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Electric Energy & Power Networks

Electric energy is critical for
our technological civilization

Purpose of electric power grid:
generate/transmit/distribute

Op challenges: multiple scales,
nonlinear, & complex
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Trends, Advances, & Tomorrow’s Power Grid

1 increasing renewables & deregulation

2 growing demand & operation at capacity

⇒ increasing volatility & complexity,
decreasing robustness margins

Rapid technological and scientific advances:

1 re-instrumentation: PMUs & FACTS

2 complex & cyber-physical systems

⇒ cyber-coordination layer for smart grid
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The Envisioned Power Grid
complex, cyber-physical, & “smart”

⇒ smart grid keywords

⇒ interdisciplinary:

power, control, comm,
optim, comp, physics,

. . . industry, & society

⇒ research themes:

“understanding &
taming complexity”
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Project Samples I

1 Cyber-physical security (with F. Pasqualetti & F. Bullo)

2 Coarse-graining of networks (with D. Romeres, I. Dobson, & F. Bullo)
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Fig. 9. The New England test system [10], [11]. The system includes
10 synchronous generators and 39 buses. Most of the buses have constant
active and reactive power loads. Coupled swing dynamics of 10 generators
are studied in the case that a line-to-ground fault occurs at point F near bus
16.

test system can be represented by

δ̇i = ωi,
Hi

πfs
ω̇i = −Diωi + Pmi − GiiE

2
i −

10∑

j=1,j !=i

EiEj ·

· {Gij cos(δi − δj) + Bij sin(δi − δj)},





(11)

where i = 2, . . . , 10. δi is the rotor angle of generator i with
respect to bus 1, and ωi the rotor speed deviation of generator
i relative to system angular frequency (2πfs = 2π × 60Hz).
δ1 is constant for the above assumption. The parameters
fs, Hi, Pmi, Di, Ei, Gii, Gij , and Bij are in per unit
system except for Hi and Di in second, and for fs in Helz.
The mechanical input power Pmi to generator i and the
magnitude Ei of internal voltage in generator i are assumed
to be constant for transient stability studies [1], [2]. Hi is
the inertia constant of generator i, Di its damping coefficient,
and they are constant. Gii is the internal conductance, and
Gij + jBij the transfer impedance between generators i
and j; They are the parameters which change with network
topology changes. Note that electrical loads in the test system
are modeled as passive impedance [11].

B. Numerical Experiment

Coupled swing dynamics of 10 generators in the
test system are simulated. Ei and the initial condition
(δi(0), ωi(0) = 0) for generator i are fixed through power
flow calculation. Hi is fixed at the original values in [11].
Pmi and constant power loads are assumed to be 50% at their
ratings [22]. The damping Di is 0.005 s for all generators.
Gii, Gij , and Bij are also based on the original line data
in [11] and the power flow calculation. It is assumed that
the test system is in a steady operating condition at t = 0 s,
that a line-to-ground fault occurs at point F near bus 16 at
t = 1 s−20/(60Hz), and that line 16–17 trips at t = 1 s. The
fault duration is 20 cycles of a 60-Hz sine wave. The fault
is simulated by adding a small impedance (10−7j) between
bus 16 and ground. Fig. 10 shows coupled swings of rotor
angle δi in the test system. The figure indicates that all rotor
angles start to grow coherently at about 8 s. The coherent
growing is global instability.

C. Remarks

It was confirmed that the system (11) in the New Eng-
land test system shows global instability. A few comments

0 2 4 6 8 10
-5

0

5

10

15

δ
i /

 r
a

d

 

 
10

02

03

04

05

0 2 4 6 8 10
-5

0

5

10

15

δ
i /

 r
a

d

TIME / s

 

 
06

07

08

09

Fig. 10. Coupled swing of phase angle δi in New England test system.
The fault duration is 20 cycles of a 60-Hz sine wave. The result is obtained
by numerical integration of eqs. (11).

are provided to discuss whether the instability in Fig. 10
occurs in the corresponding real power system. First, the
classical model with constant voltage behind impedance is
used for first swing criterion of transient stability [1]. This is
because second and multi swings may be affected by voltage
fluctuations, damping effects, controllers such as AVR, PSS,
and governor. Second, the fault durations, which we fixed at
20 cycles, are normally less than 10 cycles. Last, the load
condition used above is different from the original one in
[11]. We cannot hence argue that global instability occurs in
the real system. Analysis, however, does show a possibility
of global instability in real power systems.

