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recurring themes

modeling & system ID
are very expensive

models not always
useful for control

need for end-to-end
automation solutions

T = Az + Bu
y=Cz+ Du

ectives on model-based control

— models useful for
system analysis, design,
estimation, ...control

— modeling from first

principles & system ID

From experiment design to closed-loop control

Hikan Hjalmarsson*

1. Introduction

Ever increasing productivity demands and environmental
standards necessitate more and more advanced control meth-
ods to be employed in industry. However, such methods usu-
ally require a model of the process and modeling and system
identification are expensive. Quoting (Ogunnaike, 1996)

“Itis also widely recognized, however., that obtaining the
process model is the single most time consuming task in the
application of model-based control.”

In Hussain (1999) it is reported that three quarters of the
total costs associated with advanced control projects can
be attributed to modeling. It is estimated that models exist
for far less than one percent of all processes in regulatory
control. According to Desborough and Miller (2001), one of
the few instances when the cost of dynamic modeling can

be justified is for the commissioning of model predictive
controllers

1t has also been recognized that models for control pose
special considerations. Again quoting (Ogunnaike, 1996)

“There is abundant evidence in indusirial practice that
when modeling for control is not based on criteria related
10 the actual end use, the results can sometimes be quite
disappointing”

Hence, efficient modeling and system identification tech-
niques suited for industrial use and tailored for control de-
sign applications have become important enablers for indus-
trial advances. The Panel for Future Directions in Control,
(Murray, Astrom, Boyd, Brockett, & Stein, 2003), has iden-
tified automatic synthesis of control algorithms, with inte-
grated validation and verification as one of the major future
challenges in control. Quoting (Murray et al.. 2003):

“Researchers need o develop much more powerful design
1ools that automate the entire control design process from
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Control in a data-rich world

¢ ever-growing trend in CS & applications:
data-driven control by-passing models

e canonical problem: black/gray-box
system control based on I/O samples

Q: Why give up physical modeling and
reliable model-based algorithms ?

data-driven
control

Central promise: It
is often easier to learn
e first-principle models are not conceivable control policies directly
(e.g., human-in-the-loop, biology, & perception) from data, rather than
learning a model.

Data-driven control is viable alternative when

® models are too complex to be useful
(e.g., fluids, wind farms, & building automation)

® modeling & system ID is too cumbersome

(e.g., robotics & electronics applications) Example: PID [Astrom, 73]
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Snippets from the literature

;= Indirect data-driven control:
24" sequential system ID + uncertainty
1 quantification + robust control

— recent end-to-end design pipelines
with finite-sample guarantees

9@ ID seeks best but not most useful
model: “easier to learn policies ...”

unknown system

% E r direct data-driven control:

reinforcement learning / stochastic adaptive

a
g g control / approximate dynamic programming
"§ reinforcement learning control g
g — spectacular theoretic & practical advances
‘ oorstimatcl — more brute force storage/computation/data
e e . .
reward @ not suitable for physical systems:
==

o real-time, safety-critical, continuous 480




Abstraction reveals pros & cons

indirect data-driven control

minimize  control cost (z, u) outer separation &
. . PR certainty
subject to (;v, u) satisfy state-space model optimization ‘
equivalence
where  z estimated from (u,y) & model } middle opt. (— LQG case)
where  model identified from (u?,y?) data } inner opt. } no separation

(— 1D-4-control)
— nested multi-level optimization problem

direct data-driven control — trade-offs
modular vs. end-2-end

suboptimal (?) vs. optimal
subject to (u,y) consistent with (u?,y?) data ' convex vs. non-convex (?)

minimize  control cost (u, y)

Additionally: all above should be min-max or E(-) accounting for uncertainty ...
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Colorful idea

If you had the impulse response of a LTI system, then ...

can identify model (e.g., transfer function or Kalman-Ho realization)

or predictive control directly from raw data (dynamic matrix control)

