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Power system operation: supply chain without storage

transmission
grid

distribution
grid

Traditional
Power

Generation

principle: deliver power
from generators to loads

physical constraints:
Kirchhoff’s and Ohm’s laws

operational constraints:
thermal and voltage limits

performance objectives:
running costs, reliability,
quality of service

fit-and-forget design:
historically designed according
to worst-case possible demand
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New challenges and opportunities

variable renewable energy sources
– poor short-range prediction & correlations
– fluctuations on all time scales (low inertia)

distributed microgeneration
– conventional and renewable sources
– congestion and under-/over-voltage

electric mobility
– large peak (power) & total (energy) demand
– flexible but spatio-temporal patterns

inverter-interfaced storage/generation
– extremely fast actuation
– modular & flexible control

information & comm technology
– inexpensive reliable communication
– increasingly ubiquitous sensing
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Recall: feedforward vs. feedback or optimization vs. control

feedforward optimization

Controller System
r

u

y

highly model based
computationally intensive
optimal decision
operational constraints

feedback control p

Controller System
r +

u

y

−

model-free (robust) design
fast response
suboptimal operation
unconstrained operation

⇒ typically complementary methods are combined via time-scale separation

Optimization Controller System
r +

u

y

−

offline & feedforward
∣∣∣ real-time & feedback
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Example: power systems load / generation balancing

optimization stage
SC-OPF, market

real-time
operation

automated/manual
services/re-dispatch

low-level
automatic
controllers
droop, AGC

power system

disturbance δt

u

x

generation
setpoints

state
estimation

prediction (load, generation, downtimes)

schedule

optimization stage
economic dispatch based
on load/renewable prediction

real-time interface
manual re-dispatch,
area balancing services

low-level automatic control
frequency regulation at
the individual generators
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The price for time-scale separation: sky-rocketing re-dispatch

re-dispatch to deal with unforeseen
load, congestion, & renewables

⇒ ever more uncertainty &
fluctuations on all time scales

⇒ operation architecture becomes
infeasible & inefficient

1 588

2010

5 030

2011

7 160

2012

7 965
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8 453

2014

15 811

2015

Redispatch actions in  the German 
transmission grid
in hours

[Bundesnetzagentur, Monitoringbericht 2016]
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secondary frequency
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50.2

tertiary frequency
control reserves

27.0
68.3

33.0
26.7
32.6

reactive power

41.6
164.8

113.3
185.4

411.9

national & internat.
redispatch

111.8
82.3
85.2

103.4
110.9

primary frequency
control reserves

Cost of ancillary services of German TSOs
in mio. Euros

2011 2012 2013 2014 2015
[Bundesnetzagentur, Monitoringbericht 2016]

There must be a better way of operation.
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Synopsis . . . for essentially all ancillary services

• real-time balancing
• frequency control
• economic re-dispatch
• voltage regulation
• voltage collapse prevention
• line congestion relief
• reactive power compensation
• losses minimization

recall new challenges:
increased variability
poor short-term prediction
correlated uncertainties

recall new opportunities:
fast actuation
ubiquitous sensing
reliable communication

Today: these services are partially automated, implemented independently, online
or offline, based on forecasts (or not), and operating on different time/spatial scales.

One central paradigm of “smart(er) grids” : real-time operation

Future power systems will require faster operation, based on online control
and monitoring, in order to meet the operational specifications in real time.
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Control-theoretic core of the problem

time-scale separation of complementary feedback/feedforward architectures

Optimization Controller System
r +

u

y

−

ideal approach: optimal feedback policies (from HJB, Pontryagin, etc.)

u(x) ∈ argmin
∫ T

0 `(x, u) dt+ φ(x(T ), u(T ))

s.t. dynamics ẋ = h(x, u)

s.t. constraints x ∈ X and u ∈ U

System
u

x

disturbance δ

→ explicit (T =∞) feedback policies are not tractable analytically or computationally

