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A brief history of sync

CHRISTIANI

Christiaan Huygens (1629 — 1695) “'(‘)”R;L‘O(N]‘V‘“
OSCILLATORIVM

@ physicist & mathematician

DE MO VLORVM
aD ATS

@ engineer & horologist

observed “an odd kind of sympathy
[Letter to Royal Society of London, 1665]

Recent reviews, experiments, & analysis
[M. Bennet et al. '02, M. Kapitaniak et al. '12]
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A field was born

@ sync in mathematical biology [A. Winfree '80, S.H. Strogatz '03, ...]

@ sync in physics and chemistry [Y. Kuramoto '83, M. Mézard et al. '87...]
@ sync in neural networks [F.C. Hoppensteadt and E.M. Izhikevich '00, ...]
@ sync in complex networks [C.W. Wu '07, S. Bocaletti 08, ...]

@ ...and numerous technological applications (reviewed later)

Synchronization in complex networks

Alex Arenas®®, Albert Diaz-Guilera“”, Jurgen Kurths %, Yamir Moreno ", Changsong Zhou®
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Coupled phase oscillators

3 various models of oscillators & interactions

Today: coupled phase oscillator model
[A. Winfree '67, Y. Kuramoto '75]

9-,' = Wj —ijl ajj Sin(e,' —Gj)J

v

n oscillators with phase §; € S*

v

non-identical natural frequencies w; € R?

v

elastic coupling with strength a;; = aj;

undirected & connected graph G = (V, &, A)

v

4

Note: can be derived as canonical coupled limit-cycle oscillator model .




My application of interest: sync in AC power networks

@ sync is crucial for AC power grids — a coupled oscillator analogy

/® N

@ sync is a trade-off

weak coupling & heterogeneous strong coupling & homogeneous ,;

My application of interest: sync in AC power networks

@ sync is crucial for AC power grids

H ~MAW- H.l

@ sync is a trade-off

weak coupling & heterogeneous Blackout India July 30/31 2012 5,27

Other technological applications of phase oscillators

@ particle filtering to estimate limit
cycles [A. Tilton & P. Mehta et al. '12]
@ clock synchronization over networks - 3
\
[Y. Hong & A. Scaglione '05, O. Simeone et |’\ o) ;w
20y £\ .
al. '08, Y. Wang & F. Doyle et al. '12] 5 l O
[
vco J —v | Amzm
@ central pattern generators and Qi
=0 [veo
robotic locomotion [J. Nakanishi et al. >t

'04, S. Aoi et al. '05, L. Righetti et al. ’06]

@ decentralized maximum likelihood
estimation [S. Barbarossa et al. '07]

@ carrier sync without phase-locked
loops [M. Rahman et al. '11]

@ robotic vehicle coordination
[R. Sepulchre et al. '07, D. Klein et al. '09]

Phenomenology and challenges in synchronization

many fundamental questions are still open

Transition to synchronization is a trade-off: coupling vs. heterogeneity

Some central questions: @ quantify “coupling” vs. “heterogeneity”

(still after 45 years of work) @ multiple sync'd states & their sync basin
@ interplay of network & dynamics

In more technical terms: existence, uniqueness, & stability of equilibria and
their basin of attraction ... as a function of network topology & parameters
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Outline

| try to shed light on some fundamental yet poorly understood questions.

Main references today

Automatica 50 (2014) 1539-1564

Contents lists available at ScienceDirect
Automatica

journal homepage: www.elsevier.com/locate/automatica

Survey paper

Synchronization in complex networks of phase oscillators: A survey”
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Algebraic geometrization of the Kuramoto model: Equilibria and stability
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Models & sync notion

finite dimensional & heterogeneous

uniform all-to-all Kuramoto model  general coupled oscillator model

: K . : .
0; = w; — 27:1 - sin(6; — 0)) J 0; = w; — ijl ajjsin(0; — 6;) J

where K > 0 is the coupling

where a;; = aj; > 0 induces a
strength among the oscillators

connected and undirected graph

Frequency synchronization: §; = wsync € R for all i € {1,...,n}

Lemma: if there is a frequency-sync'd solution, then weync = > 1 wi/n J

= frequency-synchronized solutions are equilibria in rotating coordinates
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the synchronization threshold
or existence, uniqueness, &
local stability of equilibria