Ufuture(t>
Ufuture(t - 1)
Yruture (t) = [ Y1 Y2 Ys o I | ugre (F — 2)

insight: single trajectory generates all others — at least conceptually

today: can we do so with arbitrary, finite, and corrupted 1/0O samples ?
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Preview

complex 4-area power system:
large (n=208), few sensors (8),
nonlinear, noisy, stiff, input
constraints, & decentralized
control specifications

control objective: oscillation

damping

(models are proprietary, grid has
many owners, operation in flux, ...)

control
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seek a method that works
reliably, can be efficiently
implemented, & certifiable

— automating ourselves
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Behavioral view on LTI systems

Definition: A discrete-time dynamical
system is a 3-tuple (Z>o, W, #) where

(i) Z>o is the discrete-time axis,
A is the set of

i) W is a signal space, and . .
(i) 9 P all trajectories

(i) Z C W#=0 is the behavior.

Definition: The dynamical system (Z>(, W, &) is
(i) linear if W is a vector space & 4 is a subspace of WZ=o

(i) and time-invariant it 8 C 0%, where cw; = wi1.

% = set of trajectories & P is restriction to t € [0, T]
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LTI systems and matrix time series

foundation of state-space subspace system ID & signal recovery algorithms

(u(t),y(t)) satisfy recursive
difference equation

bour+b1usi1+. . . +bptpin+

apyi+aryiy1+. . +apyiin =0

(ARX/kernel representation)
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The Fundamental Lemma

Definition : The signal u? = col(u4, ... ,u%) € R™T is persistently

“(11 u{qi"fL+1
exciting of order L if 57,(u) = | : -.. : is of full row rank,
d d
Wy, ©o° W

i.e., if the signal is sufficiently rich and long (T — L + 1 > mL).

Fundamental Lemma [Willems et al, '05]: Let T',¢t € Z~,. Consider

* a controllable LTI system (Z>(,R™*?, 4), and

e a T-sample long trajectory col(u?, y%) € %r, where

® u is persistently exciting of order ¢ + n (prediction span + # states).

Then AB; = colspan (fﬁ (ZZ))
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Cartoon of Fundamental Lemma

¥
Ye

persistently exciting controllable LTI sufficiently many samples

Us Ug

ENEIE)

yy s vs )
() G ()

set of trajectories = {(u,y) : Jdx colspan | \wsi/ \wi/ \wi/ ™

st =Az+ Bu,y=Cz+ Du } (“g) (“d) (“g)

d G d
Y3 Y. Ys

S WS

parametric state-space model non-parametric model from raw data

all trajectories constructible from finitely many previous trajectories
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Data'd rlve n Sl m U |at|0 n [Markovsky & Rapisarda '08]

Problem : predict future output y € RP"Tiuwwe based on

e input signal u € R Tiuue
e past data col(u¢, y%) € %r,,,

— to predict forward

— to form Hankel matrix

Assume: 2 controllable & u¢ persistently exciting of order Tiyure + 7

Solution: given (uy, ..., un,,.) — compute g & (y1, .
r d d d E
Uy U Ur_N+1
d d d
% ud - quuiure quuture+1 Wy
Thuture yd g = d d dq
Yi Y2 Yr—-N+1
d d d
'yT{uture nyuwre +1 yT =

Tt nyuture) from

Uy

quuture

Y1

-nyuture -

Issue: predicted output is not unique — need to set initial conditions !
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Refined problem : predict future output iy € RP*Twre hased on
e initial trajectory col(uini, yini) € R(m+p)-Tni  — to estimate initial xi;
e input signal u € R Tiuure — to predict forward

e past data col(ud,y9) € %z, — to form Hankel matrix

Assume: 2 controllable & u9 persist. exciting of order Tii+ Tiure +7

Solution: given u & col(uini, yini) — compute g & y from

- d . d

“ : Ui, =T |
é ) d .
up .. ”T—T,m
d d
i T =, =
7 ud : - : Uini
Tinj d q . g .
Y _ v, o Yr—m7,, _ Yini
g = Wl 3o¢ 7 g =
d Tot1 T — T +1 U
V% “
ZCThuture yd y
d d b
uTsﬁ»TMm o . vr
YT e YT —Tpn
d d
LYT, -, Y 4

e

= observability condition: if Ti,; > lag of system, then 4 is unique
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Control from Hankel matrix data