IV. TOWARDS A CONTROL FOR GLOBAL SWING

INSTABILITY

Global instability is related to the undesirable phenomenon
that should be avoided by control. We introduce a key
mechanism for the control problem and discuss control
strategies for preventing or avoiding the instability.

A. Internal Resonance as Another Mechanism

Inspired by [12], we here describe the global instability
with dynamical systems theory close to internal resonance
[23], [24]. Consider collective dynamics in the system (5).
For the system (5) with small parameters pm and b, the set
{(δ, ω) ∈ S1 × R | ω = 0} of states in the phase plane is
called resonant surface [23], and its neighborhood resonant
band. The phase plane is decomposed into the two parts:
resonant band and high-energy zone outside of it. Here the
initial conditions of local and mode disturbances in Sec. II
indeed exist inside the resonant band. The collective motion
before the onset of coherent growing is trapped near the
resonant band. On the other hand, after the coherent growing,
it escapes from the resonant band as shown in Figs. 3(b),
4(b), 5, and 8(b) and (c). The trapped motion is almost
integrable and is regarded as a captured state in resonance
[23]. At a moment, the integrable motion may be interrupted
by small kicks that happen during the resonant band. That is,
the so-called release from resonance [23] happens, and the
collective motion crosses the homoclinic orbit in Figs. 3(b),
4(b), 5, and 8(b) and (c), and hence it goes away from
the resonant band. It is therefore said that global instability
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Project Samples II

3 Distributed wide-area control (with M. Jovanovic, M. Chertkov, & F. Bullo)

H298.4% of centralized       control performance
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4 Inverters in microgrids (with J. Simpson-Porco, J.M. Guerrero, & F. Bullo)
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Power Grids as Prototypical Complex Networks

⇒ Similar challenges & tools in

biochemical reaction networks

social networks & epidemics

transportation networks

robotic coordination & sensor ntkws
...

⇒ Plenty of synergies

and cross-fertilization
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Mathematical Model of Power Transmission Network

Pm,i |Vi| ei✓i Yij

|Vj | ei✓jYij|Vi| ei✓i
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|Vi| ei✓i

YijYik

DiPl,i

active power flow on line i  j : |Vi ||Vj ||Yij |︸ ︷︷ ︸
aij=max power transfer

· sin
(
θi − θj

)

power balance at node i : Pi︸︷︷︸
power injection

=
∑

j
aij sin(θi − θj)

(DAE) power network dynamics [A. Bergen & D. Hill ’81]:

�� : swing eq with Pi > 0 Mi θ̈i + Di θ̇i = Pi −
∑

j
aij sin(θi − θj)

•◦ : Pi < 0 and Di ≥ 0 Di θ̇i = Pi −
∑

j
aij sin(θi − θj)
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Models of DC Sources with Inverters & Load Models

DC source with droop-controlled DC/AC
power converter [M.C. Chandorkar et. al. ’93]:

D
(droop)
i θ̇i = P

(setpoint)
i −

∑
j
aij sin(θi−θj)

constant current and admittance loads in
Kron-reduced network [F. Dörfler et al. ’13]:

Mi θ̈i+Di θ̇i = P
(red)
i −

∑
j
a

(red)
ij sin(θi−θj)

constant motor loads [P. Kundur ’94]:

Mi θ̈i +Di θ̇i = P
(load)
i −

∑
j
aij sin(θi −θj)

|Vi| eiθi

YijYik

IiYi,shunt

P
(load)
i

|Vi| eiθi Yij
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Synchronization in Power Networks

Sync is crucial for the functionality and operation of the AC power grid.

Generators have to swing in sync despite fluctuations/faults/contingencies.

