Data-Enabled Predictive Control

Florian Dorfler
ETH Zirich Oberwolfach Workshop

Analysis of Data-Driven Optimal Control




Acknowledgements

Jeremy Coulson

-
‘John Lygeros

Ivan Markovsky

Paul Beuchat

Further:

Ezzat Elokda,

Daniele Alpago,
Jianzhe (Trevor) Zhen,
Saverio Bolognani,
Andrea Favato,

Paolo Carlet, &

IfA DeePC team

1/29



Control in a data-rich world

* model-based decision-making

sys id .
data 225 model + uncertainty — control

¢ ever-growing trend in CS & applications:
data-driven control by-passing models

Q: Why give up physical modeling &
reliable model-based algorithms ?

Data-driven control is viable alternative when

* models are too complex to be useful
(e.g., fluids, wind farms, & soft robotics)

e first-principle models are not conceivable
(e.g., human-in-the-loop, biology, & perception)

® modeling & system ID is too cumbersome
(e.g., robotics, drives, & electronics applications)

data-driven
control

Central promise: It
is often easier to learn
control policies directly
from data, rather than
learning a model.

Example: PID [Astrém, 73]
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Abstraction reveals pros & cons

indirect (model-based) data-driven control

minimize  control cost (u, z) } outer separation &
| i & optimization certainty

subjectto (u,z) satisfy state-space model p atiumlonce

where x estimated from (u,y) & model } middle opt. (— LQG case)

no separation

where model identified from (u?, y?) data } inner opt. }
(— ID-4-control)

— nested multi-level optimization problem

direct (black-box) data-driven control — trade-offs
minimize control cost modular vs. end-2-end
nimiz (w.9) suboptimal (?) vs. optimal

subject to (u,y) consistent with (u?,y?) data ' convex vs. non-convex (?)

Additionally: all above should be min-max or E(-) accounting for uncertainty ...
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A direct approach: dictionary + MPC

@ trajectory dictionary learning @ MPC optimizing over dictionary span

® motion primitives / basis functions
e theory: Koopman & Liouville — huge theory vs. practice gap
practice: (E)DMD & particles — back to basics: impulse response
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dynamic matrix control Utare ()

Ufuture(t - 1)

(Shell, 1970s): predictive Yuwe() = [0 v2 U5 ] | e (t — 2)
control from raw data :

today : arbitrary & finite data, .. .stochastic & nonlinear, ...back to ID
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Preview

complex 4-area power system:
large (n=208), few sensors (8),

nonlinear, noisy, stiff, input
constraints, & decentralized
control specifications

control objective: oscillation

damping

(grid has many owners, models are

proprietary, operation in flux, ...)

ontrol Signals

control

‘{ control

ke-collect data->}<«—— control ————}
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VSC-HVDC Tt
Station 1 . 0

e Zj seek a method that works
z ! reliably, can be efficiently
O o2 1 n g

= oo implemented, & certifiable
c .

P s n T 0 > 20 — automating ourselves
= 5/29



Reality check: magic or hoax ?

surely, nobody would put apply such a shaky data-driven method
® on the world’s most complex engineered system (the electric grid),
® using the world’s biggest actuators (Gigawatt-sized HVDC links),

® and subject to real-time, safety, & stability constraints . ..right?

Dear Linbin and Florian,

| just submitted a very favourable review of your paper [..] which | believe could be of
importance to our work at Hitachi Power Grids. We do have [...] require off-line tuning that [...]
col Pgrid .. few days after AN adaptive approach would be very interesting.
02 sending our code
If - DeePC approach with our more detailed HVDC
sy oblem. Could so some code be made available
[... 0 her to do such a demonstration ? [...]
-
0.2
It works! ... even HITACHI ARl
04 on an entirely i
’ different model & - |53
0 10 20 software platform
=

at least someone believes that DeePC is practically useful ... o



Behavioral view on LTI systems

Definition: A discrete-time dynamical
system is a 3-tuple (Z>(, W, #) where

(i) Z>o is the discrete-time axis,
(i) W is a signal space, and % is the set of
all trajectories

(iiiy B C W#=0 is the behavior.

