
Folk theorems, myths, & conjectures
in complex oscillator networks

NetSci 2015 Satellite Symposium

Florian Dörfler

A brief history of sync

Christiaan Huygens (1629 – 1695)

physicist & mathematician

engineer & horologist

observed “an odd kind of sympathy ”
[Letter to Royal Society of London, 1665]

Recent reviews, experiments, & analysis
[M. Bennet et al. ’02, M. Kapitaniak et al. ’12]
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A field was born

sync in mathematical biology [A. Winfree ’80, S.H. Strogatz ’03, . . . ]

sync in physics and chemistry [Y. Kuramoto ’83, M. Mézard et al. ’87. . . ]

sync in neural networks [F.C. Hoppensteadt and E.M. Izhikevich ’00, . . . ]

sync in complex networks [C.W. Wu ’07, S. Bocaletti ’08, . . . ]

. . . and numerous technological applications (reviewed later)
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a b s t r a c t

Synchronization processes in populations of locally interacting elements are the focus of
intense research in physical, biological, chemical, technological and social systems. The
many efforts devoted to understanding synchronization phenomena in natural systems
now take advantage of the recent theory of complex networks. In this review,we report the
advances in the comprehension of synchronization phenomena when oscillating elements
are constrained to interact in a complex network topology. We also take an overview of
the new emergent features coming out from the interplay between the structure and the
function of the underlying patterns of connections. Extensive numerical work as well as
analytical approaches to the problem are presented. Finally, we review several applications
of synchronization in complex networks to different disciplines: biological systems and
neuroscience, engineering and computer science, and economy and social sciences.

© 2008 Elsevier B.V. All rights reserved.
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Coupled phase oscillators

∃ various models of oscillators & interactions

Today: coupled phase oscillator model
[A. Winfree ’67, Y. Kuramoto ’75]

θ̇i = ωi−
∑n

j=1
aij sin(θi−θj)

I n oscillators with phase θi ∈ S1

I non-identical natural frequencies ωi ∈ R1

I elastic coupling with strength aij = aji

I undirected & connected graph G = (V, E ,A)
!1

!3!2

a12

a13

a23

Note: can be derived as canonical coupled limit-cycle oscillator model
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My application of interest: sync in AC power networks
sync is crucial for AC power grids – a coupled oscillator analogy

sync is a trade-off

weak coupling & heterogeneous strong coupling & homogeneous5 / 27

My application of interest: sync in AC power networks
sync is crucial for AC power grids – a coupled oscillator analogy

sync is a trade-off

weak coupling & heterogeneous Blackout India July 30/31 2012 5 / 27

Other technological applications of phase oscillators

particle filtering to estimate limit
cycles [A. Tilton & P. Mehta et al. ’12]

clock synchronization over networks

[Y. Hong & A. Scaglione ’05, O. Simeone et

al. ’08, Y. Wang & F. Doyle et al. ’12]

central pattern generators and
robotic locomotion [J. Nakanishi et al.

’04, S. Aoi et al. ’05, L. Righetti et al. ’06]

decentralized maximum likelihood
estimation [S. Barbarossa et al. ’07]

carrier sync without phase-locked
loops [M. Rahman et al. ’11]

robotic vehicle coordination
[R. Sepulchre et al. ’07, D. Klein et al. ’09]
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Phenomenology and challenges in synchronization
many fundamental questions are still open

Transition to synchronization is a trade-off: coupling vs. heterogeneity

Some central questions:

(still after 45 years of work)

quantify “coupling” vs. “heterogeneity”

multiple sync’d states & their sync basin

interplay of network & dynamics

In more technical terms: existence, uniqueness, & stability of equilibria and
their basin of attraction . . . as a function of network topology & parameters
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I try to shed light on some fundamental yet poorly understood questions.
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a b s t r a c t

