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Power system operation: supply chain without storage

= principle: deliver power
| from generators to loads

Generation

= physical constraints:
Kirchhoff's and Ohm’s laws

= operational constraints:
thermal and voltage limits

transmission = performance objectives:
grid running costs, reliability,
quality of service

&
ﬁﬁ = fit-and-forget design:
a ﬁﬁ L B distribution historically designed according

grid to worst-case possible demand



New challenges and opportunities

variable renewable energy sources
— poor short-range prediction & correlations
— fluctuations on all time scales (low inertia)

distributed microgeneration
— conventional and renewable sources
— congestion and under-/over-voltage

electric mobility
— large peak (power) & total (energy) demand
— flexible but spatio-temporal patterns

inverter-interfaced storage/generation
— extremely fast actuation
— modular & flexible control

information & comm technology
— inexpensive reliable communication
— increasingly ubiquitous sensing
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Recall: feedforward vs. feedback or optimization vs. control

feedforward optimization feedback control
Y
T—>| Controller |T>| System |—> ﬂ)@f—)‘ Controller |T>| System l——y>

highly model based = model-free (robust) design

= computationally intensive

fast response

optimal decision

suboptimal operation

operational constraints = unconstrained operation

= typically complementary methods are combined via time-scale separation

. +
Optimization r O Controller |T>| System |—>—y>

offline & feedforward ’ real-time & feedback



Example: power systems load/generation balancing

optimization stage
SC-OPF, market

T

generation
setpoints u
real-time low-level
schedule operation automatic
2 automated/manual controllers power system
services/re-dispatch droop, AGC
state T
estimation
prediction (load, generation, downtimes) disturbance 4,
= 200
= optimization stage 2 m=Renewables
) ) @ 150/  mmNuclear energy
economic dispatch based < =Lignit
12} gnite
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manual re-dispatch,
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= low-level automatic control
frequency regulation at
the individual generators
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The price for time-scale separation: sky-rocketing re-dispatch

= re-dispatch to deal with unforeseen
load, congestion, & renewables

= ever more uncertainty &
fluctuations on all time scales

=- operation architecture becomes
infeasible & inefficient

Redispatch actions in the German 15 811
transmission grid
in hours
7965 8453
7160
5030
1588

2010 2011 2012 2013 2014 2015
[Bundesnetzagentur, Monitoringbericht 2016]

Cost of ancillary services of German TSOs
in mio. Euros

primary frequency
control reserves

secondary frequency
control reserves

tertiary frequency
control reserves

reactive power

national & internat.
redispatch

411.9

2011 2012 2013 W 2014 MW 2015
[Bundesnetzagentur, Monitoringbericht 2016]

There must be a better way of operation.



Synopsis ... for essentially all ancillary services

real-time balancing recall new challenges:
frequency control m increased variability
economic re-dispatch = poor short-term prediction
voltage regulation = correlated uncertainties
voltage collapse prevention recall new opportunities:
line congestion relief » fast actuation

reactive power compensation = ubiquitous sensing

losses minimization = reliable communication

Today: these services are partially automated, implemented independently, online

or offline, based on forecasts (or not), and operating on different time/spatial scales.

One central paradigm of “smart(er) grids” : real-time operation

Future power systems will require faster operation, based on online control
and monitoring, in order to meet the operational specifications in real time.



Control-theoretic core of the problem

= time-scale separation of complementary feedback/feedforward architectures

. r + Yy
Optimization 7 Controller |T>| System |—<—>

= ideal approach: optimal feedback policies (from HJB, Pontryagin, etc.)

u(x) € argmin [T £(x,u) dt + ¢(x(T), u(T)) disturbance &

s.t. dynamics @ = h(z,u)

s.t. constraints x € X and u € U

1 v

— explicit (T = co) feedback policies are not tractable analytically or computationally

— usually a decent trade-off: receding horizon model predictive control MPC
= not suited for power systems (due to dimension, robustness, uncertainty, etc.)