→ usually a decent trade-off: receding horizon model predictive control MPC
⇒ not suited for power systems (due to dimension, robustness, uncertainty, etc.)
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Today we will follow a different approach

u(x) ∈ argmin
∫ T

0 ℓ(x, u) dt + φ(x(T ), u(T ))

s.t. dynamics ẋ = h(x, u)

s.t. constraints x ∈ X and u ∈ U

System
u

x

disturbance δ
drop exact argmin
drop integral/stage costs
let physics solve equality
constraints (dynamics)

Instead we apply online optimization in closed loop with fast/stationary physics:

robust (feedback)
fast response
operational constraints
steady-state optimal

feedback control:
online optimization
algorithm, e.g.,

u+ = Proj∇(. . . )

physical plant:
steady-state
power system

h(x,u, δ) = 0

u
actuation

x
real-time state
measurements

operational
constraints

disturbance δ
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Very brief review on related online optimization in closed loop

• historical roots: optimal routing and queuing in communication networks, e.g., in
the internet (TCP/IP) [Kelly et al. 1998/2001, Low, Paganini, and Doyle 2002, Srikant 2012, . . . ]

• lots of recent theory development in power systems & other infrastructures
lots of related work: [Bolognani et. al,
2015], [Dall’Anese and Simmonetto,
2016/2017], [Gan and Low, 2016],
[Tang and Low, 2017], . . .
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A Survey of Distributed Optimization and Control
Algorithms for Electric Power Systems

Daniel K. Molzahn,⇤ Member, IEEE, Florian Dörfler,† Member, IEEE, Henrik Sandberg,‡ Member, IEEE,
Steven H. Low,§ Fellow, IEEE, Sambuddha Chakrabarti,¶ Student Member, IEEE,

Ross Baldick,¶ Fellow, IEEE, and Javad Lavaei,⇤⇤ Member, IEEE

Abstract—Historically, centrally computed algorithms have
been the primary means of power system optimization and con-
trol. With increasing penetrations of distributed energy resources
requiring optimization and control of power systems with many
controllable devices, distributed algorithms have been the subject
of significant research interest. This paper surveys the literature
of distributed algorithms with applications to optimization and
control of power systems. In particular, this paper reviews
distributed algorithms for offline solution of optimal power flow
(OPF) problems as well as online algorithms for real-time solution
of OPF, optimal frequency control, optimal voltage control, and
optimal wide-area control problems.

Index Terms—Distributed optimization, online optimization,
electric power systems

I. INTRODUCTION

CENTRALIZED computation has been the primary way
that optimization and control algorithms have been ap-

plied to electric power systems. Notably, independent system
operators (ISOs) seek a minimum cost generation dispatch
for large-scale transmission systems by solving an optimal
power flow (OPF) problem. (See [1]–[8] for related litera-
ture reviews.) Other control objectives, such as maintaining
scheduled power interchanges, are achieved via an Automatic
Generation Control (AGC) signal that is sent to the generators
that provide regulation services.

These optimization and control problems are formulated
using network parameters, such as line impedances, system
topology, and flow limits; generator parameters, such as cost
functions and output limits; and load parameters, such as an
estimate of the expected load demands. The ISO collects all
the necessary parameters and performs a central computation
to solve the corresponding optimization and control problems.

With increasing penetrations of distributed energy resources
(e.g., rooftop PV generation, battery energy storage, plug-in
vehicles with vehicle-to-grid capabilities, controllable loads

