

Electric power networks & their conventional operation

- electric energy is our lifeblood
- purpose of electric **power grid**: generate/transmit/distribute
- **constraints**: op, econ, & stab

1/32

- controllable fossil fuel sources
- 2 centralized bulk generation
- synchronous generators
- generation follows load
- **o** monopolistic energy markets
- I human in the loop & heuristics

- \Rightarrow stochastic renewable sources
- \Rightarrow distributed low-voltage generation
- \Rightarrow low/no inertia power electronics
- \Rightarrow controllable load follows generation
- \Rightarrow deregulated energy markets
- $\mathbf{0}$ centralized top-to-bottom control \Rightarrow distributed non-hierarchical control
 - \Rightarrow "smart" real-time decision making

Microgrids

Structure

- Iow-voltage distribution networks
- grid-connected or islanded
- ► autonomously managed

Applications

hospitals, military, campuses, large vehicles. & isolated communities

Benefits

- naturally distributed for renewables
- ► flexible, efficient, & reliable

Operational challenges

- volatile dynamics & low inertia
- plug'n'play & no central authority

Conventional control architecture from bulk power ntwks

3. Tertiary control (offline)

- Goal: optimize operation
- Strategy: centralized & forecast

2. Secondary control (slower)

- Goal: maintain operating point
- Strategy: centralized

1. Primary control (fast)

- Goal: stabilization & load sharing
- Strategy: decentralized

Microgrids: distributed, model-free, online & without time-scale separation ⇒ break vertical & horizontal hierarchy

A preview – plug-and-play operation architecture

flat hierarchy, distributed, no time-scale separations, & model-free \ldots

Outline

Introduction

Modeling

Primary Control

Tertiary Control

Secondary Control

Virtual Oscillator Control

Conclusions

we will illustrate all theorems with experiments

modeling & assumptions

primary control

Decentralized primary control of active power

Emulate physics of dissipative coupled synchronous machines:

 $M_i \ddot{\theta} + D_i \dot{\theta}_i$ = $P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)$

Conventional wisdom: physics are naturally stable & sync frequency reveals power imbalance

Putting the pieces together... differential-algebraic, nonlinear, large-scale closed loop network physics power balance: $P_i^{mech} = P_i^* + P_i^c - P_i(\theta)$ power flow: $P_i(\theta) = \sum_j B_{ij} \sin(\theta_i - \theta_j)$ droop control $D_i \dot{\theta}_i = (P_i^* - P_i(\theta))$

passive loads: $0 = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)$ synchronous machines: $M_i \ddot{\theta}_i + D_i \dot{\theta}_i = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)$ inverter sources: $D_i \dot{\theta}_i = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)$ controllable loads: $D_i \dot{\theta}_i = P_i^* - \sum_j B_{ij} \sin(\theta_i - \theta_j)$

Mechanical oscillator network Ω_1 Angles $(\theta_1, \ldots, \theta_n)$ evolve on \mathbb{T}^n as Ω_1 $M_i \ddot{\theta}_i + D_i \dot{\theta}_i = \Omega_i - \sum_j K_{ij} \sin(\theta_i - \theta_j)$ \bullet \bullet inertia constants $M_i > 0$ \bullet \bullet viscous damping $D_i > 0$ Ω_3

A perspective from coupled oscillators

- external torques $\Omega_i \in \mathbb{R}$
- spring constants $K_{ij} \ge 0$

Droop-controlled power system

Tertiary control and energy management an offline resource allocation & scheduling problem

The product of the p

Objective I: decentralized proportional load sharing

- 1) Sources have injection constraints: $P_i(\theta) \in [0, \overline{P}_i]$
- 2) Load must be serviceable: $0 \leq \left| \sum_{\text{loads}} P_j^* \right| \leq \sum_{\text{sources}} \overline{P}_j$
- 3) **Fairness:** load should be shared proportionally: $P_i(\theta) / \overline{P}_i = P_j(\theta) / \overline{P}_j$

Objective I: decentralized proportional load sharing

- 1) Sources have injection constraints: $P_i(\theta) \in [0, \overline{P}_i]$
- 2) Load must be serviceable: $0 \leq \left| \sum_{\text{loads}} P_j^* \right| \leq \sum_{\text{sources}} \overline{P}_j$
- 3) Fairness: load should be shared proportionally: $P_i(\theta) / \overline{P}_i = P_j(\theta) / \overline{P}_j$

A little calculation reveals in steady state:

 $\frac{P_{i}(\theta)}{\overline{P}_{i}} \stackrel{!}{=} \frac{P_{j}(\theta)}{\overline{P}_{j}} \implies \frac{P_{i}^{*} - (D_{i}\omega_{sync} - \omega^{*})}{\overline{P}_{i}} \stackrel{!}{=} \frac{P_{j}^{*} - (D_{j}\omega_{sync} - \omega^{*})}{\overline{P}_{i}}$... so choose $\frac{P_{i}^{*}}{\overline{P}_{i}} = \frac{P_{j}^{*}}{\overline{P}_{i}} \text{ and } \frac{D_{i}}{\overline{P}_{i}} = \frac{D_{j}}{\overline{P}_{i}}$