Today we will follow a different approach

u(z) EWW o(2(T), u(T)) ldisturbance )

e

S.t. dynamics  imemmfplamtit—

s.t. constraints € X and u € U

I

Instead we apply online optimization in closed loop with fast/stationary physics:

operational
constraints

eIV ({5 oLy feedback control:

fast response online optimization

. . algorithm, e.g.,
operatlonal constraints 9 9
ut =ProjVv(...)

steady-state optimal

= drop exact argmin

» drop integral/stage costs
= et physics solve equality

constraints (dynamics)

disturbance ¢

R

u

actuation

X

real-time state

measurements

physical plant:

steady-state
power system

h(x,u,5) =0




Very brief review on related online optimization in closed loop

historical roots: optimal routing and queuing in communication networks, e.g., in
the internet (TCP/IP) [Kelly et al. 1998/2001, Low, Paganini, and Doyle 2002, Srikant 2012, ...]

lots of recent theory development in power systems & other infrastructures

lots of related work: [Bolognani et. al, o .
A Survey of Distributed Optimization and Control

2015], [DalfAnese and Simmonetto, Algorithms for Electric Power Systems
2016/201 7], [Gan and Low, 201 6], Daniel K. Molzahn,” Member;

Steven H. Low,! Fello

[Tang and Low, 2017], ... Ross Baldick T f

Florian Disrfler,| Member, IEEE, Henrik Sandbcrg Member, IEEE,
mbuddha Chakrabarti,” Stude E,
IEEE, and Javad Lavaei,”* Member, ll'I'r

MPC version of “dropping argmin”: real-time iteration [Diel et al. 2005], real-time
MPC [zeilinger et al. 2009], ...and related papers with anytime guarantees

independent literature in process control [Bonvin et al. 2009/2010] or extremum
seeking [Krstic and Wang 2000], . .. and probably much more

plenty of interesting recent system theory coming out [Nelson and Mallada 2017]
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OVERVIEW

1. Problem setup & preview of a solution
2. Technical ingredient I: the power flow manifold
3. Technical ingredient Il: manifold optimization

4. Case studies: tracking, feasibility, & dynamics



AC power flow model, constraints, and objectives

= quasi-stationary (for now) dynamics

P+ji
Q
I

Pra +jQ12

/i nodal voltage
1, current injection
Py, Q). power injections

k1 line impedance
I line current
P, Qi power flow

Ohm’s Law Current Law
Il IQ
. X
1y I3
[V ==z1] [0=n+.. .+

AC power

AC power flow equations

1
Se= Y. SVe(Vi-V") VkeN
leN (k) kil

(all variables and parameters are C-valued)

= objective: economic dispatch, minimize losses, distance to collapse, etc.

= operational constraints: generation capacity, voltage bands, congestion

= control: state measurements and actuation via generation set-points



What makes power flow optimization interesting?

graphical illustration of AC power flow

[Hiskens, 2001]

= imagine constraints slicing this set
= nonlinear, non-convex, disconnected

= additionally the parameters are £20%
uncertain ...this is only the steady state!

Ohm’s Law Current Law
I
I I
vl X
1y I3
o=1+...+1
AC power

—
AC power flow equations

1
Se= > V(i -W) VkeN
LEN(k) KL

o a2
P (per unit P, (per unit)

[Molzahn, 2016] 14




Ancillary services as a real-time optimal power flow

Offline optimal power flow (OPF) m exogenous variables

— u controllable generation

minimize ¢(X, U) e.g., losses, generation .
— 0 exogenous disturbances
subjectto  h(x,u,6) =0 Acpowerfiow (e.g., loads & renewables)
(X7 U) € X XU  operational constraints % endogenOUS variables (Voltages)

Idea for an online algorithm

= goal: closed-loop gradient flow operational disturbance &

constraints

X .
|:U:| - ProJMr’]Xﬂ{linearization of h} Vo(x, u) teedback control: | 7|£

physical plant:

u
online optimization actuation|  steady-state
a 5 algorithm, e.g., ower system
= implement control & (as above) 9 9 powersy
ut =ProjVv(...) h(x,u,8) =0
i f d b x
= consistency of x ensured by real-time state
measurements

non-singular physics h(x, u,d) = 0

= discrete-time implementation



Pretty hand-waivy ... I know.

| will make it more precise later.

