection with

0.0} white noise excitat.

t > 10s: control

0.6

0.4
Ps (p.u.) 02

0.0

0 5 10 15 20 25 30
time (s) 26/34



Performance: DeePC wins (clearly!)

5 100 — : : : : : :
5 DeePC

& 9 I PEM-MPC |
>

£ 60 1
(%]

S 40 ]
(]

€ 20 .
2 [
= m = W . =

0
5000 5500 6000 6500 7000 7500 8000
Measured closed-loop cost = 3, [lyx — rill5 + llusll %
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DeePC hyper-parameter tuning

108
14000
12000
g 10° 2
o o 10000
8 3
3 g 8000
8 10* 8
© “ 6000
4000
3
1010-2 10° 102 10% 10° 0 20 40 60 80 100 120
Ag Tini
regularizer )\, estimation horizon Ti;
o for distributional robustness e for model complexity = lag
~ radius of Wasserstein ball : -
® T, > 50 is sufficient & low
* wide range of sweet spots computational complexity

— choose \; = 20 — choose T = 60
28/34



x10°

25 6000

5000

4000

3000

Closed-loop cost
&

2%, 50 100 15k 200
0.5 !
ois
0 50 100 150 200
Ttuture

prediction horizon Tiyre

¢ nominal MPC is stable if
horizon Tire lONg enough

— choose Tiyiure = 120 and
apply first 60 input steps

Closed-loop cost

8000

7000

6000

5000

4000

3000

2000

1000 1500 2000 2500 3000 3500
T

data length T

long enough for low-rank
condition but card(g) grows

— choose T' = 1500
(data matrix =~ square)

29/34



Computational cost

0.8 +

0.6 3
Py (p.u.) 04
o2l
0 5 10 15 20 25 30
0.6]>
0.4
P (p.u.) 02l i
0.0F
0 5 10 15 20 25 30
0.6} [
0.4} 1
Ps3 (p.u.) 0.2
0.0+
L L L L L
0 5 10 20 25 30

15
time (s)

=

T = 1500
Ag =20
Tini = 60

Tiuture = 120 & apply
first 60 input steps

sampling time = 0.02s

solver (OSQP) time = 1s
(on Intel Core i5 7200U)

implementable
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Comparison: Hankel & Page matrix

x10% x103
25 8

Hankel matrix

Hankel matrix with
SVD (Tthreshhold = 1)

W Page matrix

Averaged Closed-loop Cost

Page matrix with
SVD (othreshhold = 1)

10 20 30 40
Control Horizon k Control Horizon k

e comparison baseline: Hankel and Page matrices of same size
® perfomance : Page consistency beats Hankel matrix predictors

offline denoising via SVD threshholding works wonderfully for
Page though obviously not for Hankel (entries are constrained)

o effects very pronounced for longer horizon (= open-loop time)

® price-to-be-paid: Page matrix predictor requires more data
31/34



Decentralized implementation

Phase-Locked Loop

\v,,,u

age
Vaune | Vg B
Lo D, T2 Ve
Voltage Control Loop

Control Diagram of VSC-HVDC Station 2

Current Control

Phase-Locked Loop

Py
w 3 I
e ST . By :
Power Control Loop ¥ ol
v ’
Viae ViesVig “’?—E L} -
Tiaie Ty hia Vi v "’
Voltage Control Loop Currefit Controf Loop

Control Diagram of VSC-HVDC Station 1 Area 1 ) jIl B C f?7 ac
control

® plug’n’play MPC: treat interconnection P5 as disturbance variable w
with past disturbance win measurable & future wyyre € W uncertain

e for each controller augment trajectory matrix with disturbance data w

¢ decentralized robust min-max DeePC: min, , , max,cyw s2e0



Decentralized control performance

0.8}

0.6

: e colors correspond
P (p.u.) 04

to different hyper-
02f 1 parameter settings
(not discernible)

0 5 10 15 20 25 30

® ambiguity set W
is co-ball (box)

0.6}

0.4

P (p.u.
2 (P) gl e for computational

0.0F efficiency W is
0 5 10 15 20 25 30 downsampled
(piece-wise linear)

0.6

0.4} e solver time ~ 2.6s

P3 (pu) o, .
' = implementable
0.0

0 5 10 15 20 25 30
time (s) 33/34



Summary & conclusions

main take-aways
® matrix time series serves as predictive model
¢ data-enabled predictive control (DeePC)

v’ consistent for deterministic LTI systems
v~ distributional robustness via regularizations

future work

— tighter certificates for nonlinear systems
— explicit policies & direct adaptive control
— online optimization & real-time iteration

1
05 02
m

R 0

Why have these Willems '07: “[MPC] has perhaps too little system
powerful ideas theory and too much brute force computation in it.”
not been mixed The other side often proclaims “behavioral systems

long before ? theory is beautiful but did not prove utterly useful.”
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Thanks!

Florian Dérfler
mail: dorfler@ethz.ch
[1ink] to homepage

[1ink] to related publications


mailto://dorfler@ethz.ch
http://control.ee.ethz.ch/~floriand/
http://people.ee.ethz.ch/~floriand/bib/Keyword/DATA-DRIVEN-CONTROL.html

appendix

relation to system ID



Data-driven control; a classification

indirect data-driven control

separation &
certainty
equivalence

minimize  control cost (z, u) }
where  z estimated from (u,y) & model } middle opt. (— LQG case)

outer

subjectto (z,u) satisfy state-space model optimization

where  model identified from (u?,y?) data | inner opt. } no separation

(— ID-4-control)
— nested multi-level optimization problem

direct data-driven control — trade-offs

modular vs. end-2-end
suboptimal (?) vs. optimal
subject to (u,y) consistent with (ud,yd) data convex Vvs. non-convex (?)

minimize  control cost (u, )

Additionally: all above should be min-max or E(-) accounting for uncertainty ...



recall the central promise:
it is easier to learn control
policies directly from data,

rather than learning a model



Comparison: DeePC vs. ID+ MPC

DeePC with ¢, -regularizer

Cost

Number of simulations

Cost %107

random
sims

certainty-equivalence MPC
based on prediction error ID

MPC

Constraint Violations

]

DeePC
System ID + MPC

Number of simulations
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More to it than a single case study ?

consistent across all nonlinear
case studies: DeePC always wins

reason (?): DeePC is robust, whereas
certainty-equivalence control is based
on identified model with a bias error

stochastic LTI comparison (no bias)
show certainty-equivalence vs. robust
control trade-offs (mean vs. median)

link: DeePC includes implicit sys ID
though biased by control objective &
robustified through regularizations

— lot more to be understood ...

o
S

DeePC
Il PEM-MPC

60
40
20
0 - = H . m

5000 5500 6000 6500 7000 7500 8000

80

Number of simulations

measured closed-loop cost = ", [lup — 7p Hé + H“k“??

1000

Frequency
o
g
8

o
10 10% 10° 10 10° 10° 107
Open-loop tracking error (% increase wrt optimal)
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