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Feedback — our central paradigm
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Big, deep, data, and so on

unprecedented availability of
computation, storage, and data

e theoretical advances in optimization,
statistics, and machine learning

e ...and big-data frenzy

— increasing importance of data-centric
methods in all of science/engineering

Make up your own opinion, but machine
learning works too well to be ignored.
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Control in a data-rich world

e ever-growing trend in CS and robotics:
data-driven control by-passing models

e canonical problem: black/gray-box
system control based on I/O samples

Q: Why give up physical modeling and
reliable model-based algorithms ?

Data-driven control is viable alternative when

® models are too complex to be useful
(e.g., control of fluid dynamics)

Central promise: It
is often easier to learn
o first-principle models are not conceivable control policies directly
(e.g., human-in-the-loop applications) from data, rather than
learning a model.

® modeling and system ID is too costly
(e.g., non-critical robotics applications) Example: PID
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...of course, we are all tempted, annoyed, ...

machine learning often achieves super-human
performance, but it performs nowhere near MPC

...but that’s an entirely unfair comparison, is it ?

today: preliminary ideas on a new approach
that seems equally simple & powerful
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Snippets from the literature

unknown system

1. reinforcement learning / or
stochastic adaptive control / or
approximate dynamic programming %

with key mathematical challenges

o
o
. [72]
® (approximate/neuro) DP to learn approx. s . 3
. . . G reinforcement learning control 5
value/Q-function or optimal policy © =
=}
¢ (stochastic) function approximation O@
in continuous state and action spaces S |estimate——
. o P <j:1 (>
¢ exploration-exploitation trade-offs reward
. L. ﬁ!"&
and practical limitations -
¢ inefficiency: computation & samples
. . A Tour of Reinforcement Learning
° complex and fraglle algorlthms The View from Continuous Control
¢ safe real-time exploration Benjaumin Recht
. . Department of Electrical Engineering and Computer Sciences
@ suitable for physical control systems? University of California, Berkeley
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Snippets from the literature cont'd

2. gray-box safe learning & control
® robust — conservative & complex control

® adaptive — hard & asymptotic performance

e contemporary learning algorithms
(e.g., MPC + Gaussian processes / RL)
— non-conservative, optimal, & safe
o2 limited applicability: need a-priori safety

3. Sequential system ID + control

¢ |D with uncertainty quantification
followed by robust control design

— recent finite-sample & end-to-end ID
+ control pipelines out-performing RL

@ |D seeks best but not most useful model
@ “easier to learn policies than models” o7



Key take-aways

Quintessence of literature review :

¢ data-driven approach is no silver bullet (see previous @), and
we did not even discuss output feedback, safety constraints, ...

¢ predictive models are preferable over data (even approximate)
— models are tidied-up, compressed, and de-noised representations
— model-based methods vastly out-perform model-agnostic strategies

® but often easier to learn controllers from data rather than models

o deadlock ?

e a useful ML insight: non-parametric methods are often
preferable over parametric ones (e.g., basis functions vs. kernels)

— build a predictive & non-parametric model directly from raw data ?
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Colorful idea

UQZU3:"':O

If you had the impulse response of a LTI system, then ...

¢ can build state-space system identification (Kalman-Ho realization)

e .. .but can also build predictive model directly from raw data :

Ufuture(t>
Ufuture(t - 1)
Yruture (t) = [ Y1 Y2 Ys o I | ugre (F — 2)

* model predictive control from data: dynamic matrix control (DMC)

e today: can we do so with arbitrary, finite, and corrupted 1/0O samples ?
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Behavioral view on LTI systems

Definition: A discrete-time dynamical

system is a 3-tuple (Z>(, W, &) where
(i) Z>o is the discrete-time axis,

(ii) W is a signal space, and

(iiiy Z C W#=0 is the behavior.

Definition: The dynamical system (Z>¢,W, %) is
(i) linear if W is a vector space & % is a subspace of W#>o,

(it) time-invariant if # C 0%, where ow; = w41, and

(iliy complete if £ is closed < W is finite dimensional.

In the remainder we focus on discrete-time LTI systems.
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Behavioral view cont’d

Behavior # = set of trajectories in W%=0, and set of truncated
trajectories By = {w ¢ WT | 3v € B st w; = v, t € [0,T]}

A system (Z>o,W, &) is controllable ~—
if any two truncated trajectories w!, w? o
€ % can be patched together in finite ~ —
time with a trajectory w € %7 1.