Let’s see if it works!



Preview: simple algorithm solves many problems

Bus voltages [p.u.]

®© Generator t 1.1

(© Synchronous Condensor .

® solar 1.05 [ e E
@ Wind R

1

P S S N
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [hrs]

controller: gradient + saturation 0 2 4 6 8 10 12 14 16 18 20 22 24
. . . Time [hrs]
V(generat|0n+voltage V|olat|on) [ Genl Genz — Soar  Wind |

¢ time-variant disturbances/constraints v e dynamics of physical system v
¢ robustness to noise & uncertainty v o crude discretization/linearization v/ -



Preview cont’d: robustness to model mismatch

®© Generator i operational disturbance §
g Synchronous Condensor constraints
Solar
= )
feedback control: / u physical plant:
online optimization actuation|  steady-state
algorithm, e.g., power system
ut =ProjVv(...) h(x,u,6) =0

X
real-time state
measurements

no automatic re-dispatch

gradient controller:

m gaturation of
generation
constraints

= soft penalty for
operational
constraints

feedback optimization

model uncertainty | feasible? | f—f* | |lv—v*|| | feasible? ‘ f—f* | |lv—v*|
loads £40% 94.6 0.03 yes 0.0 0.0
line params +20% 0.19 0.01 yes 0.01 0.003
2 line failures -0.12 0.06 yes 0.19 0.007

conclusion: simple algorithm performs extremely well & robust — closer look!



TECHNICAL INGREDIENT I:
THE POWER FLOW MANIFOLD



Key insights about our physical equality constraint

= AC power flow is complex but it
defines a smooth manifold

— local tangent plane approximations
& h(x,u, d) = 0 locally solvable for x

» Bolognani & Dorfler (2015)

“Fast power system analysis via implicit linearization of the
power flow manifold”

iy B AT = AC power flow is attractive™ steady
ldo v Ecfle v +-L(7 7, state for ambient physical dynamics
“«m _T T
+ . Ri Li g, 0 _ — physics enforce feasibility even for
vae == 1| G4 g

E AN 5 non-exact (e.g., discretized) updates
J Te Lo
Ts Ts

— Gross, Arghir, & Dorfler (2018)

“On the steady-state behavior of a nonlinear power system
rf . model”
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http://dx.doi.org/10.1109/ALLERTON.2015.7447032
http://dx.doi.org/10.1109/ALLERTON.2015.7447032
http://dx.doi.org/10.1109/ALLERTON.2015.7447032

Geometric perspective: the power flow manifold

node 1 node 2
r— 0
y=04—0.8j -
vy =1, 60 =0 vz, 02
P1, Q1 D2, q2

e variables: all of x = (|V|,0,P,Q)

¢ power flow manifold: M = {x: h(x) =0}
— submanifold in R?" or R®" (3-phase)

-
8";2() x—x*)=0

— best linear approximant at x*

e tangent space

X*

2
« accuracy depends on curvature 2%

— constant in rectangular coordinates

21



Accuracy illustrated with unbalanced three-phase IEEE13

1.1

1.05

magnitude v; [pul
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13 1 13 1 13

O exact solution

* linear approximant

dirty secret: power flow manifold is very flat (linear) near usual operating points

— Matlab/Octave code @ https://github.com/saveriob/1ACPF
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Coordinate-dependent linearizations reveal old friends
o flat-voltage/0-injection point: x* = (|V|*,0*,P*,Q*) = (1,0,0,0)

N RY) =S| |IVI| _|P
= tangent space parameterization [—S(Y) R(Y) } [ 0 ] = [O]

is linear coupled power flow and R(Y) =~ 0 gives DC power flow approximation

« nonlinear change to quadratic coordinates |V| — |V/[?