We are all writing merely the dramatic corollaries ...

implicit & stochastic explicit & deterministic

— Ivan Markovsky & ourselves — Claudio de Persis & Pietro Tesi

— lots of recent momentum (~ 1 ArXiv/week) with contributions by
Scherer, Alilgéwer, Camlibel, Trentelman, Pappas, Fischer, Pasqualetti, Goulart, Mesbahi, ...

— more classic subspace predictive control (De Moor) literature
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Output Model Predictive Control

The canonical receding-horizon MPC optimization problem:

ﬂu‘ure_l ) .
inimi 3 gk = rerld + el quadratic cost with
ey k=0 e K R>0,Q=0&ref. r

subject to xp41 = Axy + Bug, Vk € {0,...,Ttuture — 1},  model for prediction
Yk = ka + D’Uk;, vk € {Oa oo o aT}UtUI’e - l}a over k € [0’ Tfuture N l]

Tpy1 = Avg + Bug, Vk € {=Thi —1,..., =1}, model for estimation
yr = Cxp, + Duy, Vk€ {—Tini -1,..., _1}, (many variations)
Uk Gu, Vke {Ow-wauture_l}a

hard operational or
yr €Y, Vke{0,..., Tiure — 1} safety constraints

For a deterministic LTI plant and an exact model of the plant,
MPC is the gold standard of control: safe, optimal, tracking, ...

15/30



Data-Enabled Predictive Control

DeePC uses Hankel matrix for receding-horizon prediction/ estimation:

TU urefl . B
T Hz: lys — 7 ”2 +llu ”2 quadratic cost with
gy e W Tk TR R>-0,Q > 08&ref. r
Pl non-parametric
subject to (“j) g = Yini , model for prediction
g @ and estimation
Y
ug €U, Vk€{0,..., Tuure — 1}, hard operational or
yr €Y, Vke{0,..., Tiyure — 1} safety constraints

collected offline

from past data (could be adapted online)

d
. u
%Tini ( yd )
d

A “
Thuture \ 4d

e Hankel matrix 57 (Zj) —

e past Tin > lag samples (uini, yini) for xin; estimation updated online
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Consistency for LTI Systems

Theorem: Consider a controllable LTI system and the DeePC &
MPC optimization problems with persistently exciting data of order
Tni+Tiuure +n. Then the feasible sets of DeePC & MPC coincide.

Corollary: If U/, Y are convex, then also the trajectories coincide.

Aerial robotics case study :
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Thus, MPC carries over to DeePC
...at least in the nominal case.

(see e.g. [Berberich, Kéhler, Milller, & Aligéwer '19] for stability proofs)

Beyond LTI, what about measurement noise,
corrupted past data, and nonlinearities ?

... playing on certainty-equivalence will fail !
— need a robustified approach



Noisy real-time measurements

Tiyture —1 Solution: add /,-slack
minimize > gk — rerllfy + luellF + Ayllowil teasibili
0.y = Q R y P oini to ensure feasibility
— receding-horizon
Uini 0 X
. . . least-square filter
3 u _ ni Ini
subject to A (y") g=1u| o — for A, > 1: constraint
Yy 0 is slack only if infeasible
R b —1 e .
ug €U, Vk €10, Thuture — 1}, c.f. sensitivity analysis
ye €Y, Yk €{0,... Tuure — 1} over randomized sims
Cost 0 Constraint Violations
1010 @
— 3
é 108 .gwo
o
'-'é 5
10° g

