
In the Shallows of the DeePC :
Data-Enabled Predictive Control
Florian Dörfler
Automatic Control Laboratory, ETH Zürich
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Simulation data: M. Zeilinger and C. Jones

Brainstorming: B. Bamieh, B. Recht, A. Cherukuri, and M. Morari
1/27



Feedback – our central paradigm
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Big, deep, data, and so on
• unprecedented availability of

computation, storage, and data
• theoretical advances in optimization,

statistics, and machine learning
• . . . and big-data frenzy
→ increasing importance of data-centric

methods in all of science / engineering

Make up your own opinion, but machine
learning works too well to be ignored.
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Control in a data-rich world
• ever-growing trend in CS and robotics:

data-driven control by-passing models
• canonical problem: black/gray-box

system control based on I/O samples

Q: Why give up physical modeling and
reliable model-based algorithms ?

data-driven

control

u2

u1 y1

y2

Data-driven control is viable alternative when
• models are too complex to be useful

(e.g., control of fluid dynamics)

• first-principle models are not conceivable
(e.g., human-in-the-loop applications)

• modeling and system ID is too costly
(e.g., non-critical robotics applications)

Central promise: It
is often easier to learn
control policies directly
from data, rather than
learning a model.
Example: PID
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. . . of course, we are all tempted, annoyed, . . .

machine learning often achieves super-human
performance, but it performs nowhere near MPC

. . . but that’s an entirely unfair comparison, is it ?

today: preliminary ideas on a new approach
that seems equally simple & powerful
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Snippets from the literature
1. reinforcement learning / or

stochastic adaptive control / or
approximate dynamic programming

with key mathematical challenges
• (approximate/neuro) DP to learn approx.

value/Q-function or optimal policy
• (stochastic) function approximation

in continuous state and action spaces
• exploration-exploitation trade-offs

and practical limitations
• inefficiency: computation & samples
• complex and fragile algorithms
• safe real-time exploration
ø suitable for physical control systems?

unknown system
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Snippets from the literature cont’d
2. gray-box safe learning & control
• robust→ conservative & complex control
• adaptive→ hard & asymptotic performance
• contemporary learning algorithms

(e.g., MPC + Gaussian processes / RL)

→ non-conservative, optimal, & safe
ø limited applicability: need a-priori safety

robust/adaptive

control

u

y

?

3. Sequential system ID + control
• ID with uncertainty quantification

followed by robust control design
→ recent finite-sample & end-to-end ID

+ control pipelines out-performing RL
ø ID seeks best but not most useful model
ø “easier to learn policies than models”

u2

u1 y1

y2

+ ?
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Key take-aways
Quintessence of literature review :
• data-driven approach is no silver bullet (see previous ø), and

we did not even discuss output feedback, safety constraints, . . .
• predictive models are preferable over data (even approximate)
→ models are tidied-up, compressed, and de-noised representations
→ model-based methods vastly out-perform model-agnostic strategies
• but often easier to learn controllers from data rather than models

ø deadlock ?

• a useful ML insight: non-parametric methods are often
preferable over parametric ones (e.g., basis functions vs. kernels)

→ build a predictive & non-parametric model directly from raw data ?
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Colorful idea

y4y2

y1
y3 y5

y6

y7

u2 = u3 = · · · = 0

u1 = 1

x0=0

If you had the impulse response of a LTI system, then . . .
• can build state-space system identification (Kalman-Ho realization)

• . . . but can also build predictive model directly from raw data :

yfuture(t) =
[
y1 y2 y3 . . .

]
·




ufuture(t)
ufuture(t− 1)
ufuture(t− 2)

...




• model predictive control from data: dynamic matrix control (DMC)

• today: can we do so with arbitrary, finite, and corrupted I/O samples ?
9/27



Contents

Introduction

Insights from Behavioral System Theory

DeePC: Data-Enabled Predictive Control

Beyond Deterministic LTI Systems

Conclusions



Behavioral view on LTI systems
Definition: A discrete-time dynamical
system is a 3-tuple (Z≥0,W,B) where

(i) Z≥0 is the discrete-time axis,

(ii) W is a signal space, and

(iii) B ⊆ WZ≥0 is the behavior.