Def: θ̇i = θ̇j & |θi − θj | bounded ∀ branches {i , j}

= sync’d frequencies & constrained active power flows

Given: network parameters & topology and load & generation profile

Q: “ ∃ an optimal, stable, and robust synchronous operating point ? ”

1 Security analysis [Araposthatis et al. ’81, Wu et al. ’80 & ’82, Ilić ’92, . . . ]

2 Load flow feasibility [Chiang et al. ’90, Dobson ’92, Lesieutre et al. ’99, . . . ]

3 Optimal generation dispatch [Lavaei et al. ’12, Bose et al. ’12, . . . ]

4 Transient stability [Sastry et al. ’80, Bergen et al. ’81, Hill et al. ’86, . . . ]

5 Inverters in microgrids [Chandorkar et. al. ’93, Guerrero et al. ’09, Zhong ’11,. . . ]
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Synchronization in Complex Oscillator Networks

Pendulum clocks & “an odd kind of sympathy ”

[C. Huygens, Horologium Oscillatorium, 1673]

Today’s canonical coupled oscillator model

[A. Winfree ’67, Y. Kuramoto ’75]

Coupled oscillator model:

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj)

n oscillators with phase θi ∈ S1

non-identical natural frequencies ωi ∈ R1

elastic coupling with strength aij = aji

undirected & connected graph G (V, E ,A)
!1

!3!2

a12

a13

a23
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Synchronization in Complex Oscillator Networks
applications

Coupled oscillator model:

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj)

A few related applications:

Sync in Josephson junctions
[S. Watanabe et. al ’97, K. Wiesenfeld et al. ’98]

Sync in a population of fireflies
[G.B. Ermentrout ’90, Y. Zhou et al. ’06]

Canonical model of coupled limit cycle oscillators
[F.C. Hoppensteadt et al. ’97, E. Brown et al. ’04]

Countless sync phenomena in sciences/bio/tech.
[S. Strogatz ’00, J. Acebrón ’05 et al., F. Dörfler et al. ’13]

12 / 30

Synchronization in Complex Oscillator Networks
phenomenology and challenges

Synchronization is a trade-off:

coupling vs. heterogeneity
θ̇i = ωi −

∑n

j=1
aij sin(θi − θj)

✓i(t)

coupling small & |ωi − ωj | large

⇒ incoherence

✓i(t)

coupling large & |ωi − ωj | small

⇒ frequency sync

A central question: quantify “coupling” vs. “heterogeneity”

[S. Strogatz ’01, A. Arenas et al. ’08, S. Boccaletti et al. ’06]
13 / 30
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Relating power networks and coupled oscillator models

(1) Power network model:

Mi θ̈i + Di θ̇i = Pi −
∑

j
aij sin(θi − θj)

Di θ̇i = Pi −
∑

j
aij sin(θi − θj)

(2.1) Variation of coupled oscillator model:

θ̇i = Pi −
∑

j
aij sin(θi − θj)

(2.2) Add decoupled frequency dynamics:

θ̈i = −θ̇i

Homotopy: construct continuous interpolation between (1) and (2)
14 / 30

Relating power networks and coupled oscillator models
main result

Family of dynamical system Hλ:

d

d t

[
θ

θ̇

]
= (1− λ) · (1) + λ · (2) , λ ∈ [0, 1]

Theorem: Properties of the Hλ family [F. Dörfler & F. Bullo ’11]

1 Invariance of equilibria: For all λ ∈ [0, 1] the equilibria are
{(
θ, θ̇
)

: θ̇i = 0 , Pi =
∑

j aij sin(θi − θj)
}
.

2 Invariance of local stability: For all equilibria and λ ∈ [0, 1], the

Jacobian has constant number of stable/unstable/zero eigenvalues.
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Relating power networks and coupled oscillator models
topological equivalence interpretation

⇒ near the equilibrium manifolds (1) synchronizes ⇔ (2) synchronizes

22 F. Dörfler and F. Bullo
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Fig. 5.1. Phase space plot of a network of n = 4 second-order Kuramoto oscillators (1.3) with
n = m (left plot) and the corresponding first-order scaled Kuramoto oscillators (5.8) together with
the scaled frequency dynamics (5.9) (right plot). The natural frequencies ωi, damping terms Di,
and coupling strength K are such that ωsync = 0 and K/Kcritical = 1.1. From the same initial
configuration θ(0) (denoted by �) both first and second-order oscillators converge exponentially to
the same nearby phase-locked equilibria (denoted by •) as predicted by Theorems 5.1 and 5.3.