Definition: The dynamical system (Z>, W, &) is
(i) linear if W is a vector space & 4 is a subspace of WZ=o

(i) and time-invariant it 8 C 0%, where cw; = wi1.

LTI system = shift-invariant subspace of trajectory space
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LTI systems and matrix time series

foundation of state-space subspace system ID & signal recovery algorithms

\\‘,
(%)

Ug

(u(t),y(t)) satisfy recursive

difference equation
bour+b1usi1+. . . +bptpin+

apyi+aryiy1+. . +apyiin =0

(ARX/kernel representation)

=

under assumptions

[O bo ag by ai ...

of trajectory matrix (collected data)
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where yﬁi is tth sample from ith experimegg
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Fundamental Lemma [Willems et al. '05], [Markovsky & Dérfler '20]

U1 ug Wy
A AN I
\\" us*e

u(t)
Uy o
A

T

Uy Us o2 %
: . ud m-+ . lag ¢
Given: data ( ' ) € R™*? & LTI complexity parameters
Y; order n
set of all T-length trajectories = (u??) (u?’j) (v?’ :)

{(u,y) e RMHP)T . 37 c R™ g 4. — colspan (‘/i‘/:‘> (v”;:) (‘/'} ;)

d d
Y71 Y12

2t = Az + Bu, y = Cx + Du } (1%1) (’;"z) (“35"3)

parametric state-space model non-parametric model from raw data

if and only if the trajectory matrix has rank m - T +n forall T > ¢
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set of all T-length trajectories = (u)’;;) (u’;’?) (JI’]l‘s)

U1 uh) (1!%)
{(u7 y) eRPT . Jp e R s, =———  colspan (!/31> ('/iv'z vis)
2t =Ax+ Bu,y=Cx+ Du } <u‘f‘_|> (u1;,2> (uf:v3>
" Y2 vis)
parametric state-space model non-parametric model from raw data

all trajectories constructible from finitely many previous trajectories

® can also use other matrix data structures: (mosaic) Hankel, Page, ...

® novelty (?): motion primitives, (E)DMD, dictionary learning, subspace
system id, ... all implicitly rely on this equivalence — c.f. “fundamental”

e standing on the shoulders of giants: _ —
A note on persistency of excitation
CIaSSiC Wi”ems, result was Only “if” & Jan C. Willems*, Paolo Rapisarda®, Ivan Markovsky® *, Bart L.M. De Moor*
required further assumptions: Hankel, o e s i
persistency of excitation, controllability

Rec
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Control from matrix time series data

A note on persistency of excitation
Jan C. Willems?, Paolo Rapisardab, Ivan Markovsky**, Bart L.M. De Moor®

AESAT, SCD/SISTA, K.U. Leuven, Kasteelpark Arenberg 10, B 3001 Leuven, Heverlee, Belgium
bDep(u'tmmt of Mathematics, University of Maastricht, 6200 MD Maastricht, The Netherlands

Received 3 June 2004; accepted 7 September 2004
Available online 30 November 2004

We are all writing merely the dramatic corollaries . ..

implicit & stochastic explicit & deterministic

— Markovsky & ourselves — Groningen: Persis, Camlibel, ...
— lots of recent momentum (~ 1 ArXiv/week) with contributions by
Scherer, Allgéwer, Matni, Pappas, Fischer, Pasqualetti, Jones, Goulart, Mesbahi, ...