Definition: The dynamical system (Z≥0,W,B) is
(i) linear if W is a vector space & B is a subspace of WZ≥0 ,

(ii) time-invariant if B ⊆ σB, where σwt = wt+1, and

(iii) complete if B is closed⇔ W is finite dimensional.

In the remainder we focus on discrete-time LTI systems.

y

u
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Behavioral view cont’d
Behavior B = set of trajectories in WZ≥0 , and set of truncated
trajectories BT = {w ∈ WT | ∃ v ∈ B s.t. wt = vt, t ∈ [0, T ]}

A system (Z≥0,W,B) is controllable
if any two truncated trajectories w1, w2

∈ B can be patched together in finite
time with a trajectory w ∈ B[T,T ′].

0 T ′T

w2

w1

w

I/O : B = Bu ×By where Bu = (Rm)Z≥0 and By ⊆ (Rp)Z≥0 are
the spaces of input and output signals⇒ w = col(u, y) ∈ B

parametric kernel representation : B = col(u, y) ∈ (Rm+p)Z≥0 s.t.
b0u+ b1σu+ · · ·+ bnσ

nu + a0y + a1σy + . . . anσ
ny = 0

⇔ col(u, y) ∈ ker [b0 b1σ . . . bnσ
n a0 a1σ . . . anσ

n]
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Behavioral view cont’d
• parametric state-space representation with minimal realization

B(A,B,C,D) =
{

col(u, y) ∈ (Rm+p)Z≥0 | ∃ x ∈ (Rn)Z≥0

s.t. σx = Ax+Bu, y = Cx+Du
}

• lag smallest ` ∈ Z>0 s.t. observability matrix




C

CA
...

CA`−1


 has rank n

Lemma [Markovsky & Rapisarda ’08]: Consider a minimal state-space
model B(A,B,C,D) & a trajectory col(uini, u , yini, y) ∈ BTini+Tfuture

of length Tini +Tfuture with Tini ≥ `. Then ∃ unique xini ∈ Rn such that

y =




C

CA
...

CA`−1


xini +




D 0 ··· 0

CB D ··· 0
...

. . .
. . .

...

CAN−2B ··· CB D


u .

i.e., we can recover the initial condition from past ` samples.
12/27



LTI systems and matrix time series
foundation of state-space subspace system ID & signal recovery algorithms

u(t)

t

u4

u2

u1 u3

u5
u6

u7

y(t)

t

y4

y2

y1

y3

y5

y6

y7

(
u(t), y(t)

)
satisfy recursive

difference equation
b0ut+b1ut+1+. . .+bnut+n+

a0yt+a1yt+1+. . .+anyt+n = 0

(kernel representation)

⇐
under assumptions

⇒

[ b0 a0 b1 a1 ... bn an ] is in the left
nullspace of the Hankel matrix

Ht (
u
y ) =




(u1
y1) (u2

y2) (
u3
y3) · · ·

(uT−L+1
yT−L+1

)

(u2
y2) (u3

y3) (
u4
y4) · · ·

...

(u3
y3) (u4

y4) (
u5
y5) · · ·

...
...

. . .
. . .

. . .
...

(uL
yL) · · · · · · · · · (uT

yT )




(collected from data ∈ {1, . . . , T})
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The Fundamental Lemma
Definition : The signal u = col(u1, . . . , uT ) ∈ RTm is persistently

exciting of order L if HL(u) =



u1 ··· uT−L+1

...
. . .

...

uL ··· uT


 is of full row rank,

i.e., if the signal is sufficiently rich and long (T − L+ 1 ≥ mL).

Fundamental lemma [Willems et al, ’05] : Let T, t ∈ Z>0, Consider
• a controllable LTI system (Z>0,Rm+p,B), and
• a T -sample long trajectory col(u, y) ∈ BT , where
• u is persistently exciting of order t+ n. Then

colspan (Ht (
u
y )) = Bt .
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Cartoon of Fundamental Lemma
u(t)

t

u4

u2

u1 u3

u5
u6

u7

y(t)

t

y4

y2

y1

y3

y5

y6

y7

persistently exciting controllable LTI sufficiently many samples

Bt ≡ colspan







( u1
y1 ) ( u2

y2 ) ( u3
y3 ) . . .