Ay Ay 18/30



Hankel matrix corrupted by noise

Tiuture —1 ) ) Solution: add a
mgi]ngnéze > gk —rerelly + luell® +Agllgls  ¢,-penalty on g
K ) k=0
Uini intuition: ¢, sparsely selects
bi (e Yini {Hankel matrix columns}
subject to (y") 9= (wu |’ = {past trajectories}
Y = {motion primitives}
ur €U, Yk € {0, Thuwre — 1}, c.f. sensitivity analysis
yr €Y, Vke{0,..., Tuure — 1} over randomized sims
S 210" Cost 0 Constraint Violations
s o
5 éws
Os ;
2 .% s
; _/ :,

0 200 400 600 800 200 400 600 800
Ay Ay 19/30
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Towards nonlinear systems ...

Idea: lift nonlinear system to large/oo-dimensional bi-/linear system
— Carleman, Volterra, Fliess, Koopman, Sturm-Liouville methods
— nonlinear dynamics can be approximated LTI on finite horizons

— exploit size rather than nonlinearity and find features in data
— regularization singles out relevant features / basis functions

case study . e
DeePC ‘ R
+ oini Slack N y ‘

A
E 07

+ ||g||1 regularizer
+ more columns

(3

1
0 10 20 30 40 50 60 05 0.2
s
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Experimental snippet
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Consistent observations across
case studies — more than a fluke
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let’s try to put some theory
behind all of this ...



Distributionally robust formulation

e problem abstraction: mingcx c (E, a:) mingex Eslc(€, 7))

where E denotes measured data (possibly not from deterministic LTI),
and P = dz denotes the empirical distribution of the data 3

= poor out-of-sample performance of above sample-average solution z*
for real problem: Ep|[c(&,2*)] where P is the unknown distribution of ¢

A
e distributionally robust formulation: P -
ianTeX SUPoep (B EQ [c (&, 2)] L §

~

where the ambiguity set B.(P) is an
c-Wasserstein ball centered at P :

B.(P) = {P : irﬁf/HgffAHWdH < e} . — Il
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note: Wasserstein ball does not
only include LTI systems with
additive Gaussian noise but
“everything” (integrable)



distributionally robust formulation: tp
infmex SUPoep (B EQ [c(& )] fl
N A A .
where the ambiguity set B.(P) is an
c-Wasserstein ball centered at P : N
B.(P) {p gt [l =] an < e} A .

Theorem: Under minor technical conditions:
infxex SUPoep (B) EQ [c(&,2)] = mingex c(f, :c) + eLip(c) - ||lz|l}v

Cor: /.-robustness in trajectory space T
< {;-regularization of DeePC N \

Proof uses methods by Esfahani & Kuhn: semi-infinite problem becomes tractable
after marginalization, for discrete worst case, & with many convex conjugates. 24/30



Further ingredients & improvements

averaging & measure concentration

® multiple i.i.d. experiments — sample
average Hankel matrix L 57 | /(1)

® measure concentration: Wasserstein

~

ball B.(P) includes true distribution P
with high confidence if € ~ 1/N1/dim(&)

==
I
SH

distributionally robust probabilistic constraints
SUDGep, (B) CVaR?_a < averaging + regularization + tightening

Var, __(X)
P(X)<1-a 4 e
— CVaR?__(X)
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change predictor structure from Hankel to Chinese page matrix

_(u‘f
d

Y
(ug

d

Y2

7 (5) = (4

(ui
d
Yr

) ()
) ()
) Gi)

d

) Wi en
d

Yr41

) .f'._

_(Uf) (
yy
s
“g> (
v

d P ’
UL Y2 ) ...
)
yr, Yar, -

“dL+1) .
y%+1
“%+2)
yﬁ+z

d
UL+3)
. d
Yr43

— more data but independent entries — statistical & algorithmic pros
e.g. distr. robust. estimates tight & SVD-rank-reduction etc.