Synchronization threshold for the complete graph

. " K
0; = wj — ijl - sin(6; — 0)) J synchronization if K > Kqit(w)

= necessary & tight lower bound [Chopra & Spong '09]  Kerit > max% wj — wj|J
i

= sufficient & tight upper bound [FD & Bullo '11] Kerit < max lwi — wj J
1J

—wo 0 Ty w

tight lower bound tight upper bound 10/27

Synchronization threshold for the complete graph — cont'd

Q explicit & tight lower/upper bounds [Chopra & Spong '09, FD & Bullo '11]

5 max; ; |wi — wj-| < Kt < max; j |wj — wj

Q exact & implicit [Aeyels & Rogge '04, Mirollo & Strogatz '05, Verwoerd & Mason '08]

_ nu*
Kcrit -

Ly V/1=(wi/u*)?

where v* € [||lw|| ;2 ||w|| ] is the unique

solution to the equation 237 /1 — (wi/u)? =31 11/4/1 — (wi/u)?.

I
rol 5 Kuramoto’s |
. explicit i
comparison of bounds e P ﬁﬁﬂ“ﬁﬁﬁn”; 1
for uniform distribution =" exact & implicit { 4
Mv 12F PO e aant N /7r
8unif (W) € [_17 +1] L
lower explicit
0.8
0.6
" . 10 11/27

there's nothing more to say

for the complete uniform graph

...so let's move on

Primer on algebraic graph theory

Laplacian matrix

L= LT = —dj1

Notions of connectivity

L = “degree matrix" — “adjacency matrix”

n
Zj:l aj - —an| 20

@ spectral: 2nd smallest eigenvalue of L is “algebraic connectivity” A»(L)

@ topological: degree Zj'-’zl ajj or degree distribution

Notions of heterogeneity

||w||57C>O = maxy; jlee lwi — wjl,

||W||g,2 = (Z{u}eg |wi — Wj|2

)1/2
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Synchronization threshold in sparse networks

a brief overview on theoretical guarantees

é,' = Wj — Zn 1 ajj Sin(e,' — QJ)J
J:

n

@ necessary sync condition: 21:1 aj > |wil < sync J

[C. Tavora and O.J.M. Smith '72]

@ sufficient sync condition: Ao(L) > |lwlle2 = sync J

[FD and F. Bullo '12]

= J similar conditions with diff. metrics on coupling & heterogeneity

= | Problem: sharpest general conditions are conservative
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Nearly exact synchronization threshold (b, chertkov, & Bullo '12]

HLTWHE,OO <1 | — locally exponentially stable synchronization for

1) extremal topologies: acyclic, complete graphs, or {3,4} rings

3

)
2) extremal parameters: Lw is bipolar, small, or symmetric (for rings)
) arbitrary one-connected combinations of 1) and 2)

)

4) with high probability, accuracy, & confidence “for almost all” G & w

intuition: cond’ HLTngoo < 1 includes previous A, degree, & complete:

0 0 0
0 1/X(L) 0 ... 0 -
[eigenvectors of L] . ) ) [eigenvectors of L] w <1
0 e o0 1/X(L) £ro0
14727

Nearly exact synchronization threshold — cont'd

Comparison with numerical K for éi = Wwj— K‘Z}'zl djj sin(0; _QJ)J

Erdés-Rényi Graph ! Random Geometric Graph : Small World Network

[P T
[P

O n=10

i
' On=20

1O n=40

Y

n = 80

I
I
| # n =160

w uniform

= condition HLTWHE o <lis highly accurate & always guarantees sync
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The synchronization threshold

Conjecture 1: HLTwug » <1 = exists locally exponentially stable sync J

® Monte Carlo: HLT(“’Hgoo <1 = sync “for almost all" G & w

® thin 0.03% set of counter-examples with O(10~*) error

® analytic counter-example with a large ring [FD, Chertkov, & Bullo '12]