( uT−t+1
yT−t+1

)

( u2
y2 ) ( u3

y3 ) ( u4
y4 ) . . .

...

( u3
y3 ) ( u4

y4 ) ( u5
y5 ) . . .

...
...

. . .
. . .

. . .
...

( ut
yt ) . . . . . . . . . ( uT

yT )







all trajectories constructible from finitely many previous trajectories
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Consequences

x(t+ 1) =Ax(t) +Bu(t)

y(t) =Cx(t) +Du(t)
colspan




( u1
y1 ) ( u2

y2 ) ( u3
y3 ) . . .

( u2
y2 ) ( u3

y3 ) ( u4
y4 ) . . .

( u3
y3 ) ( u4

y4 ) ( u5
y5 ) . . .

...
. . .

. . .
. . .




︸ ︷︷ ︸ ︸ ︷︷ ︸
parametric state-space model non-parametric model from raw data

Now let us draw the dramatic corollaries . . .
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Data-driven simulation [Markovsky & Rapisarda ’08]

Problem : predict future output yfuture ∈ RpTfuture based on
• initial trajectory col(uini, yini) ∈ R(m+p)Tini

• input signal ufuture ∈ RmTfuture

• past data col(udata, ydata) ∈ BTdata

→ to estimate xini

→ to predict forward

→ to form Hankel matrix

Solution : Assume that B is controllable and udata is persistently
exciting of oder Tini + Tfuture + n. Form partitioned Hankel matrices[

Up

Uf

]
= HTini+Tfuture(udata) and

[
Yp

Yf

]
= HTini+Tfuture(ydata) .

Solve predictive model for
(
g, yfuture

)
:




Up

Yp
Uf

Yf


 g =




uini
yini
ufuture
yfuture




}
recoverxini
}

prediction

Markovsky et al. similarly address feedforward control problem
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Output Model Predictive Control
The canonical receding-horizon MPC optimization problem :

minimize
u, x, y

T−1∑

k=0

‖yk − rt+k‖2Q + ‖uk‖2R

subject to xk+1 = Axk +Buk, ∀k ∈ {0, . . . , T − 1},
yk = Cxk +Duk, ∀k ∈ {0, . . . , T − 1},
xk+1 = Axk +Buk, ∀k ∈ {−n− 1, . . . ,−1},
yk = Cxk +Duk, ∀k ∈ {−n− 1, . . . ,−1},
uk ∈ U , ∀k ∈ {0, . . . , T − 1},
yk ∈ Y, ∀k ∈ {0, . . . , T − 1}

quadratic cost with
R � 0, Q � 0 & ref. r

model for prediction
over k ∈ [0, T − 1]

model for estimation
(many variations)

hard operational or
safety constraints

For a deterministic LTI plant and an exact model of the plant,
MPC is the gold standard of control : safe, optimal, tracking, . . .
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Data-Enabled Predictive Control
DeePC uses non-parametric and data-based Hankel matrix time series
as prediction/estimation model inside MPC optimization problem:

minimize
g, u, y

T−1∑

k=0

‖yk − rt+k‖2Q + ‖uk‖2R

subject to




Up

Yp
Uf

Yf


 g =




uini
yini
u
y


 ,

uk ∈ U , ∀k ∈ {0, . . . , T − 1},
yk ∈ Y, ∀k ∈ {0, . . . , T − 1}

quadratic cost with
R � 0, Q � 0 & ref. r

non-parametric
model for prediction
and estimation

hard operational or
safety constraints

• Hankel matrix with Tini + T rows from past data[
Up

Uf

]
= HTini+T (udata) and

[
Yp

Yf

]
= HTini+T (ydata)

• past Tini ≥ ` samples (uini, yini) for xini estimation

collected offline
(could be adapted online)

updated online
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Correctness for LTI Systems
Theorem: Consider a controllable LTI system and the DeePC &
MPC optimization problems with persistently exciting data of order
Tini + T + n. Then the feasible sets of DeePC & MPC coincide.