13 / 32

- 1) Sources have injection constraints: $P_i(\theta) \in [0, \overline{P}_i]$
- 2) Load must be serviceable: $0 \leq \left| \sum_{\text{loads}} P_j^* \right| \leq \sum_{\text{sources}} \overline{P}_j$

3) **Fairness:** load should be shared proportionally: $P_i(\theta) / \overline{P}_i = P_j(\theta) / \overline{P}_j$

Theorem: fair proportional load sharing [J. Simpson-Porco, FD, & F. Bullo, '12] Let the droop coefficients be selected **proportionally**:

$$\boxed{D_i/\overline{P}_i = D_j/\overline{P}_j \& P_i^*/\overline{P}_i = P_j^*/\overline{P}_j}$$

The the following statements hold:

- (i) Proportional load sharing: $P_i(\theta) / \overline{P}_i = P_j(\theta) / \overline{P}_j$
- (ii) Constraints met: $0 \le \left| \sum_{\text{loads}} P_j^* \right| \le \sum_{\text{sources}} \overline{P}_j \iff P_i(\theta) \in [0, \overline{P}_i]$

Objective II: economic generation dispatch minimize the total accumulated generation (many variations possible)	
minimize $_{\theta \in \mathbb{T}^n}$, $_{u \in \mathbb{R}^{n_l}}$	$f(u) = \sum_{\text{sources}} \alpha_i u_i^2$
subject to	
source power balance:	$P_i^* + u_i = P_i(\theta)$
load power balance:	$P_i^* = P_i(\theta)$
branch flow constraints:	$ heta_i - heta_j \le \gamma_{ij} < \pi/2$

Unconstrained case: identical marginal costs $\alpha_i u_i^* = \alpha_j u_j^*$ at optimality

In conventional power system operation, the economic dispatch is

solved offline, in a centralized way, & with a model & load forecast

In a grid with distributed energy resources, the economic dispatch should be

• solved online, in a decentralized way, & without knowing a model

13/32

Objective II: decentralized dispatch optimization

Insight: droop-controlled system = decentralized primal/dual algorithm

Theorem: optimal droop [FD, Simpson-Porco, & Bullo '13, Zhao, Mallada, & FD '14]

The following statements are equivalent:

- (i) the economic dispatch with cost coefficients α_i is strictly feasible with global minimizer (θ^*, u^*) .
- (ii) \exists droop coefficients D_i such that the power system possesses a unique & locally exp. stable sync'd solution θ .

If (i) & (ii) are true, then $\theta_i \sim \theta_i^*$, $u_i^* = -D_i(\omega_{sync} - \omega^*)$, & $\left| D_i \alpha_i = D_j \alpha_j \right|$.

- recover load sharing for $\alpha_i \propto 1/\overline{P}_i$ & similar results in constrained case
- similar results in transmission ntwks with DC flow [E. Mallada & S. Low, '13]
 & [N. Li, L. Chen, C. Zhao, & S. Low '13] & [X. Zhang & A. Papachristodoulou, '13] &
 [M. Andreasson, D. V. Dimarogonas, K. H. Johansson, & H. Sandberg, '13] & ... 16/32

Some quick simulations & extensions

secondary control (frequency regulation)

Conventional secondary frequency control in power systems

Distributed Averaging PI (DAPI) control

$$D_{i}\dot{\theta}_{i} = P_{i}^{*} - P_{i}(\theta) - \Omega_{i}$$

$$k_{i}\dot{\Omega}_{i} = D_{i}\dot{\theta}_{i} - \sum_{j \subseteq \text{sources}} a_{ij} \cdot (\alpha_{i}\Omega_{i} - \alpha_{j}\Omega_{j})$$

- no tuning & no time-scale separation: k_i, D_i > 0
- distributed & modular: connected comm. ⊆ sources
- recovers primary op. cond.
 (load sharing & opt. dispatch)
- \Rightarrow plug'n'play implementation

Plug'n'play architecture flat hierarchy, distributed, no time-scale separations, & model-free source # 1source # 2source # n Transceiver Transceiver Transceiver Secondary Secondary Secondary Tertiary Tertiary Tertiary Control Control Control Control Control Control Primary Primary Primary Control Control Control Power System

19/32

Experimental validation of control & opt. algorithms

Experimental validation of control & opt. algorithms

frequency/voltage regulation & active/reactive load sharing

what can we do better?

algorithms, detailed models, cyber-physical aspects, ...

today: virtual oscillator control

Removing the assumptions of droop control

- idealistic assumptions: quasi-stationary operation & phasor coordinates
- $\Rightarrow~$ future grids: more power electronics & renewables and fewer machines
- droop control = coupled phase oscillators constrained to limit-cycle
- ⇒ Virtual Oscillator Control: control inverters as limit cycle oscillators [Torres, Moehlis, & Hespanha, '12, Johnson, Dhople, Hamadeh, & Krein, '13]

stable sustained oscillations

dynamic behavior of droop control

digitally implemented VOC 25/32

Crash course on planar limit cycle oscillators

- the origin & positive elsewhere
- \Rightarrow unique & stable limit cycle

stable sustained oscillations

Co-evolution: "dynamic process over dynamic network"