0 T T

1/0: # = B x BY where $* = (R™)%>0 and %Y C (RP)%=0 are
the spaces of input and output signals = w = col(u,y) € #

parametric kernel representation: % = col(u,y) € (R™1P)%>0 g t.

bou + biou+ -+ byo"u + agy+ajoy+...ap0"y = 0

< |col(u,y) € ker[bg bio ... byo™ ag aio ... apno"|
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Behavioral view cont’d

® parametric state-space representation with minimal realization
#(A,B,C, D) = {col(u,y) € (R™?)#>0 | I z € (R")*=°
s.t.ox = Az + Bu, y=Cx + Du}
C
R q CA
® Jag smallest ¢ € Z- s.t. observability matrix : has rank n

C’A.K_l

Lemma [Markovsky & Rapisarda '08]: Consider a minimal state-space
model #(A, B, C, D) & a trajectory col(uini, w, Yini, ¥) € B+ Tuwe
of length Tin; + Ttuture With Tini > ¢. Then 3 unique zi € R™ such that

c D 0 -~ 0
CA CB D - 0

Y= : Tini + c S RO
CA=T cAN=2B ... ¢CB D

i.e., we can recover the initial condition from past ¢ samples.
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LTI systems and matrix time series

foundation of state-space subspace system ID & signal recovery algorithms

(u(t),y(t)) satisfy recursive

difference equation
bour+brusi1+. . AbpUpyn+

apyitaryir1t. . FanYiin =0

(kernel representation)

=

under assumptions

=

[bo ag b1 ay ...

nullspace of the Hankel matrix

(collected from data € {1,...,T})

(
(
(

(

Y2

¥
Ye

bn an | is in the left

oG ) e (T
w2 () () -
wy () () -
ury e )
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The Fundamental Lemma

Definition: The signal u = col(uy, ..., ur) € RT™ is persistently
UL o UT—L41

exciting of order L if 57 (u) = { ) e

wp - ur

] is of full row rank,

i.e., if the signal is sufficiently rich and long (T — L +1 > mL).

Fundamental lemma [Willems et al, '05]: Let T',t € Z~, Consider
® a controllable LTI system (Z~o,R™*?, %), and

e a T-sample long trajectory col(u,y) € A, where

e y is persistently exciting of order t +n. Then

|colspan (4 (y)) :%t|.
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Cartoon of Fundamental Lemma

\\‘ / U 5.\ o t

s Ug Y2 ;%
persistently exciting controllable LTI sufficiently many samples
(i) (62) () ()]
(v:) (w5) (i)
B, = u Uu. us
F=colspan | (i) () (4)
L(y) oo (yT)

all trajectories constructible from finitely many previous trajectories
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Consequences

(i)
x(t 4+ 1) =Ax(t) + Bu( colsoan (2)
o) =Cr(t) 4 Du(t) > P (yj)

o~

~—

—~
e
ERTwN N

~——

To R A ®w
— — —

—
~—

parametric state-space model non-parametric model from raw data

A note on persistency of excitation
Jan C. Willems?, Paolo Rapisardab, Ivan Markovsky**, Bart L.M. De Moor*
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Now let us draw the dramatic corollaries ...
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Data'd I’Ive n Sl m U | atIO n [Markovsky & Rapisarda '08]

Problem : predict future output ywre € RP e based on

e initial trajectory col(uini, yini) € R+ T — o estimate ziy

® input signal ugre € R™ 7 uure — to predict forward

* past data col(ugata, Ydata) € By — to form Hankel matrix

Solution: Assume that % is controllable and ugat, is persistently
exciting of oder Tini + Tiyture + . Form partitioned Hankel matrices

U, Y,
|: P:| = %Tini"l‘Tfuture (udata) and |:Y§:| = c%fl—ini'i‘Tfuture (ydata) :

Us
[)]/,p Uini recover zin;
Solve predictive model for (g, yuwre) : |/ | 9= Yini
f Ututure prediction
Ye Ytuture

Markovsky et al. similarly address feedforward control problem
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Output Model Predictive Control

The canonical receding-horizon MPC optimization problem:

=il
g 3 I~ el + ol quadrati costwin
subject to xg41 = Azy + Bug, Vk € {0,...,T — 1}, model for prediction
yi = Cxy + Dug, Vke{0,...,T —1}, overk € [0,T —1]
Tp+1 = Azy, + Buy, Vk € {—n —1,...,—1}, model for estimation
yr = Cxy + Duy,, Vk € {—n —1,..., _1}, (many variations)
up €U, Vke{0,...,T—1}, hard operational or
eV, Vkefo,...,T—1} safety constraints

For a deterministic LTI plant and an exact model of the plant,
MPC is the gold standard of control: safe, optimal, tracking, ...
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Data-Enabled Predictive Control