Corollary: If U ,Y are convex, then also the trajectories coincide.

Aerial robotics case study :
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Thus, MPC carries over to DeePC
. . . at least in the nominal case.

Beyond LTI, what about measurement noise,
corrupted past data, and nonlinearities ?
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Noisy real-time measurements

minimize
g, u, y

T−1∑

k=0

‖yk − rt+k‖2Q + ‖uk‖2R + λy‖σy‖1

subject to




Up

Yp
Uf

Yf


 g =




uini
yini
u
y


 +




0
σy
0
0


 ,

uk ∈ U , ∀k ∈ {0, . . . , T − 1},
yk ∈ Y, ∀k ∈ {0, . . . , T − 1}

Solution : add slack
to ensure feasibility
with `1-penalty
⇒ for λy sufficiently
large σy 6= 0 only if
constraint infeasible

c.f. sensitivity analysis
over randomized sims
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Hankel matrix corrupted by noise

minimize
g, u, y

T−1∑

k=0

‖yk − rt+k‖2Q + ‖uk‖2R + λg‖g‖1

subject to




Up

Yp
Uf

Yf


 g =




uini
yini
u
y


 ,

uk ∈ U , ∀k ∈ {0, . . . , T − 1},
yk ∈ Y, ∀k ∈ {0, . . . , T − 1}

Solution : add a
`1-penalty on g

another solution :
low-rank approximation
of H (udata

ydata) seems to
perform much less well

c.f. sensitivity analysis
over randomized sims

0 200 400 600 800
0

1

2

3

4

5

6

7

co
s
t

10
7 average cost

0 200 400 600 800
0

5

10

15

20

du
ra

ti
o

n
 v

io
la

ti
o

n
s
 (

s
)

average constraint violations

23/27



Why an `1-penalty on g ?



( u1
y1 ) ( u2

y2 ) ( u3
y3 ) . . .

( u2
y2 ) ( u3

y3 ) ( u4
y4 ) . . .

( u3
y3 ) ( u4

y4 ) ( u5
y5 ) . . .

...
. . .

. . .
. . .


 g =




uini
yini
u
y




• intuition : each column of Hankel matrix ≡ a past trajectory
→ `1 induces sparse column selection ≡ motion primitive combination

• why not `2-average over columns? → scenario-based programming
reasoning : sparse set of support constraints picket out by `1-penalty

• distributional robustness reasoning : `1-penalty ≡ `∞-robustness
→ min

x
max

P∈{‖P−Psample‖∞, Wasserstein≤ρ}
EP[f(x)] ≡ min

x
EPsample [f(x)] + 1

ρ‖x‖1

• . . . still working on providing exact proofs and quantitative guarantees
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Towards nonlinear systems
Idea : lift nonlinear system to large/∞-dimensional bi-/linear system
→ Carleman, Volterra, Fliess, Koopman, Sturm-Liouville methods
→ exploit size rather than nonlinearity and find features in data

→ exploit size, collect more data, & build a larger Hankel matrix
→ low-rank approximation singles out relevant basis functions

case study :
low-rank ap-
proximation +
regularization
for g and σy
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Comparison to system ID + MPC
Setup : nonlinear stochastic quadcopter model with full state info
DeePC : low-rank approximation + `1-regularization for g and σy
MPC : sys ID via prediction error method + nominal MPC
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Summary and conclusions
• fundamental lemma from behavioral systems
• matrix time series serves as predictive model
• data-enabled predictive control (DeePC)

X certificates for deterministic LTI systems
X robustification through salient regularizations
X DeePC works extremely well on case study

→ certificates for stochastic/nonlinear setup
→ adaptive extensions, explicit policies, . . .
→ other non-parametric data-based models
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Why have these
powerful ideas
not been mixed
long before us ?

Willems ’07: “[MPC] has perhaps too little system
theory and too much brute force computation in it.”

The other side often proclaims “behavioral systems
theory is beautiful but did not prove useful”
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