The emergence of synchronization in a network of coupled oscillators is a fascinating subject of
multidisciplinary research. This survey reviews the vast literature on the theory and the applications
of complex oscillator networks. We focus on phase oscillator models that are widespread in real-world
synchronization phenomena, that generalize the celebrated Kuramoto model, and that feature a rich
phenomenology. We review the history and the countless applications of this model throughout science
and engineering. We justify the importance of the widespread coupled oscillator model as a locally
canonical model and describe some selected applications relevant to control scientists, including vehicle
coordination, electric power networks, and clock synchronization. We introduce the reader to several
synchronization notions and performance estimates. We propose analysis approaches to phase and
frequency synchronization, phase balancing, pattern formation, and partial synchronization. We present
the sharpest known results about synchronization in networks of homogeneous and heterogeneous
oscillators, with complete or sparse interconnection topologies, and in finite-dimensional and infinite-
dimensional settings. We conclude by summarizing the limitations of existing analysis methods and by
highlighting some directions for future research.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Synchronization in networks of coupled oscillators is a perva-
sive topic in various scientific disciplines ranging from biology,
physics, and chemistry to social networks and technological ap-
plications. A coupled oscillator network is characterized by a pop-
ulation of heterogeneous oscillators and a graph describing the
interaction among the oscillators. These two ingredients give rise
to a rich dynamic behavior that keeps on fascinating the scientific
community.

Within the rich modeling phenomenology on synchroniza-
tion among coupled oscillators, this paper focuses on the widely
adapted model of a continuous-time and periodic limit-cycle

I This material is based in part upon work supported by University of California
Los Angeles startup funds and NSF grants IIS-0904501 and CPS-1135819. A
preliminary short version of this document appeared as Dörfler and Bullo (2012a).
The material in this paper was partially presented at the 51st IEEE Conference on
Decision and Control, December 10–13, 2012, Maui, Hawaii, USA. This paper was
recommended for publication in revised form by Editor John Baillieul.

E-mail addresses: dorfler@control.ee.ethz.ch (F. Dörfler),
bullo@engineering.ucsb.edu (F. Bullo).
1 Tel.: +41 310 844 2131.

oscillator network with continuous, bidirectional, and anti-
symmetric coupling. We consider a system of n oscillators, each
characterized by a phase angle ✓i 2 S1 and a natural rotation
frequency !i 2 R. The dynamics of each isolated oscillator are
thus ✓̇i = !i for i 2 {1, . . . , n}. The interaction topology and
coupling strength among the oscillators are modeled by a con-
nected, undirected, and weighted graph G(V, E, A) with nodes
V = {1, . . . , n}, edges E ⇢ V ⇥ V , and positive weights aij =
aji > 0 for each undirected edge {i, j} 2 E . The interaction between
neighboring oscillators is assumed to be additive, anti-symmetric,
diffusive,2 and proportional to the coupling strengths aij. In this
case, the simplest 2⇡-periodic interaction function betweenneigh-
boring oscillators {i, j} 2 E is aij sin(✓i � ✓j), and the overall model
of coupled phase oscillators reads as

✓̇i = !i �
nX

j=1

aij sin(✓i � ✓j), i 2 {1, . . . , n}. (1)

Despite its apparent simplicity, this coupled oscillator model gives
rise to rich dynamic behavior, and it is encountered in many

2 The interaction between two oscillators is diffusive if its strength depends on
the corresponding phase difference; such interactions arise for example in the
discretization of the Laplace operator in diffusive partial differential equations.

http://dx.doi.org/10.1016/j.automatica.2014.04.012
0005-1098/© 2014 Elsevier Ltd. All rights reserved.

Algebraic geometrization of the Kuramoto model: Equilibria and stability
analysis

Dhagash Mehta,1,a) Noah S. Daleo,2,b) Florian D€orfler,3,c) and Jonathan D. Hauenstein1,d)

1Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre
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3Automatic Control Laboratory, Swiss Federal Institute of Technology (ETH) Z€urich, 8092 Z€urich, Switzerland
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Finding equilibria of the finite size Kuramoto model amounts to solving a nonlinear system of
equations, which is an important yet challenging problem. We translate this into an algebraic
geometry problem and use numerical methods to find all of the equilibria for various choices of
coupling constants K, natural frequencies, and on different graphs. We note that for even modest
sizes (N! 10–20), the number of equilibria is already more than 100 000. We analyze the stability of
each computed equilibrium as well as the configuration of angles. Our exploration of the equilibrium
landscape leads to unexpected and possibly surprising results including non-monotonicity in the
number of equilibria, a predictable pattern in the indices of equilibria, counter-examples to
conjectures, multi-stable equilibrium landscapes, scenarios with only unstable equilibria, and
multiple distinct extrema in the stable equilibrium distribution as a function of the number of cycles
in the graph. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4919696]