133 o
S a

Tracking Error
N
&

Tracking Error vs. Number of Columns

—Page
— Hankel

50 200 250 300 350

400 450
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All together in action for nonlinear
& stochastic quadcoptor setup

Trajectory of Quadcopter
2

case study:

distr. robust objective
+ Page matrix predictor
+ averaging

+ CVaR constraints

+ oini slack

— DeePC works much
better than it should !

Meters

0 2 4 6 8

Seconds

— Pz

—p,
Dz

“ Pyref
Py ref
P, ref

- - Constraints

main catch: optimization problems become large (no-free-lunch)

— models are compressed, de-noised, & tidied-up representations
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recall the central promise:
it is easier to learn control
policies directly from data,

rather than learning a model



Comparison: DeePC vs. ID+ MPC

DeePC with ¢, -regularizer certainty-equivalence MPC
based on prediction error ID

MPC
5
single
fig-8
run
-2
2
3 -3
[ 10 20 30 40 50 60 0 10 20 30 40 50 60
. .
o Cost ; 2, Co‘nstrainl‘ Violali?ns ; ;
‘
2 2. System ID + MPC|
random |:
] 5
E . E
sims
5., g
E E
2 EN
5

15 6 8 10 12 1
Cost 107 Duration constraints violated




More to it than a single case study ?

consistent across all nonlinear
case studies: DeePC always wins

reason (?): DeePC is robust, whereas
certainty-equivalence control is based
on identified model with a bias error

stochastic LTI comparison (no bias)
show certainty-equivalence vs. robust
control trade-offs (mean vs. median)

link: DeePC includes implicit sys ID
though biased by control objective &
robustified through regularizations

— lot more to be understood ...

100
DeePC
& B PEM-MPC

60
40
20
0 - = H . m

5000 5500 6000 6500 7000 7500 8000

Number of simulations

measured closed-loop cost = ", [lup — 7p Hé + H“k“%?

DeePC

N4SID
+MPC

Open-loop tracking error (% increase wrt optimal)
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Summary & conclusions

main take-aways
® matrix time series serves as predictive model
¢ data-enabled predictive control (DeePC)

v’ consistent for deterministic LTI systems
v~ distributional robustness via regularizations

future work

— tighter certificates for nonlinear systems
— explicit policies & direct adaptive control
— seek application with a “business case”

1
05 02
m

R 0

Why have these Willems '07: “[MPC] has perhaps too little system
powerful ideas theory and too much brute force computation in it.”
not been mixed The other side often proclaims “behavioral systems

long before ? theory is beautiful but did not prove utterly useful”
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Thanks!

Florian Dérfler
mail: dorfler@ethz.ch
[1ink] to homepage

[1ink] to related publications
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appendix

end-to-end automation
case study in power systems



Power system case study

17 1l§ 1‘3
Phase-Locked Loop i “,_{M o ser
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fray =
Voltage Control Loop Current Control Loop

Control Diagram of VSC-HVDC Station 2

Phase-Locked Loop

Power Control Loop e
: FE Y
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o i i i
Voltage Control Loop Currept Contro| Loop
Control Diagram of VSC-HVDC Station 1

® complex 4-area power system: large (n = 208), few measurements (8),
nonlinear, noisy, stiff, input constraints, & decentralized control

]

iy
Vo
i,

® control objective: damping of inter-area oscillations via HVDC link
¢ real-time MPC & DeePC prohibitive — choose T, Tini, & Tiuture Wisely



Centralized control

08} - DeePC
rel (p.u.}Ole- - PEM‘MPC
0.4

= Prediction Error
Method (PEM)
System ID + MPC

0.2}

0.6

0.4

Pa (pn) 0:2_ t < 10s: open loop

data collection with

0.0} white noise excitat.

t > 10s: control

0.6

0.4}
Iy (pu) o,

0.0

0 5 10 15 20 25 30
time (s)