(Φγ,0(t),0m×1). Hence, the phase-synchronized orbit (Φγ,0(t),0m×1), understood as
a geometric object in Tn ×Rm, constitutes a one-dimensional equilibrium manifold of
the multi-rate Kuramoto model (5.11). After factoring out the translational invari-
ance of the angular variable θ, the exponentially-synchronized orbit (Φγ,0(t),0m×1)
corresponds to an isolated equilibrium of (5.11) in the quotient space Tn \ S1 × Rm.
Since an isolated equilibrium of a smooth nonlinear system with bounded and Lips-
chitz Jacobian is exponentially stable if and only if the Jacobian is a Hurwitz matrix
[30, Theorem 4.15], the locally exponentially stable orbit (Φγ,0(t),0m×1) must be
hyperbolic in the quotient space Tn \ S1 × Rm. Therefore, the equilibrium trajec-
tory (Φγ,0(t),0m×1) is exponentially stable in Tn × Rm if and only if the Jacobian of
(5.11) evaluated along (Φγ,0(t),0m×1), has n + m− 1 stable eigenvalues and one zero
eigenvalue corresponding to the translational invariance in S1.

By an analogous reasoning we reach the same conclusion for the first-order multi-
rate Kuramoto model (5.6) (formulated in a rotating frame with frequency ωsync)
and for the scaled Kuramoto model (5.8): the exponentially-synchronized trajectory
Φγ,0(t) ∈ Tn is exponentially stable if and only if the Jacobian of (5.8) evaluated
along Φγ,0(t) has n − 1 stable eigenvalues and one zero eigenvalue. Finally, recall
that the multi-rate Kuramoto model (5.11), its first-order variant (5.6) together with
frequency dynamics (5.7) (in a rotating frame), and the scaled Kuramoto model (5.8)
together with scaled frequency dynamics (5.9) are all instances of the parameterized
system (5.1). Therefore, by Theorem 5.1, the corresponding Jacobians have the same
inertia and local exponential stability of one system implies local exponential stability
of the other system. This concludes the proof of the equivalences (i) ⇔ (ii) ⇔ (iii).

We now prove the final conjugacy statement. By the generalized Hartman-
Grobman theorem [17, Theorem 6], the trajectories of the three vector fields (5.11),
(5.6)-(5.7) (formulated in a rotating frame), and (5.8)-(5.9) are locally topologically
conjugate to the flow generated by their respective linearized vector fields (locally
near (Φγ,0(t),0m×1). Since the three vector fields (5.11), (5.6)-(5.7), and (5.8)-(5.9)
are hyperbolic with respect to (Φγ,0(t),0m×1) and their respective Jacobians have the

⇒ main message: “w.l.o.g.” focus on coupled oscillator model
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Synchronization in a Complete & Homogeneous Graph

Classic Kuramoto model:

[Y. Kuramoto ’75] θ̇i = ωi −
K

n

∑n

j=1
sin(θi − θj)

Theorem: Explicit sync condition [F. Dörfler & F. Bullo ’11]

The following statements are equivalent:

1 Coupling dominates heterogeneity, i.e., K > Kcritical , ωmax − ωmin .

2 Kuramoto models with {ω1, . . . , ωn} ⊆ [ωmin, ωmax] synchronize.

Strictly improves existing cond’s [F. de Smet et al. ’07, N. Chopra et al. ’09, G.

Schmidt et al. ’09, A. Jadbabaie et al. ’04, S.J. Chung et al. ’10, J.L. van Hemmen et

al. ’93, A. Franci et al. ’10, S.Y. Ha et al. ’10, G.B. Ermentrout ’85, A. Acebron et al. ’00]

17 / 30

Synchronization in a Complete & Homogeneous Graph
main proof ideas

1 Arc invariance: θ(t) in γ arc ⇔ arc-length V (θ(t)) is non-increasing

V (✓(t))

⇔
{

V (θ(t)) = maxi ,j∈{1,...,n} |θi (t)− θj(t)|
D+V (θ(t)) ≤ 0

true if K sin(γ) ≥ Kcritical

⇒ Binary synchronization condition: K > Kcritical

⇒ Bounds on transient dynamics: Kcritical/K = sin(γmin) = sin(γmax)

region of attraction includes angles θ(t = 0) in γmax arc, &

asymptotic cohesiveness of angles θ(t →∞) in γmin arc
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Synchronization in a Complete & Homogeneous Graph
main proof ideas

1 Arc invariance: θ(t) in γ arc ⇔ arc-length V (θ(t)) is non-increasing

V (✓(t))

⇔
{

V (θ(t)) = maxi ,j∈{1,...,n} |θi (t)− θj(t)|
D+V (θ(t)) ≤ 0

true if K sin(γ) ≥ Kcritical

2 Frequency synchronization ⇔ linear time-varying system (consensus)

d

dt
θ̇i = −

∑n

j=1
aij(t)

(
θ̇i − θ̇j

)
,

where aij(t) = K
n cos(θi (t)− θj(t)) becomes positive in finite time

18 / 30
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Primer on Algebraic Graph Theory

Laplacian matrix L = “degree matrix” − “adjacency matrix”

L = LT =




...
. . .