The Kuramoto model is a fascinating model proposed in
1975 to study synchronization phenomena1 that have
gained attention due to its applicability from various sci-
entific communities, including biology, chemistry,
physics, and electrical engineering. This model has been
used to study various phenomena including neural net-
works, chemical oscillators, Josephson junctions and
laser arrays, power grids, particle coordination, spin
glass models, and rhythmic applause.2–4 The objective of
this article is to introduce an algebraic geometric inter-
pretation of the problem of computing equilibria for the
Kuramoto model. Our interpretation requires solving a
system of polynomial equations, and we discuss techni-
ques from numerical algebraic geometry that are well
suited for these problems. Computing equilibria at
various points in parameter space and analyzing their
stability can provide new insight in synchronization
phenomena.

I. INTRODUCTION

The Kuramoto model is defined as a system of autono-
mous ordinary differential equations as

dhi

dt
¼ xi #

K

N

XN

j¼1

ai;j sin hi # hj
! "

for i ¼ 1;…;N; (1)

where K is the coupling strength, N is the number of oscilla-
tors, X¼ (x1,…,xN) is the vector of intrinsic natural fre-
quencies, and ai,j¼ aj,i ! {0, 1} is the (i, j) entry of the

adjacency matrix of the coupling graph which we assume is
undirected. The natural frequencies xi indicate how the
system oscillates in the absence of any dissipation or exoge-
nous forces. Without loss of generality, we assumePN

i¼1 xi ¼ 0. In particular, if "x :¼
PN

i¼1 xi=N, then the

transformation to a rotating frame, hi 7! hi # "xt leads to the
rescaled natural frequencies ~xi ¼ xi # "x satisfyingPN

i¼1 ~xi ¼ 0.
The equilibrium conditions are dhi

dt ¼ 0 for all i. This sys-
tem of equations has an O(2) freedom, i.e., for any a ! (#p,
p], the equations are invariant under replacing all hi with
hiþ a. This rotational symmetry leads to the continua of
equilibria. To remove this O(2) freedom resulting in finitely
many equilibria, we fix one of the angles, say, hN¼ 0, and

remove the equation dhN
dt ¼ 0 from the system. The remaining

system consists of N # 1 nonlinear equations in N # 1

angles. Since
PN

i¼1
dhi
dt ¼

PN
i¼1 xi ¼ 0, no information is lost

by removing one equation from the system. See Appendix
for an equivalent formulation removing the O(2) freedom.

Provided the coupling strength K is strong enough, the
oscillators will synchronize as t!1. In this setup, a critical
coupling Kc(N) exists at which the number of stable equili-
bria switches from 0 to a nonzero value. In the special case
of N ! 1 and long-range (all-to-all) coupling ai,j¼ 1, one
may analytically compute Kc(N). However, for the finite size
Kuramoto model, such an analysis may turn out to be very
difficult. In particular, finding all equilibria, analyzing stabil-
ity, and finding Kc(N) are known to be prohibitively difficult
for a finite but large oscillator population.

Since we are working with undirected coupling graphs,
i.e., ai,j¼ aj,i for all i, j, we point out that the equilibria of
system (1) can also be viewed as the stationary points of the
potential energy landscape drawn by the mean-field XY
model with an exogenous perturbation term

a)dmehta@nd.edu
b)nsdaleo@ncsu.edu
c)dorfler@ethz.ch
d)hauenstein@nd.edu

1054-1500/2015/25(5)/053103/7/$30.00 VC 2015 AIP Publishing LLC25, 053103-1

CHAOS 25, 053103 (2015)
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Models & sync notion
finite dimensional & heterogeneous

uniform all-to-all Kuramoto model

θ̇i = ωi −
∑n

j=1

K

n
sin(θi − θj)

where K > 0 is the coupling
strength among the oscillators

general coupled oscillator model

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj)

where aij = aji ≥ 0 induces a
connected and undirected graph

Frequency synchronization: θ̇i = ωsync ∈ R for all i ∈ {1, . . . , n}

Lemma: if there is a frequency-sync’d solution, then ωsync =
∑n

i=1 ωi/n

⇒ frequency-synchronized solutions are equilibria in rotating coordinates

9 / 27

the synchronization threshold

or existence, uniqueness, &

local stability of equilibria



Synchronization threshold for the complete graph

θ̇i = ωi −
∑n

j=1

K

n
sin(θi − θj) synchronization if K > Kcrit(ω)