— more classic subspace predictive control (De Moor) literature
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P red ICtIO n & eStI m atIO n [Markovsky & Rapisarda ’08]

Problem : predict future output y € RPTiuwe based on
e initial trajectory col(uini, yini) € R™+P) T — to estimate initial iy
* input signal u € R™ T — to predict forward

e past data col(ud,y%) € %z, — to form trajectory matrix

Solution: given u & col(uini, yini) — compute g & y from

rou8 w9 d ST

i Uzt Us,q
d d '
oW s, T, gz
d d d
Yi1 Yo, Y3,1 U
. . ini
k J: S : _
v vi s - g = o ud g = Yini
d d d —_— i —_—
U, T Yo, Tt Ms, Tt o Tini+ Thuture yd u
: Y
U Tt Ty 2, Tr T s, Tt T
d
Y1, Ty Yo, Tpa Ya, Ty
LY., 1,4 T Y, Tt e Y3, T+ Tan 4

= observability condition: if Ti,; > lag of system, then y is unique
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Output Model Predictive Control

The canonical receding-horizon MPC optimization problem :

71ﬂJtUI’E - .
. 2 2 quadratic cost with
e ; g = rillg + lluxlz R+0,Q=08&ref. r
subject to xp41 = Axy + Bug, Vk € {1,..., Tiuture } model for prediction
Y = ka +Duk:’ Vk S {la“-aﬂ‘uture}v over k € [LTfuture]

Tpy1 = Az + Buy, Yk € {=Tini — 1,...,0}, model for estimation
yr = Cxp, + Duy, Vk € {—Tini —-1,... ,0}, (many variations)

ur €U, k€ {1, Thuure}, hard operational or
y €Y, Vke{l,... Ture} safety constraints

For a deterministic LTI plant and an exact model of the plant,
MPC is the gold standard of control: safe, optimal, tracking, ...
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Data-Enabled Predictive Control

DeePC uses trajectory matrix for receding-horizon prediction/estimation:

Tfuture
. 2 2
minimize =P =+ [|uw
TR ]?:1 [y k||Q el
Uini
. ud _ | Yini
subject to 7 (yd)g = |
Y

ug €U, Yke{l,...,Tuure},
ye €Y, Vke{l,...,Tuure}

e past Tini > lag samples (uini, yini) for zin estimation

e trajectory matrix 7, 4+ 7 (’;‘2) from past data

(drop Tini + Tiuture SUbscript from now on)

quadratic cost with
R>=0,Q>=0&tref. r

non-parametric
model for prediction
and estimation

hard operational or
safety constraints

updated online

collected offline
(could be adapted online)
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Consistency for LTI Systems

Theorem: Consider DeePC & MPC optimization problems. If the
rank condition holds (= rich data), then the feasible sets coincide.

Corollary: closed-loop behaviors under DeePC and MPC coincide.

Aerial robotics case study :

Thus, most of MPC carries over
to DeePC ...in the nominal case
c.f. stability certificate [Berberich etal.’19]

Beyond LTI: what about noise,
corrupted data, & nonlinearities ?

/ ... playing certainty-equivalence
fails — need robustified approach
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Noisy real-time measurements

Thre ) ) Solution: add /,-slack
e l; lye — il + lluellz + Aullowill, 4. to ensure feasibility
_ — moving-horizon
Uini 0 .
. oy P least-square filter
3 u _ ni ni
subject to - (y") 9= 1w | ol — for A, > 1: constraint
y 0 is slack only if infeasible
1,....,7; e .
up €U, Yk € {1, Tuture}, c.f. sensitivity analysis
ye €Y, Vke{l,... Thure} over randomized sims
Cost 0 Constraint Violations
1010 @
- 3
é 108 .gwo
ie}
T 5
10° 3

A Ay 16/29



Trajectory matrix corrupted by noise

Tfuture
minimize Y ||y — xllg + lusll% + Agllgl
gty
Uini
subject to % (“S) g = il
y u |’
Yy
Uk EZ/[, Vke {L---aﬂ‘uture},
yr €Y, Vk¢€ {17~~»Tfuture}
2107 Cost
6
5
»4
Ss
2 J
1
00 200 400 600 800

Solution: add a
(1-penalty on g

intuition: ¢, sparsely selects
{trajectory matrix columns}
= {motion primitives}

~ low-order basis

c.f. sensitivity analysis
over randomized sims

Constraint Violations

o

Duration violations (s)
o 3 5

S

o

200 400 600 800
Ay 17/29



Towards nonlinear systems

Idea: lift nonlinear system to large/oo-dimensional bi-/linear system
— Carleman, Volterra, Fliess, Koopman, Sturm-Liouville methods
— nonlinear dynamics can be approximated by LTI on finite horizon

regularization singles out relevant features / basis functions in data

case study - ,
DeePC
+ oinj Slack . fl u ke
+ |lg||1 regularizer o
+ more columns 0- or
in 7 (U 05
) . solid ?