Many related problems are actually NP-hard:

@ throughput maximization in capacitated network flow [A. Verma, '09]

@ power dispatch optimization [K. Lehmann, A. Grastien, & P. Van Hentenryck, '14]
@ finding non-zero stable equilibria of the Kuramoto model [R. Taylor, '15]

e finding stable equilibria of the repulsive Kuramoto model [A. Sarlette, '11]

The conjecture is rejected. The sync threshold remains open & hard(?).. - |
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The problem may be hopeless ... but the bounds ain’t bad

6
. 55 Y| @ Avg. theo. bound (up)
) . —®— Avg. num. bound (up)
0i = Wi — K- E =1 aij S|n(0i - 0_/) J 5+ \| B+ Avg. theo. bound (low)
4.5
“ . " 4r
necessary & “sufficient” sync bounds: as
E ol
mag 2 < g <t | s
P = Nerit > =1 00 @.q. A
|wil &,00 ol ¢ 00.9
. . ol ,...-.,.,_.”._.._'_. =
(exact for acyclic and tight for complete) L =
o5 —4—r—————
. . 0123456 7 8 910
= comparison w/ coarse numerical Kt # cycles (in 10%)

working horse: algebraic geometry [D. Mehta, N. Daleo, FD, & J. Hauenstein, '15]
n . si=sin(6;) n
wi = Zj—l ajjsin(0; — 6;) wj = Zj_l ajj (sicj — sjci)

ci=cos(6;) 1727

more fun with stable equilibria

Systems without stable equilibria

Conjecture 2: if there are any equilibria, then at least one must be stabIeJ

equilibria of a ring graph with 1200
n=10 & w; € [-1, 1] uniformly

1000
é,‘ = Wj — KSin(e,' — 9,'_1)
— Ksin(0; — 0i+1)

800

600

number of equilibria

400

number of stable equilibria

= multi-stable cases

= all unstable for K = 13 — 15 20 o8

= analytic counterexample by 0 50 00 0 50 100
[A. Araposthatis et al., '81]

The conjecture is rejected. J
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How many stable equilibria are there?

@ acyclic graphs have a single stable
equilibrium [FD, Chertkov, & Bullo '12]

@ previously: rings have multi-stable
equilibrium landscapes

@ complete graphs have a single
stable equilibrium [Aeyels & Rogge '04]

Conjecture 3: the plot of # stable
equilibria vs. cycles is a concave curve

J

Y ring

tree complete %

# stable equilibria

7 cycles

-

o

>
T

-
-y
N

-
o

-
(=]
o=}

1.06

average number of stable equilibria

0 10 20
number of cycles

The conjecture is rejected & J

the problem is more puzzling.
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A popular folk theorem about the "7 /2-box"

Stable 7/2-box: any equilibrium in {6 € T" : |6; — 0;| < n/2V{i,j} € £}
is locally exponentially stable (modulo rotational symmetry).

Proof: linearization is § = —L(6*) - § where L(6*) is a Laplacian:

L(0%) = | —ancos(0f —67) --- D7, ajcos(df —6;) —aj cos(0F — 07)

J

=> a major part of the literature focuses on the 7/2-box

Conjecture 4: there is at most one equilibrium in the 7/2-box J

has been proved ...at least on R” [A. Araposthatis et al., '81, K. Dvijotham et al., '15]
20/27

The "“m/2-box" does not guarantee uniqueness on T"

Stable 7/2-box: any equilibrium in {6 € T" : |0; — 0;| < n/2V{i,j} € £}
is locally exponentially stable (modulo rotational symmetry).