⇒ necessary & tight lower bound [Chopra & Spong ’09] Kcrit ≥ max
i ,j

1
2 |ωi − ωj |

⇒ sufficient & tight upper bound [FD & Bullo ’11] Kcrit ≤ max
i ,j
|ωi − ωj |

ωmaxωmin 0

p

(1− p)

ω

π/2

0

1

n

1

n

ω−ω0 +ω0

n − 2

n π/2 π/2

gtrip,n(ω) gbip(ω)

tight lower bound tight upper bound 10 / 27

Synchronization threshold for the complete graph – cont’d

1 explicit & tight lower/upper bounds [Chopra & Spong ’09, FD & Bullo ’11]

1

2
maxi ,j |ωi − ωj | ≤ Kcrit ≤ maxi ,j |ωi − ωj |

2 exact & implicit [Aeyels & Rogge ’04, Mirollo & Strogatz ’05, Verwoerd & Mason ’08]

Kcrit = nu∗∑n
i=1

√
1−(ωi/u∗)2

where u∗ ∈ [‖ω‖∞ , 2 ‖ω‖∞] is the unique

solution to the equation 2
∑n

i=1

√
1− (ωi/u)2 =

∑n
i=11/

√
1− (ωi/u)2 .

comparison of bounds
for uniform distribution
gunif (ω) ∈ [−1,+1]

n

4/π

K
cr
it

10
1

10
2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

exact & implicit

lower explicit

upper explicit
Kuramoto’s

continuum

limit bound
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there’s nothing more to say

for the complete uniform graph

. . . so let’s move on

Primer on algebraic graph theory

Laplacian matrix L = “degree matrix” − “adjacency matrix”

L = LT =


...

. . .
... . .

. ...

−ai1 · · · ∑n
j=1 aij · · · −ain

... . .
. ...

. . .
...

 ≥ 0

Notions of connectivity

spectral: 2nd smallest eigenvalue of L is “algebraic connectivity”λ2(L)

topological: degree
∑n

j=1 aij or degree distribution

Notions of heterogeneity

‖ω‖E,∞ = max{i ,j}∈E |ωi − ωj |, ‖ω‖E,2 =
(∑

{i ,j}∈E |ωi − ωj |2
)1/2

12 / 27



Synchronization threshold in sparse networks
a brief overview on theoretical guarantees

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj)

1 necessary sync condition:
∑n

j=1 aij ≥ |ωi | ⇐ sync

[C. Tavora and O.J.M. Smith ’72]

2 sufficient sync condition: λ2(L) > ‖ω‖E,2 ⇒ sync

[FD and F. Bullo ’12]

⇒ ∃ similar conditions with diff. metrics on coupling & heterogeneity

⇒ Problem: sharpest general conditions are conservative

13 / 27

Nearly exact synchronization threshold [FD, Chertkov, & Bullo ’12]∥∥L†ω∥∥E,∞ < 1 =⇒ locally exponentially stable synchronization for

1) extremal topologies: acyclic, complete graphs, or {3, 4} rings

2) extremal parameters: L†ω is bipolar, small, or symmetric (for rings)

3) arbitrary one-connected combinations of 1) and 2)

4) with high probability, accuracy, & confidence “for almost all” G & ω

intuition: cond’
∥∥L†ω∥∥E,∞ < 1 includes previous λ2, degree, & complete:∥∥∥∥∥∥∥∥∥

[
eigenvectors of L

]


0 0 . . . . . . 0
0 1/λ2(L) 0 . . . 0
...

. . .
. . .