Nonlinear oscillators:

- passive circuit impedance $z_{ckt}(s)$
- active current source g(v)

Co-evolving network:

- RLC network is LTI
- Kron reduction: eliminate loads

Homogeneity assumptions:

- identical oscillators & local loads after Kron reduction
 - \rightsquigarrow perfect sync of waveforms

Kron reduction

30 / 32

Time-domain analysis

[S. Dhople, B. Johnson, FD, & A. Hamadeh, '13]

$$\overbrace{\Pi i}^{\mathcal{F}(Z_{\mathrm{ckt}}(s), Y_{\mathrm{red}}(s))} \overbrace{\Pi v}^{\mathcal{F}(Z_{\mathrm{ckt}}(s), Y_{\mathrm{red}}(s))}$$

frequency domain **sync** criterion:

"stability of \mathcal{F} " > "instability of g"

apply Lure system analysis: passivity, L₂ small-gain, IQC,...

 \Rightarrow sync problem \rightsquigarrow stability problem

4 Liénard limit-cycle condition: sync'd & decoupled system oscillates if

```
"instability of g" > "local dissipation" for heterogeneous systems?
```

many open questions:

- some IQCs work only for some networks
- sync analysis of heterogeneous VOCs
- nonlinear constant power load models
- secondary amplitude & frequency control
- • •

Conclusions

Summary

- primary $P/\dot{\theta}$ droop control
- new quadratic droop control
- fair proportional load sharing & economic dispatch optimization
- distributed secondary control strategies based on averaging
- virtual oscillator control
- experimental validation

Ongoing work & next steps

- better models & sharper analysis
- other energy management tasks
- solve these problems without comm
- many open problems for VOC inverters

32/32

addendum: proof of optimality of droop control

Key ingredients of the proof

O convexification via flow bijection:

AC flow: $P_i = \sum_i B_{ij} \sin(\theta_i - \theta_j)$ DC flow: $P_i = \sum_i B_{ij} (\delta_i - \delta_j)$

The flow map $sin(\theta_i - \theta_i) = (\delta_i - \delta_i)$ is bijective in acyclic networks.

Argument can be extended to cyclic networks [C. Zhao, E. Mallada, & FD, '14]

- ② droop control is surjective & 1-to-1: ∃ droop coefficients to uniquely reach every feasible steady-state (with flow & injection constraints)
- **S** KKT conditions = steady state & identical marginal costs (= frequs)

 $\frac{\partial \mathcal{L}}{\partial \theta_{i}} = 0: \ 0 = \sum_{j} \lambda_{j} \cdot \frac{\partial P_{j}(\theta)}{\partial \theta_{i}} \qquad \frac{\partial \mathcal{L}}{\partial \lambda_{i}} = 0: \ -u_{i} = P_{i}^{*} - P_{i}(\theta) \text{ (controllable)}$ $\frac{\partial \mathcal{L}}{\partial u_{i}} = 0: \ 2\alpha_{i}u_{i} = -\lambda_{i} \qquad \qquad \frac{\partial \mathcal{L}}{\partial \lambda_{i}} = 0: \ 0 = P_{i}^{*} - P_{i}(\theta) \text{ (passive)}$

4 droop-controlled **dynamics** converge to stable KKT steady state

addendum: reactive power

Intuition extends to complex networks - essential insights

Closed-loop stability under quadratic droop control

secondary control of reactive power

Active & reactive power DAPI control

DAPI control for reactive power sharing [J. Simpson-Porco, FD, & F. Bullo, '12]

$$D_{i}\dot{\theta}_{i} = P_{i}^{*} - P_{i}(\theta) - \Omega_{i}$$

$$\tau_{i}\dot{E}_{i} = -C_{i}E_{i}(E_{i} - E_{i}^{*}) - Q_{i}(E) - e_{i}$$

$$\kappa_{i}\dot{\Omega}_{i} = D_{i}\dot{\theta}_{i} - \sum_{j \subseteq \text{ sources}} a_{ij} \cdot \left(\frac{\Omega_{i}}{D_{i}} - \frac{\Omega_{j}}{D_{j}}\right)$$

$$\kappa_{i}\dot{e}_{i} = -\sum_{j \subseteq \text{ sources}} a_{ij} \cdot \left(\frac{Q_{i}}{\overline{Q}_{i}} - \frac{Q_{j}}{\overline{Q}_{j}}\right) - \varepsilon e_{i}$$

Reactive DAPI control = $(quadratic droop) \cap ((injection ratio averaging) \cup \varepsilon \cdot (voltage regulation))$

- Case $\varepsilon \to \infty \Rightarrow$ steady-state voltage regulation
- Case $\varepsilon \to 0 \Rightarrow$ reactive load sharing (with non-unique voltages) [J. Schiffer, T. Seel, J. Raisch, & T. Sezi, '14] & [L.Y. Yu & C.C. Chu '14]

Active & reactive power DAPI control

DAPI control for reactive power sharing [J. Simpson-Porco, FD, & F. Bullo, '12]