⇤: Argonne National Laboratory, Energy Systems Division, Lemont, IL,
USA, dmolzahn@anl.gov. Support from the U.S. Department of En-
ergy, Office of Electricity Delivery and Energy Reliability under contract
DE-AC02-06CH11357.†: Swiss Federal Institute of Technology (ETH), Automatic Control Labora-
tory, Zürich, Switzerland, dorfler@control.ee.ethz.ch‡: KTH Royal Institute of Technology, Department of Automatic Control,
Stockholm, Sweden, hsan@kth.se§: California Institute of Technology, Department of Electrical Engineering,
Pasadena, CA, USA, slow@caltech.edu¶: University of Texas at Austin, Department of Electrical and Computer En-
gineering, Austin, TX, USA, sambuddha.chakrabarti@gmail.com,
baldick@ece.utexas.edu. Support from NSF grant ECCS-1406894.⇤⇤: University of California, Berkeley, Department of Industrial Engineering
and Operations Research, Berkeley, CA, USA, lavaei@berkeley.edu

providing demand response resources, etc.), the centralized
paradigm most prevalent in current power systems will poten-
tially be augmented with distributed optimization algorithms.
Rather than collecting all problem parameters and performing
a central calculation, distributed algorithms are computed
by many agents that obtain certain problem parameters via
communication with a limited set of neighbors. Depending on
the specifics of the distributed algorithm and the application of
interest, these agents may represent individual buses or large
portions of a power system.

Distributed algorithms have several potential advantages
over centralized approaches. The computing agents only have
to share limited amounts of information with a subset of
the other agents. This can improve cybersecurity and reduce
the expense of the necessary communication infrastructure.
Distributed algorithms also have advantages in robustness with
respect to failure of individual agents. Further, with the ability
to perform parallel computations, distributed algorithms have
the potential to be computationally superior to centralized
algorithms, both in terms of solution speed and the maxi-
mum problem size that can be addressed. Finally, distributed
algorithms also have the potential to respect privacy of data,
measurements, cost functions, and constraints, which becomes
increasingly important in a distributed generation scenario.

This paper surveys the literature of distributed algorithms
with applications to power system optimization and control.
This paper first considers distributed optimization algorithms
for solving OPF problems in offline applications. Many dis-
tributed optimization techniques have been developed con-
currently with new representations of the physical models
describing power flow physics (i.e., the relationship between
the complex voltage phasors and the power injections). The
characteristics of a power flow model can have a large impact
on the theoretical and practical aspects of an optimization
formulation. Accordingly, the offline OPF section of this
survey is segmented into sections based on the power flow
model considered by each distributed optimization algorithm.
This paper then focuses on online algorithms applied to
OPF, optimal voltage control, and optimal frequency control
problems for real-time purposes.

Note that algorithms related to those reviewed here have
found a wide variety of power system applications in dis-
tributed optimization and control. See, for instance, surveys
on the large and growing literature relevant to distributed
optimization of electric vehicle charging schedules [9] and
demand response applications [10] as well as work on dis-
tributed solution of multi-period formulations for model pre-

• MPC version of “dropping argmin”: real-time iteration [Diel et al. 2005], real-time
MPC [Zeilinger et al. 2009], . . . and related papers with anytime guarantees

• independent literature in process control [Bonvin et al. 2009/2010] or extremum
seeking [Krstic and Wang 2000], . . . and probably much more

• plenty of interesting recent system theory coming out [Nelson and Mallada 2017]
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OVERVIEW

1. Problem setup & preview of a solution

2. Technical ingredient I: the power flow manifold

3. Technical ingredient II: manifold optimization

4. Case studies: tracking, feasibility, & dynamics
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AC power flow model, constraints, and objectives
quasi-stationary (for now) dynamics

2
5

3
4

6

7
8

910

11

12 13

nodal voltage
current injection
power injections

line impedance
line current
power flow

Ohm’s Law Current Law

AC power

AC power flow equations

(all variables and parameters are    -valued)

objective: economic dispatch, minimize losses, distance to collapse, etc.

operational constraints: generation capacity, voltage bands, congestion

control: state measurements and actuation via generation set-points
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What makes power flow optimization interesting?

graphical illustration of AC power flow

[Hiskens, 2001]

imagine constraints slicing this set
⇒ nonlinear, non-convex, disconnected

additionally the parameters are ±20%
uncertain . . . this is only the steady state!