. . . 0
0 . . . . . . 0 1/λn(L)

 [eigenvectors of L
]T
ω

∥∥∥∥∥∥∥∥∥
E,∞

< 1
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Nearly exact synchronization threshold – cont’d

Comparison with numerical Kcrit for θ̇i = ωi−K ·∑n
j=1 aij sin(θi−θj)
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⇒ condition
∥∥L†ω∥∥E,∞ < 1 is highly accurate & always guarantees sync
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The synchronization threshold

Conjecture 1:
∥∥L†ω∥∥E,∞ < 1 ⇒ exists locally exponentially stable sync

, Monte Carlo:
∥∥L†ω∥∥E,∞ < 1 =⇒ sync “for almost all” G & ω

/ thin 0.03% set of counter-examples with O(10−4) error

/ analytic counter-example with a large ring [FD, Chertkov, & Bullo ’12]

Many related problems are actually NP-hard:

throughput maximization in capacitated network flow [A. Verma, ’09]

power dispatch optimization [K. Lehmann, A. Grastien, & P. Van Hentenryck, ’14]

finding non-zero stable equilibria of the Kuramoto model [R. Taylor, ’15]

finding stable equilibria of the repulsive Kuramoto model [A. Sarlette, ’11]

The conjecture is rejected. The sync threshold remains open & hard(?). . .
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The problem may be hopeless . . . but the bounds ain’t bad

θ̇i = ωi − K ·
∑n

j=1
aij sin(θi − θj)

necessary & “sufficient” sync bounds:

maxi

∑n
j=1 aij

|ωi |
≤ Kcrit ≤

∥∥∥L†ω∥∥∥
E,∞

(exact for acyclic and tight for complete)

⇒ comparison w/ coarse numerical Kcrit cycles (in tens of thousands)
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Avg. num. bound (up) 

Avg. theo. bound (low)

working horse: algebraic geometry [D. Mehta, N. Daleo, FD, & J. Hauenstein, ’15]

ωi =
∑n

j=1
aij sin(θi − θj)

si=sin(θi )⇐====⇒
ci=cos(θi )

ωi =
∑n

j=1
aij (sicj − sjci )
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more fun with stable equilibria

Systems without stable equilibria

Conjecture 2: if there are any equilibria, then at least one must be stable

equilibria of a ring graph with
n = 10 & ωi ∈ [−1, 1] uniformly

θ̇i = ωi − K sin(θi − θi−1)

− K sin(θi − θi+1)

⇒ multi-stable cases

⇒ all unstable for K = 13− 15

⇒ analytic counterexample by
[A. Araposthatis et al., ’81]

The conjecture is rejected.

0 50 100
0

200

400

600

800

1000

1200

n
u

m
b

e
r 

o
f 

e
q

u
ili

b
ri
a

K

0 50 100
0

0.5

1

1.5

2

2.5

3

n
u

m
b

e
r 

o
f 

s
ta

b
le

 e
q

u
ili

b
ri
a

K

1

2
3

4

5

6

7 8

9

10

1

2
3

4

5

6

7 8

9

10
12345678910

18 / 27

How many stable equilibria are there?

acyclic graphs have a single stable
equilibrium [FD, Chertkov, & Bullo ’12]

previously: rings have multi-stable
equilibrium landscapes

complete graphs have a single
stable equilibrium [Aeyels & Rogge ’04]

Conjecture 3: the plot of # stable
equilibria vs. cycles is a concave curve
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The conjecture is rejected &
the problem is more puzzling.
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A popular folk theorem about the “π/2-box”

Stable π/2-box: any equilibrium in
{
θ ∈ Tn : |θi − θj | < π/2 ∀{i , j} ∈ E

}
is locally exponentially stable (modulo rotational symmetry).

Proof: linearization is θ̇ = −L(θ∗) · θ where L(θ∗) is a Laplacian:

L(θ∗) =


...

. . .
... . .

. ...

−ai1 cos(θ∗i − θ∗1 ) · · · ∑n
j=1 aij cos(θ∗i − θ∗j ) · · · −ain cos(θ∗i − θ∗n)

... . .
. ...

. . .
...