= linearization is (non-radial) LinDistFlow [M.E. Baran and F.F. Wu, '88] = more exact in | V|

power flow manifold
linear approximation

DC power flow approximation
(neglects PV coupling)

linear approximation
in quadratic coordinates

: : [ a, 23



TECHNICAL INGREDIENT II:
MANIFOLD OPTIMIZATION

24



Unconstrained manifold optimization: the smooth case
= geometric objects:
manifold M ={x: h(x)=0} objective ¢ M—=R
tangent space Ty M = ker%T Riemann metric g: TxM x TeM — R
(degree of freedom)

» target state: local minimizer on the manifold x* € arg minxe at ¢(x)

= always feasible <> trajectory/sequence x(t) remains on manifold M

. . . linear approximant
= continuous-time gradient descent on M: PP

Gradient of cost function

1. grad ¢(x): gradient of cost
function in ambient space

Projected gradient

2. Mxq (x, —grade(x)): projection of
gradient on tangent space T,y M

3. flow on manifold: % = M, (x, —gradg(x))

25



Constrained manifold optimization: the wild west

dealing with operational constraints g(x) <0

1. penalty in cost function ¢ IC
— barrier: not practical for online implementation =

— soft penalty: practical but no real-time feasibility

oM

2. dualization and gradient flow on Lagrangian
— poor performance & no real-time feasibility
— theory: close to none available on manifolds

» Hauswirth, Bolognani, Hug, & Dérfler (2018)
“Generic Existence of Unique Lagrange Multipliers in AC Optimal Power Flow”

3. projection of gradient flow trajectory x(t) on feasible set X = M N {g(x) < 0}
Xx = [Nk (x, —grade¢(x)) € arg min || —grad ¢(x) — v|g
VET. K

where T K C Ty M is inward tangent cone 2



Projected gradient descent on manifolds

K={x:xIZ=1, lIxl < v2}

Theorem (simplified)

Let x : [0, 00) — K be a Carathéodory
solution of the initial value problem

X =Mk (x, —grade(x)) ,  x(0) = Xo -

If ¢ has compact level sets on IC, then x(t)
will converge to a critical point x* of ¢ on K.
— Hauswirth, Bolognani, Hug, & Dérfler (2016)

“Projected gradient descent on Riemanniann manifolds
with applications to online power system optimization”

Hidden assumption: existence of a Carathéodory solution x(t) € K

— when does it exist, is forward complete, unique, and sufficiently regular ?

(in absence of convexity, Euclidean space, and other regularity properties)


http://doi.org/10.1109/ALLERTON.2016.7852234
http://doi.org/10.1109/ALLERTON.2016.7852234
http://doi.org/10.1109/ALLERTON.2016.7852234

Analysis via projected systems hit mathematical bedrock

R K

i E
R

power flow manifold disconnected regions cusps & corners (convex and/or inward)

constraint set | gradient field ‘ metric ‘ manifold

existence (Krasovski) loc. compact loc. bounded | - c'
Krasovski = Carathéodory | Clarke regular | C° c° c!
uniqueness of solutions prox regular c%! co! c"

— also forward-Lipschitz continuity of time-varying constraints
— continuity with respect to initial conditions and parameters
— Hauswirth, Bolognani, Hug, & Dérfler (2018) — Hauswirth, Subotic, Bolognani, Hug, & Dérfler (2018)

“Projected Dynamical Systems on Irregular, Non-Euclidean Domain “Time-varying Projected Dy y with Applications to
for Nonlinear Optimization” Feedback Optimization of Power Sy - 28



http://doi.org/10.1109/ALLERTON.2016.7852234
http://doi.org/10.1109/ALLERTON.2016.7852234
http://doi.org/10.1109/ALLERTON.2016.7852234
http://doi.org/10.1109/ALLERTON.2016.7852234
http://doi.org/10.1109/ALLERTON.2016.7852234
http://doi.org/10.1109/ALLERTON.2016.7852234

Implementation issue: how to induce the gradient flow?