J

Conjecture 4: there is at most one equilibrium in the 7/2-box

Homogeneous counterexample

0; = —sin(0; — 6;_1) —sin(0; — 6;41)

admits two equilibria in 7/2-box

The conjecture is rejected on T". |

Equilibrium indices in the Kuramoto model

Equilibria of the Kuramoto model & ) K
their indices (# stable eigenvalues)

—— N=18§|
—0— N=17|

—=a— N=16|

—*— N=14|
—<+— N=13|
—— N=12|
—v— N=11]§
—— N=10|
—+— N=9
—o— N=8

——N=7 [§

g

i
W

T
[ NG}
T

]

=)
o

10° 10' 10° 5 10 15
K index

converge to 2" as K — oo for K =100

Conjecture 5 (open): for n & K large, there are (5') equilibria of index j J
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(almost) global stability

sync basin is almost all of T"




Conjecture for acyclic & undirected networks

Conjecture 6 for acyclic networks: if there is a locally exponentially stable
equilibrium, then it is almost globally stable.

Partial proof: conjecture is true for homogeneous w; [P. Monzon, '06] &
can be extended to weakly heterogeneous cases via ISS [Angeli & Praly,'11].

Numerics: randomized simulations apparently always confirm conjecture.

.:.
...’. 0..
© O\ (// ®
f P O

.

Q. Q
o2 %0 o —o
A

Q) @)

O
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Non-rigorous reasoning for acyclic networks

Transformation to branch coordinates

. n 6;;=0;—0; -: :.
9,’ = Wi — Zj:l a,~j Sin(e,' — 0j) <LT—$ (5,‘j = Q (IJ,'J' — 5|n(6,-j) s

v{ij}es

where @ is a positive definite matrix distorting the decoupled vector field.

PR Y

Conjecture for acyclic networks is partially rejected

Conjecture 6 for acyclic networks: if there is a locally exponentially stable
equilibrium, then it is almost globally stable.

a 3-node counterexample by +
[A. Gushchin, E. Mallada, & A. Tang, '15]:

. 3 )
0 =wi—3- ijl ajjsin(0; — 6;) 513

w=2—¢

- 012 +m

wy =w3=—14¢/2 . ..
2T / reveals continua of limit cycles

due to partial proof for weakly heterogeneous oscillators. Possibly generic?

257727

The conjecture is rejected, and the problem is now even more interesting J

PP S e N e =
S| r F o e o Mgl AN NN ¥
rA A A A A2 Y2y 27 ) AN N
R DAV RV AV A A AV | w222 2SR AT AN\N NN W
IRy R A A | IRV SRV RV B S W W N N
NN\ N N
-2 fcg_ 1 U /;;; (.2_ 2 _1 NN AN
'2‘5/; 0 l:jfl &l -1 2 :i:ii::xr
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Complete & uniform (Kuramoto) networks
Conjecture 7 for complete . K no
o o 9,‘ =W — — E i Sln(e,' — 9j)
networks: if there is a locally n j=1

exponentially stable equilibrium,

then it is almost globally stable. Today the conjecture is still open. J

Partial proofs: conjecture is true for homogeneous w; [P. Monzon, '06] &
can be extended to weakly heterogeneous cases via ISS [Angeli & Praly,'11].

The semi-circle is know to be a subset of the sync basin [FD & F. Bullo, "11].

Numerics: randomized simulations apparently always confirm conjecture.

Plausible argument based on order parameter rel¥ = Zf:l %

eié’j
é,’ = Wi — Z;Zl ajj sin(0,~ — 9j) <~ é,’ = Wi — Kr sin(0,~ — w)

This should essentially behave like a single oscillator system . ..
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conclusions

Summary and conclusions

We rejected some conjectures

@ systems without stable equilibria
@ non-unique equilibria in 7/2-box
@ non-trivial sync basin for trees

@ synchronization threshold bounds

Acknowledgements: Dhagash
Mehta, Noah Daleo, Jonathan
Hauenstein, Francesco Bullo, John
Simpson-Porco, Michael Chertkov,
Matthias Rungger, Julien Hendrickx,

Rodolphe Sepulchre, Fulvio Forni, . ..

& found some intriguing problems:
@ # stable equilibria vs. # cycles
@ scaling of equilibrium indices

@ almost global sync basin

@ exact synchronization threshold

“Surprisingly
enough, this seemingly
obvious fact seems
difficult to prove.”

[Y. Kuramoto, '84]
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