<08
05 <09
of 18/29



Experimental snippet
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Consistent observations across
case studies — more than a fluke

pendulum swing up

power system oscillation damping (see later) synchronous motor drive robotic excavator
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let’s try to put some theory
behind all of this ...



Distributional robust formulation cousoneta. e

e problem abstraction: min,cyx C(E,m) = mingex Ezlc (&, )]

where ¢ denotes measured data with empirical distribution P = og

= poor out-of-sample performance of above sample-average solution x*
for real problem: Ep[c(§,2*)] where P is the unknown distribution of ¢

e distributionally robust formulation — “min,cx max E[c (¢, z)]”

where max accounts for all stochastic processes (linear or nonlinear)

that could have generated the data ... more precisely Ap

inf _, SWeocs,p) E@ ¢ (&, 2)]

- A
where B.(P) is an e-Wasserstein ball

centered at empirical sample distribution P:

B.(P) = {P : igf/!k—éupdn < e} " 1] e




e distributionally robust formulation: A E

inf . supgeg (p) Ee [c(& )] é

~

where B.(P) is an e-Wasserstein ball
centered at empirical sample distribution P:

B.(P) = {P : irﬁf/“ﬁ—é“pdl’[ < e} e .
Wy

Theorem: Under minor technical conditions:

infwex SUpgep (B EQ [c(&,2)] = mingex c(g,a:) + eLip(c) - |z

Cor: {..-robustness in trajectory space T
<= (,-regularization of DeePC 1

Proof builds on methods by Shafieezadeh, Esfahani, & Kuhn: problem tractable
after marginalization, for discrete worst case, & with many convex conjugates. 22129



FU rth er ing red Ie ntS [Coulson et al.’19], [Alpago et al.’20]

* average data matrix + SN | (y%) o Tracking Exror vs. ¢
from multiple i.i.d. experiments

a
S

® measure concentration: Wasserstein

~

ball B.(P) includes true distribution P
with high confidence if € ~ 1/N1/dim(&)

Tracking Error
2
8

o
S

— N
—N

1
. e s 10
e recursive Kalman filtering based on 5 0002 0004 0006 0008 001 0012

E) o - Jasserstei adius
explicit solution ¢g* as hidden state Wasserstein ball radins ¢

=)

o distributionally robust probabilistic constraints
Q

e’

SUDGep, (B) CVaR < averaging + regularization + tightening

0.2

0.1
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All together in action

Trajectory of Quadcopter

control objective 2 .
+ regularization 15F TTSEITIIIICIIINIIINIINT —Dy
+ matrix predictor ] Dz
+ averaging Z . "gz,ref
. 5 0 i ~ " Py ref
+ CVaR constraints S ! o ref
. . 0 | z,I'e
+ oini estimation slack . - - Constraints
05—~ o ______.
— DeePC works much 4
Q 0 2 4 6 8 10
better than it should ! Seconds

main catch (no-free-lunch): optimization problems become large
— models are compressed, de-noised, & tidied-up representations

surprise: DeePC consistently beats models across case studies !

— more to be understood oo



how does DeePC relate to
sequential SysID + control ?