Open-loop system Desired closed-loop system
X1 =Uu controlled generation Xy = fi1(X1,X2) desired projected
0 = h(x1,X2,0)  AC power flow manifold Xo = fo(X1,X2)  gradient descent

relating x; & other variables where f(x) = Mk (x, —grada(x))

Solution use non-singularity of the physics: 0 = h(x1, X2, §) can be solved for x,

" actuate
Feedback equivalence u
open-loop

) . ) feedback
The trajectories of the desired closed o:fimiizr _ system
loop coincide with those of the open M (x, —gradé(x)), g‘==h‘(’x1 Yor8)
loop under the feedback u = f;(xy, x2). X

measure

— closed-loop trajectory remains feasible at all times and converges to optimality

— no need to numerically solve the optimization problem or any power flow equation

29



Implementation issue: discrete-time manifold optimization

= always feasible <« trajectory/sequence x(t) remains on manifold M

. . . linear approximant
» discrete-time gradient descent on M: PP

1.
2.

3.

. retraction step: x(t + 1) = Ry (X(t + 1))

Gradient of cost function

grad ¢(x): gradient of cost function
Ma (x, —grade(x)): projection of gradient

Euler integration of gradient flow:
X(t+1) = x(t)—e M (x, —grade(x))

Discrete-time control implementation:

— manifold is attractive steady state for ambient dynamics

— retraction is taken care of by the physics: “nature enforces feasibility”
— can be made rigorous using singular perturbation theory (Tikhonov)

30



CASE STUDIES: TRACKING, FEASIBILITY, & DYNAMICS

31



Simple illustrative case study

Objective Value [$]

real time cost
— = global minimum

0 50 100 150 200 250 300

0 50 100 150 200 250 300
Active power generation [MW]

Slackbus — — GenA —-—-GenB

0 50 100 150 200 250 300
iteration

feedback
optimizer
Mk (x, —grade(x)),

actuate
u

X
measure

open-loop
system
X1 =u
0 = h(x1, X2, 6)

32



The tracking problem

= power system affected by exogeneous time-varying inputs ¢;

— under disturbances state could leave feasible region K (ill-defined)

[
u
A

open-loop

feedback

g system
optimizer )
X1=Uu
i (x. ~grado(x)), 0 = hixs. 0,50

constraints satisfaction for non-controllable variables:
m /C accounts only for hard constraints on controllable variables u (e.g., generation limits)
m gradient projection becomes input saturation (saturated proportional feedback control)

= soft constraints included via penalty functions in ¢ (e.g., thermal and voltage limits)

33



Tracking performance

(©) Generator
(© Synchronous Condensor

(® solar
W) wind

Aggregate Load & Available Renewable Power [MW]
400[ T T T T [oad — Solar— Wind
300 J\/\

200
100

8 10 12 14 16 18 20 22 24
Time [hrs]

6

controller: penalty + saturation

11 Bus voltages [p.u.]

1.05 | > 8

0.95 | 1

o9 b vl v v 0
Branch current magnitudes [p.u.]

Active power injection [MW]

200
150
100

50

0

0 2 4 6 8 10 12 14 16 18 20 22 24

Time [hrs]
— Genl —Gen2 — Solar — Wind
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Tracking performance

(® Generator e .
© Synchronous Condensor . - Comparison
(® solar

» closed-loop feedback trajectory

= benchmark: feedforward OPF

(ground-truth solution of an ideal OPF with access to
exact disturbance and without computation delay)

Generation cost
T T T

= practically exact tracking
1,000
+ trajectory feasibility

500

+ robustness to
model mismatch 0

E e S S S S R R
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [hrs]

35



Trajectory feasibility

The feasible region K = M N X often has disconnected components.

e

M

= feedforward (OPF)
— optimizer x* = arg minyecx ¢(x) can be in different disconnected component
— no feasible trajectory exists: xo, — x* must violate constraints

= feedback (gradient descent)
— continuous closed-loop trajectory x(t) guaranteed to be feasible
— convergence of x(t) to a local minimum is guaranteed



lllustration of continuous trajectories & reachability

5-bus example known to have two
disconnected feasible regions:

2

60°0+20°0

[Molzahn, 2016]

m [0s,2000s]: separate feasible regions

m [2000s,3000s]: loosen limits on
reactive power Q, — regions merge

= [4000s,5000s]: tighten limits on Q,
— vanishing feasible region

Objective Value [$]

1200 T T
— Feedback
= -Feed-forward r- _I
1000 !
800 . . . .
0 1000 2000 3000 4000 5000
Voltage Levels [p.u.]
1.05
1 J
L R, ¥ —
0 1000 2000 3000 4000 5000
Active Power Generation P [MW]
300 F T T T T 3
200 - =|
/ - Genl
100 | | | | - Gen2
0 1000 2000 3000 4000 5000
Reactive Power Generation Q [MVAR]
200 1 ol " : T
100 {28 f_‘_'_/\_\_
oL e —
T T T i
0 1000 2000 3000 4000 5000
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Power [p.u.]

deviation [Hz]

Feedback optimization with frequency

= frequency w as global variable
= primary control: P = Pz — Kw

= secondary frequency control
incorporated via dual multiplier

m 20% step increase in load

Active Power Generation

05
0 . . . . . . . . . ,
0 10 20 30 40 50 60 70 80 90 100
Time [s]
Frequency
o1
0.05
0
-0.05 l\/
o1
015 1 1 1 . 1 . 1 . |
0 10 20 30 40 50 60 70 80 9 100
Time [s]

Voltage [p.u.]

Power [p.u.]

Generation Cost

7000
Aggregated Reference OPF
6000
5000 ‘
4000 \ﬁ
3000 L L " L L L L L L )
[ 10 20 30 40 50 6 70 80 9 100
Time [s]
Reactive Power Generation
03f
02 A/g
o1l N
N S ——
0.1
0.2
0 10 20 30 40 50 60 70 80 90 100
Time [s]
Bus voltages
14 ——
105 k\//—f% D e e —
4
s
095
L L L L L L L L L )
0 10 2 30 4 5 6 70 8 90

Time [s]



Power [p.u.]

Power [MW]

Same feedback optimization with grid dynamics

Active Power Generation Frequency

deviation [Hz]

0 25 50 75 100 0 25 50 75

Time [s] Time [s]
Active Power Generation (zoomed) Frequency (zoomed)

jeviation [Hz]

o

)
100

Time [s] Time [s]

= dynamic grid model: swing equation & simple turbine governor
= work in progress based on singular perturbation methods

=- dynamic and quasi-stationary dynamics are “close” and converge to
the same optimal solutions under “sufficient” time-scale separation
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Feedback optimization in dynamic IEEE 30-bus system

(© Generator

wah

@ Synchronous Condensor
@ Solar
W) Wind

= events:
— generator outage at 4:00
— PV generation drops
at 11:00 and 14:15

= feedback optimization can provide
all ancillary services + optimal +
constraints + robust + scalable + ...

Active power injection [MW]

01 23 45

Time [hs]

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

—— Gen 1 —— Gen2 —— Gen 3 —— Solar —— Wind,
Tequency deviation [H]
Ol T T T T T T T T T T T T T T T T T T T T
51072 1 B
N N A |
0 A [ U AANA S poemna a1
5102 | ‘ 1
o1 Ll L L

Time [hs]

Generation cost [$/hr]

TR L L
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

I — T T
Y —— reference AC OPF
——  Feedback OPF
400
N
200 |- q —
|
L J
0 Lo

Time [hrs]

T N SO R R R BRI
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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Conclusions

Summary:

= necessity of real-time power system operation

= our starting point: online optimization as feedback control

» technical approach: manifold optimization & projected dyn. systems

= unified framework accommodating various constraints & objectives

Ongoing and future work:
m fun: questions on existence of trajectories, reachability, ...

= quantitative guarantees for robustness, tracking, etc.

interaction of optimization algorithm with low level grid dynamics

efficient implementation, discretization, experiments, RTE collaboration

extensions: transient optimality a la MPC & model-free a la extremum seeking

M



Thanks !

Florian Dorfler

http://control.ee.ethz.ch/~floriand

dorfler@ethz.ch
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