... . .
. ...

−ai1 · · · ∑n
j=1 aij · · · −ain

... . .
. ...

. . .
...


 ≥ 0

Notions of connectivity

spectral: 2nd smallest eigenvalue of L is “algebraic connectivity”λ2(L)

topological: degree
∑n

j=1 aij or degree distribution

Notions of heterogeneity

‖ω‖E,∞ = max{i ,j}∈E |ωi − ωj |, ‖ω‖E,2 =
(∑

{i ,j}∈E |ωi − ωj |2
)1/2
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Synchronization in Sparse Graphs
a brief overview

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj)

1 necessary sync condition:
∑n

j=1 aij ≥ |ωi | ⇐ sync

[C. Tavora and O.J.M. Smith ’72]

2 sufficient sync condition: λ2(L) > ‖ω‖E,2 ⇒ sync

[F. Dörfler and F. Bullo ’12]

⇒ ∃ similar conditions with diff. metrics on coupling & heterogeneity

⇒ Problem: sharpest general conditions are conservative

20 / 30

A Nearly Exact Synchronization Condition
main result

Theorem: Sharp sync condition [F. Dörfler, M. Chertkov, & F. Bullo ’12]

Under one of following assumptions:

1) extremal topologies: trees, homogeneous graphs, or {3, 4} rings

2) extremal parameters: L†ω is bipolar, small, or symmetric (for rings)

3) arbitrary one-connected combinations of 1) and 2)

If
∥∥L†ω

∥∥
E,∞ < 1

⇒ ∃ a unique & locally exponentially stable synchronous solution

θ∗ ∈ Tn satisfying |θ∗i − θ∗j | ≤ arcsin
(∥∥L†ω

∥∥
E,∞
)

for all {i , j} ∈ E

. . . and result is “statistically correct” .
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A Nearly Exact Synchronization Condition
statistical accuracy for power networks

Randomized power network test cases

with 50 % randomized loads and 33 % randomized generation

Randomized test case Numerical worst-case Analytic prediction of Accuracy of condition:

(1000 instances) angle differences: angle differences: arcsin(‖L†ω‖E,∞)

max
{i,j}∈E

|θ∗i − θ
∗
j | arcsin(‖L†ω‖E,∞) − max

{i,j}∈E
|θ∗i − θ

∗
j |

9 bus system 0.12889 rad 0.12893 rad 4.1218 · 10−5 rad

IEEE 14 bus system 0.16622 rad 0.16650 rad 2.7995 · 10−4 rad

IEEE RTS 24 0.22309 rad 0.22480 rad 1.7089 · 10−3 rad

IEEE 30 bus system 0.16430 rad 0.16456 rad 2.6140 · 10−4 rad

New England 39 0.16821 rad 0.16828 rad 6.6355 · 10−5 rad

IEEE 57 bus system 0.20295 rad 0.22358 rad 2.0630 · 10−2 rad

IEEE RTS 96 0.24593 rad 0.24854 rad 2.6076 · 10−3 rad

IEEE 118 bus system 0.23524 rad 0.23584 rad 5.9959 · 10−4 rad

IEEE 300 bus system 0.43204 rad 0.43257 rad 5.2618 · 10−4 rad

Polish 2383 bus system 0.25144 rad 0.25566 rad 4.2183 · 10−3 rad

(winter peak 1999/2000)

⇒ similar results have been reproduced by

22 / 30



A Nearly Exact Synchronization Condition
comments

Monte Carlo studies: for range of random topologies & parameters

⇒ with high prob & accuracy: sync “for almost all” G (V, E ,A) & ω

Possibly thin sets of degenerate counter-examples for large rings

Intuition: the condition
∥∥L†ω

∥∥
E,∞ < 1 is equivalent to

∥∥∥∥∥∥∥∥∥
[
eigenvectors of L

]


0 0 . . . . . . 0
0 1

λ2(L)
0 . . . 0

...
. . .