Recall problem abstraction

indirect ID-based data-driven control ID projects data on

N | the set of LTI models
minimize  control cost (u,y) e
subject to (u,y) satisfy parametric model e removes noise & thus

lowers variance error

e suffers bias error if

where ~ model € argmin id cost (u?, y*) }ID
plant is not LTI(n, ¢)

subject to model € LTl(n, ¢) class

direct regularized data-driven control ® regularization robustifies

— choosing A makes it work

minimize control cost (u,y) + A- regularizer .
® no projectiononLTI(n,¢)

subject to (u,y) consistent with (u?, y¢) data ~ no de-noising & no bias

hypothesis 1: ID wins in stochastic (variance) & DeePC in nonlinear (bias) case

hypothesis 2: regularizer is somehow (??7?) connected to identification step
25/29



hypothesis 1.

ID wins in stochastic (variance) &
DeePC in nonlinear (bias) case



Comparison: direct vs. indirect control

stochastic LTI case — indirect IDwins  nonlinear case — direct DeePC wins
¢ LQR control of 5th order LTI system e Lotka-Volterra + control: % = f(z,u)
¢ Gaussian noise with varying noise to e interpolated system

signal ratio (100 rollouts each case) T = € finearized (T, 1) + (1 —€) - f(z,u)
¢ /,-regularized DeePC, SysID via e same ID & DeePC as on the left
N4SID, & judicious hyper-parameters & 100 initial =, rollouts for each e
‘—Direct —— Indirect + mean‘ ‘—Direct —— Indirect + mean
x10% 9x10°
8 :
g 7 ¢
= 7
<6
=] : 6
:. ;
£5
4
g3
% 2 A 2
E 1 ) Il i
& AT e N I - 0
B‘V; ;‘7/; ;‘V; 3% 4% 5% 6% 7% 8‘%; 9% 10%11%12%13%14%15% 0.00 0.06 0.12 0.19 0.25 0.31 0.38 0.44 0.50 0.56 0.62 0.69 0.75 0.81 0.88 0.94 1.00
deterministic Noise-to-signal Ratio noisy  nonlinear ¢
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hypothesis 2

regularizer is somehow (?77?)
connected to identification step



Regularization = relaxation of bi-level ID

minimize, , control cost (u, y)

subject to  (u,y) satisfy (parametric) model

where model € argmin id cost (u?, y?)
subject to model € LTI(n, )

minimize, , control cost (u, y)

subject to  (u,y) satisfy (parametric) model

where model € argmin id cost (ud, yd)
subject to model € LTI(n,¥)

1 drop non-convex LTI complexity specifications |

minimize, , control cost (u, y)

subject to (u,y) satisfy (parametric) model
where model € argmin id cost(u?, y?)
minimize, , control cost (u, y)

subject to (u,y) satisfy (parametric) model

where model € argmin id cost (ud, yd)

subject to model € LTI(n, {)

Example I: parametric ARX predictor

Uini
y=K- |Yni
u

where K is low-rank + least-square fit

= ID-based regularizer err%( ) gH

Example II: non-parametric predictor

U
Y

s () s () - (7]

subjectto rank.# (%) = mL+n

= low-rank promoting regularizer ||g||1
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Performance of identification-induced
regularizer on stochastic LTI system

73 — glI3
2

(o]
i

— [per (52) o]

2

()]
T

IN

w

N
T

% Error wrt deterministic model-based

-
T

= O
()IA
EN
Y
o
N
e
o
[=]
Y
o F
N
Y
(=]
KN
—_
o
2]
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Summary & conclusions

main take-aways
® matrix time series serves as predictive model .
¢ consistent for deterministic LTI systems s
e distributional robustness via regularizations '
¢ principled derivation from ID & comparison

future work
— tighter certificates for nonlinear systems

— explicit policies & direct adaptive control ‘
— online optimization & real-time iteration MM

R 0

Why have these Willems '07: “/MPC] has perhaps too little system
powerful ideas theory and too much brute force computation in it.”
not been mixed The other side often proclaims “behavioral systems

long before ? theory is beautiful but did not prove utterly useful.”
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Thanks!

Florian Dérfler
mail: dorfler@ethz.ch
[1ink] to homepage

[1ink] to related publications
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