Ohm’s Law Current Law

AC power

AC power flow equations

(all variables and parameters are    -valued)

[Molzahn, 2016] 14



Ancillary services as a real-time optimal power flow

Offline optimal power flow (OPF)

minimize φ(x, u) e.g., losses, generation

subject to h(x, u, δ) = 0 AC power flow

(x, u) ∈ X × U operational constraints

exogenous variables
→ u controllable generation
→ δ exogenous disturbances

(e.g., loads & renewables)
x endogenous variables (voltages)

Idea for an online algorithm

goal: closed-loop gradient flow
[

ẋ
u̇

]
= −ProjU∩X∩{linearization of h}∇φ(x, u)

implement control u̇ (as above)

consistency of x ensured by
non-singular physics h(x, u, δ) = 0

discrete-time implementation

feedback control:
online optimization
algorithm, e.g.,

u+ = Proj∇(. . . )

physical plant:
steady-state
power system

h(x,u, δ) = 0

u
actuation

x
real-time state
measurements

operational
constraints

disturbance δ
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Pretty hand-waivy . . . I know.

I will make it more precise later.

Let’s see if it works!
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Preview: simple algorithm solves many problems

G1

G2 C1

C3 C2
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

500

1,000

1,500

Time [hrs]

Generation cost

Feedback OPF

Optimal cost

controller: gradient + saturation
∇(

generation + voltage violation
) Time [hrs]

0.95

1

1.05

1.1
Bus voltages [p.u.]

0

0.5

1

Branch current magnitudes [p.u.]
0.9

0 2 4 6 8 10 12 14 16 18 20 22 24
0

50
100
150
200

Active power injection [MW]

Gen1 Gen2 Solar Wind

• time-variant disturbances/constraints X

• robustness to noise & uncertainty X

• dynamics of physical system X

• crude discretization/linearization X
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Preview cont’d: robustness to model mismatch

G1

G2 C1

C3 C2

W

S

Generator

Synchronous Condensor

Solar

Wind

G

C

S

W
feedback control:
online optimization
algorithm, e.g.,

u+ = Proj∇(. . . )

physical plant:
steady-state
power system

h(x,u, δ) = 0

u
actuation

x
real-time state
measurements

operational
constraints

disturbance δ gradient controller:
saturation of
generation
constraints
soft penalty for
operational
constraints

no automatic re-dispatch feedback optimization
model uncertainty feasible ? f − f∗ ‖v − v∗‖ feasible ? f − f∗ ‖v − v∗‖

loads ±40% no 94.6 0.03 yes 0.0 0.0
line params ±20% yes 0.19 0.01 yes 0.01 0.003
2 line failures no -0.12 0.06 yes 0.19 0.007

conclusion: simple algorithm performs extremely well & robust→ closer look!
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TECHNICAL INGREDIENT I:

THE POWER FLOW MANIFOLD
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Key insights about our physical equality constraint

vdc

idc

m

iI

v

LI

CI GI

RI

τm

θ, ω

vf

v

if

τe

is

Lθ

M
rf

rs rs

v

iTLT

CG GqC v

RTiI

AC power flow is complex but it
defines a smooth manifold

→ local tangent plane approximations
& h(x, u, δ) = 0 locally solvable for x

→ Bolognani & Dörfler (2015)
“Fast power system analysis via implicit linearization of the
power flow manifold”

AC power flow is attractive∗ steady
state for ambient physical dynamics

→ physics enforce feasibility even for
non-exact (e.g., discretized) updates

→ Gross, Arghir, & Dörfler (2018)
“On the steady-state behavior of a nonlinear power system
model”
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Geometric perspective: the power flow manifold

node 2node 1
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y = 0.4− 0.8j
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• variables: all of x = (|V |, θ,P,Q)

• power flow manifold: M = {x : h(x) = 0}
→ submanifold in R2n or R6n (3-phase)