. . .
. . . 0

0 . . . . . . 0 1
λn(L)

 [eigenvectors of L
]T
ω

∥∥∥∥∥∥∥∥∥
E,∞

< 1

⇒ includes previous conditions on λ2(L) and degree (≈ λn(L))
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Power Flow Approximation

1 AC power flow: Pi =
∑n

j=1 aij sin(θi − θj)

2 DC power flow: Pi =
∑n

j=1 aij (δi − δj)

⇒ Conventional DC approximation: θ∗i − θ∗j ≈ δ∗i − δ∗j

⇒ Our modified DC approximation: θ∗i − θ∗j ≈ arcsin(δ∗i − δ∗j )

0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 10−3

0

10

20

30

40

50

60

70

80

90

 

 

DC approximation eD C

modified DC approximation eD C

Student Version of MATLAB

x 10�3

Error histograms for 1000 samples
of randomized IEEE 118 system

⇒ apps: convexify OPF, planning,
contingency screening, etc.
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Power Flow Approximation
Security-Constrained Power Flow

AC power flow with security constraints

Pi =
∑n

j=1
aij sin(θi − θj) , |θi − θj | < γij ∀ {i , j} ∈ E

DC power flow with security constraints

Pi =
∑n

j=1
aij(δi − δj) , |δi − δj | < γij ∀ {i , j} ∈ E

Novel test

Pi =
∑n

j=1
aij(δi − δj) , |δi − δj | < sin(γij) ∀ {i , j} ∈ E

Proof of equivalence for a tree: θ∗i − θ∗j = arcsin(δ∗i − δ∗j ) �
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Contingency Analysis
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IEEE Reliability Test System ’96 at nominal operating point
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Contingency Analysis
two contingencies

220

309

310

120
103

209

102102

118

307

302

216

202

{223, 318}

{121, 325}

#1: increase generation & increase loads

#2: generator 323 is tripped
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Contingency Analysis
predicting transition to instability

✓̇(
t)

[r
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d

s�
1
]

✓(t) [rad]

✓̇(
t)

[r
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d

s�
1
]

✓(t) [rad]

t  t⇤ t > t⇤ 00

t [s]

|✓ i
(t

)
�

✓ j
(t

)|
[r

ad
]

�⇤ �⇤⇤

t⇤

0

0

Continuously increase loads:

⇒ condition arcsin(
∥∥L†ω

∥∥
E,∞) < γ∗ predicts that thermal limit γ∗ of

line {121, 325} is violated at 22.23 % of additional loading

⇒ line {121, 325} is tripped at 22.24% of additional loading
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Distributed Averaging PI Droop Control in Microgrids
design based on coupled oscillator insights

Microgrid modeled as

network of loads and inverters

Distributed & Averaging

PI droop-controller (DAPI)

0

Decentralized primary control

⇒ sync: θ̇i (t)→ ωsync

Distributed secondary control

⇒ frequency regulation: ωsync → 0
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Distributed Averaging PI Droop Control in Microgrids
theoretic guarantees

Theorem (Properties DAPI control)

[J. Simpson-Porco, F. Dörfler, & F. Bullo, ’12]

1 unique & exponentially stable
closed-loop sync manifold;

2 frequency regulation
& optimal power sharing;

3 robustness to voltage variations,
losses, & uncertainties;

4 plug’n’play & arbitrary tuning.

Distributed & Averaging

PI droop-controller (DAPI)
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Distributed Averaging PI Droop Control in Microgrids
Practical implementation at Aalborg University, Denmark

Implementation (together with Q. Shafiee & J.M. Guerrero)

Lo
a
d

PC-Simulink

RTW& dSPACE

Control Desk

Inverter 1

DC

Power

Supply

650V

Inverter 2

DC

Power

Supply

650V

io1v1

io2v2

iL1

iL2

LCLFilter

LCLFilter

Experimental results are remarkable: off-the-shelf, robust, small transients
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Summary

Lessons learned today:

power networks are coupled oscillators

sync if “coupling > heterogeneity”

necessary, sufficient, & sharp sync cond’s

theory is useful, robust & applicable

Further results & applications (not shown)

Related ongoing and future work:

more complete theory & more detailed models

from analysis to control synthesis:

cont. control design, hybrid remedial action
schemes, computation & optimization
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