DeePC uses non-parametric and data-based Hankel matrix time series
as prediction/estimation model inside MPC optimization problem:

=il
S 2 2 quadratic cost with
minimize = + ||u
G, 1, ;O g = revkllq + lluellz R=0,Q>=0&ref. r
Up Uini non-parametric
subject to Yy g= Yini : model for prediction
Ut U and estimation
Ye Y
up €U, Vke{0,...,T—1}, hard operational or
ye €Y, Vke {0, T — 1} safety constraints

® Hankel matrix with Tiy; + 7 rows from pastdata  .)iccted offline
[[L],ﬂ = 7, +1(Udata) @nd B;ﬂ = 7 . +7(Ydata)  (could be adapted online)

® past Tini > ¢ samples (uini, yini) for xin estimation  updated online
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Correctness for LTl Systems

Theorem: Consider a controllable LTI system and the DeePC &
MPC optimization problems with persistently exciting data of order
Tini + T + n. Then the feasible sets of DeePC & MPC coincide.

Corollary: If U/, Y are convex, then also the trajectories coincide.

Aerial robotics case study .

~ 05
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Thus, MPC carries over to DeePC
...at least in the nominal case.

Beyond LTI, what about measurement noise,
corrupted past data, and nonlinearities ?
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Noisy real-time measurements

T—1 Solution: add slack

S 9 .
AT Z o = reskllo + luell +Avllowll o ensure feasibility
g with /;-penalty
Up Uini 0 o o
i Yy _ | Yini Oy = 1or A, sufiiciently
subject to U |97 | Tlol> large o, + 0 only if
Yi y 0

constraint infeasible
up €U, Vke{0,...,T—1},

c.f. sensitivity analysis
yr €Y, Vke{0,...,T—1}

over randomized sims

average cost average constraint violations

10'°

@

>

o
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Hankel matrix corrupted by noise

o =l ) ) Solution: add a
mg}g?éze ”yk - TH—’C”Q + ”uk”R + >‘g||9||l /1-penalty on ¢
k=0
U, Wi another solution :
) Y. o low-rank approximation
subject to Up g= Gl , tata PP
£ u of A (&2) seems to
Y y perform much less well
up, €U, Vked{0,...,T—1 .
F ’ {0,..., b c.f. sensitivity analysis
yr €Y, Vke{0,...,T -1} over randomized sims
.o’ average cost average constraint violations
. O
. 215
o
4 k|
g& _gwo
2 é 5
| J g
0 © 0

0 200 400 600 800 200 400 600 800
A 23/27
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Why an ¢;-penalty on g ?

GG G ] Fum
CONE DINE DI I
() G G o= |

® jntuition: each column of Hankel matrix = a past trajectory
— ¢ induces sparse column selection = motion primitive combination

® why not /5-average over columns? — scenario-based programming
reasoning : sparse set of support constraints picket out by ¢;-penalty

e distributional robustness reasoning: ¢,-penalty = /., -robustness

— min EP[f(z)] = minEPsemie[f ()] + 7 l2[

i max
T PG{”P*Psample”oc,Wasserstein SP}

e ..still working on providing exact proofs and quantitative guarantees
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Towards nonlinear systems

Idea: lift nonlinear system to large/oco-dimensional bi-/linear system
— Carleman, Volterra, Fliess, Koopman, Sturm-Liouville methods
— exploit size rather than nonlinearity and find features in data

— exploit size, collect more data, & build a larger Hankel matrix
— low-rank approximation singles out relevant basis functions

case study:
low-rank ap-
proximation +
regularization
for g and o,
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Comparison to system ID + MPC

Setup: nonlinear stochastic quadcopter model with full state info
DeePC : low-rank approximation + ¢;-regularization for g and o,
MPC : sys ID via prediction error method + nominal MPC

single
fig-8
run

- - Constanis

[mDeePC
|mSystem ID + MPC|

random
sims
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Summary and conclusions

¢ fundamental lemma from behavioral systems
® matrix time series serves as predictive model
¢ data-enabled predictive control (DeePC) ‘

certificates for deterministic LTI systems
robustification through salient regularizations
DeePC works extremely well on case study .

certificates for stochastic/nonlinear setup
adaptive extensions, explicit policies, ... ¥ \/;2/5
other non-parametric data-based models

L 11 <<«

Why have these Willems '07: “IMPC] has perhaps too little system
powerful ideas theory and too much brute force computation in it.”

not been mixed The other side often proclaims “behavioral systems
long before us ? theory is beautiful but did not prove useful”

0.2
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