Performance: DeePC wins (clearly!)

w 100 — ; : : : : :
5 DeePC

& 90 I PEM-MPC |
>

E 60 1
(%]

S 40 .
o

€ 20 .
2 [
= m = W . =

0
5000 5500 6000 6500 7000 7500 8000
Measured closed-loop cost = 3, [lyx — rill5 + llusll %



DeePC hyper-parameter tuning

14°
14000
12000
g g
o o 10000
8 8
B o a0t
3 3
(@) (@]
G000
A000
107
10572 10" 102 10" 405 o] 20 40 GO ad 100 120
Ay T
regularizer )\, estimation horizon Ti;
o for distributional robustness e for model complexity ~ n
~ radius of Wasserstein ball . ..
® T, > 50 is sufficient & low
* wide range of sweet spots computational complexity

— choose \; = 20 — choose T = 60



5 x14°

a5 (]

r

-

Closed-loop cost
i

120 122 2%
A
pil=s
n a0 100 1680 200
Ttuture

prediction horizon Tiyre
* long enough for stability

— choose Tityre = 120 and
apply first 60 input steps

Closed-loop cost

HO00

FO0G

G000

SO0

4000

3000

2000

100C 1800 2000 26E00 3000 3BOG
o

data length T

long enough for persistent
excitation but accordingly
card(g) = T — Tini — Truture + 1

— choose T' = 1500
(Hankel matrix ~ square)



Computational cost

0.8 +

0.6 1
i {pa) 04
0_2}
0 5 10 15 éO 25 30
0.6]>
0.4
1y ipa 02l al
0.0
0 é 1b 1‘5 50 2‘5 30
061 [
0.4} 1
Py {pan) 0.2
0.0k 1
L

0 5 10 15 20 25 30
time (s)

=

T = 1500
Ag =20
Tini = 60

Ttuture = 120 and apply first
60 input steps

sampling time = 0.02s

solver (OSQP) time = 1s
(on Intel Core i5 7200U)

implementable



Comparison: Hankel & Page matrix

Hankel matrix

Hankel matrix with
SVD (Tthreshhold = 1)

W Page matrix

Averaged Closed-loop Cost

Page matrix with
SVD (othreshhold = 1)

10 20 30 40
Control Horizon k Control Horizon k

e comparison baseline: Hankel and Page matrices of same size
® perfomance : Page consistency beats Hankel matrix predictors

offline denoising via SVD threshholding works wonderfully for
Page though obviously not for Hankel (entries are constrained)

o effects very pronounced for longer horizon (= open-loop time)
® price-to-be-paid: Page matrix predictor requires more data



Decentralized implementation

Phase-Locked Loop

e e =) . o t
(-] T
{-] -
o : -
o T ) “uncontrolled flow (p.u.)
) Voltage Control Loop Current Control

Control Diagram of VSC-HVDC Station 2

i
Pom

Phase-Locked Loop .J. '
. - e 5w
(P N U e Sy L , time ()
Power Control Loop na—[or] i
: e et "
. . e i 3 - -
v v ¥ w s - [ s
. k- | — § +HQ 563
Voltage Control Loop Curret Contro] Loop " = — ; +0 sc4
2 i s
Control Diagram of VSC-HVDC Statfon 1 J; I" g2

® plug’n’play MPC: treat interconnection P5 as disturbance variable w
with past disturbance win measurable & future wyyre € W uncertain

¢ for each controller augment Hankel matrix with data W, and Wy

¢ decentralized robust min-max DeePC: min, , , max,cyw



Decentralized control performance
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® ambiguity set W
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0.4} e solver time ~ 2.6s
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0.0

0 5 10 15 20 25 30
time (s)



	Introduction
	Insights from Behavioral System Theory
	Data-Enabled Predictive Control
	Heuristics to Go Beyond Deterministic LTI Systems
	Conclusions
	End-to-end Automation in Energy Systems