⇒ a major part of the literature focuses on the π/2-box

Conjecture 4: there is at most one equilibrium in the π/2-box

has been proved . . . at least on Rn [A. Araposthatis et al., ’81, K. Dvijotham et al., ’15]
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The “π/2-box” does not guarantee uniqueness on Tn

Stable π/2-box: any equilibrium in
{
θ ∈ Tn : |θi − θj | < π/2 ∀{i , j} ∈ E

}
is locally exponentially stable (modulo rotational symmetry).

Conjecture 4: there is at most one equilibrium in the π/2-box

Homogeneous counterexample

θ̇i = − sin(θi − θi−1)− sin(θi − θi+1)

admits two equilibria in π/2-box

(does not work in Rn)

The conjecture is rejected on Tn.
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Equilibrium indices in the Kuramoto model

Equilibria of the Kuramoto model &
their indices (# stable eigenvalues) θ̇i = ωi−

∑n

j=1

K

n
sin(θi−θj)
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Conjecture 5 (open): for n & K large, there are
(n
j

)
equilibria of index j
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(almost) global stability

=

sync basin is almost all of Tn



Conjecture for acyclic & undirected networks

Conjecture 6 for acyclic networks: if there is a locally exponentially stable
equilibrium, then it is almost globally stable.

Partial proof: conjecture is true for homogeneous ωi [P. Monzon, ’06] &
can be extended to weakly heterogeneous cases via ISS [Angeli & Praly,’11].

Numerics: randomized simulations apparently always confirm conjecture.
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Non-rigorous reasoning for acyclic networks

Transformation to branch coordinates

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj)

δij=θi−θj⇐====⇒
∀{i ,j}∈E


...

δ̇ij
...

 = Q


...

ω̃ij − sin(δij)
...

 ,
where Q is a positive definite matrix distorting the decoupled vector field.
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Conjecture for acyclic networks is partially rejected

Conjecture 6 for acyclic networks: if there is a locally exponentially stable
equilibrium, then it is almost globally stable.

a 3-node counterexample by
[A. Gushchin, E. Mallada, & A. Tang, ’15]:

θ̇i = ωi − 3 ·
∑3

j=1
aij sin(θi − θj)

27

27

27

1

2 3

ω1 = 2− ε

ω2 = ω3 = −1 + ε/2

δ13

δ12
−π +π

+π

reveals continua of limit cycles

The conjecture is rejected, and the problem is now even more interesting
due to partial proof for weakly heterogeneous oscillators. Possibly generic?
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Complete & uniform (Kuramoto) networks

Conjecture 7 for complete
networks: if there is a locally
exponentially stable equilibrium,
then it is almost globally stable.

θ̇i = ωi −
K

n
·
∑n

j=1
sin(θi − θj)

Today the conjecture is still open.

Partial proofs: conjecture is true for homogeneous ωi [P. Monzon, ’06] &
can be extended to weakly heterogeneous cases via ISS [Angeli & Praly,’11].

The semi-circle is know to be a subset of the sync basin [FD & F. Bullo, ’11].

Numerics: randomized simulations apparently always confirm conjecture.

Plausible argument based on order parameter reiψ =
∑n

j=1
1
neiθj

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj) ⇐⇒ θ̇i = ωi − Kr sin(θi − ψ)

This should essentially behave like a single oscillator system . . .
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conclusions

Summary and conclusions

We rejected some conjectures

systems without stable equilibria

non-unique equilibria in π/2-box

non-trivial sync basin for trees

synchronization threshold bounds

Acknowledgements: Dhagash
Mehta, Noah Daleo, Jonathan
Hauenstein, Francesco Bullo, John
Simpson-Porco, Michael Chertkov,
Matthias Rungger, Julien Hendrickx,
Rodolphe Sepulchre, Fulvio Forni, . . .

& found some intriguing problems:

# stable equilibria vs. # cycles

scaling of equilibrium indices

almost global sync basin

exact synchronization threshold

“Surprisingly
enough, this seemingly
obvious fact seems
difficult to prove.”

[Y. Kuramoto, ’84]

27 / 27


	Introduction
	Synchronization Threshold
	Equilibrium Landscape
	Almost Global Synchronization
	Conclusions