• tangent space ∂h(x)
∂x

∣∣>
x∗

(x − x∗) = 0

→ best linear approximant at x∗

• accuracy depends on curvature ∂2h(x)
∂x2

→ constant in rectangular coordinates
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Accuracy illustrated with unbalanced three-phase IEEE13

◦ exact solution ? linear approximant

dirty secret: power flow manifold is very flat (linear) near usual operating points

→ Matlab/Octave code @ https://github.com/saveriob/1ACPF 22



Coordinate-dependent linearizations reveal old friends

• flat-voltage/0-injection point: x∗ = (|V |∗, θ∗,P∗,Q∗) = (1, 0, 0,0)

⇒ tangent space parameterization
[
<(Y ) −=(Y )
−=(Y ) <(Y )

] [
|V |
θ

]
=

[
P
Q

]

is linear coupled power flow and <(Y ) ≈ 0 gives DC power flow approximation

• nonlinear change to quadratic coordinates |V | → |V |2

⇒ linearization is (non-radial) LinDistFlow [M.E. Baran and F.F. Wu, ’88]⇒ more exact in |V |
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DC power flow approximation
(neglects PV coupling)
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TECHNICAL INGREDIENT II:

MANIFOLD OPTIMIZATION

24



Unconstrained manifold optimization: the smooth case
geometric objects:

manifold M = {x : h(x) = 0}

tangent space TxM = ker ∂h(x)
∂x
>

objective φ :M→ R

Riemann metric g : TxM× TxM→ R
(degree of freedom)

target state: local minimizer on the manifold x? ∈ argminx∈M φ(x)

always feasible↔ trajectory/sequence x(t) remains on manifoldM

continuous-time gradient descent onM:

1. gradφ(x): gradient of cost
function in ambient space

2. ΠM (x,−gradφ(x)): projection of
gradient on tangent space TxM

3. flow on manifold: ẋ = ΠM (x,−gradφ(x))                manifold

linear approximant

x(t)

Gradient of cost function

Projected gradient

ẋ

25



Constrained manifold optimization: the wild west

dealing with operational constraints g(x) ≤ 0

1. penalty in cost function φ
→ barrier: not practical for online implementation
→ soft penalty: practical but no real-time feasibility

2. dualization and gradient flow on Lagrangian
→ poor performance & no real-time feasibility
→ theory: close to none available on manifolds

→ Hauswirth, Bolognani, Hug, & Dörfler (2018)
“Generic Existence of Unique Lagrange Multipliers in AC Optimal Power Flow”

3. projection of gradient flow trajectory x(t) on feasible set K =M∩ {g(x) ≤ 0}

ẋ = ΠK (x,−gradφ(x)) ∈ arg min
v∈T>

x K
‖ − gradφ(x)− v‖g

where T>
x K ⊂ TxM is inward tangent cone 26



Projected gradient descent on manifolds

K =
{

x : ‖x‖22 = 1 , ‖x‖1 ≤
√
2
}

Theorem (simplified)

Let x : [0,∞)→ K be a Carathéodory
solution of the initial value problem

ẋ = ΠK (x,−gradφ(x)) , x(0) = x0 .

If φ has compact level sets on K, then x(t)
will converge to a critical point x? of φ on K.

→ Hauswirth, Bolognani, Hug, & Dörfler (2016)
“Projected gradient descent on Riemanniann manifolds
with applications to online power system optimization”

Hidden assumption: existence of a Carathéodory solution x(t) ∈ K
→ when does it exist, is forward complete, unique, and sufficiently regular ?

(in absence of convexity, Euclidean space, and other regularity properties)
27
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Analysis via projected systems hit mathematical bedrock

power flow manifold disconnected regions cusps & corners (convex and/or inward)

constraint set gradient field metric manifold

existence (Krasovski) loc. compact loc. bounded - C1

Krasovski = Carathéodory Clarke regular C0 C0 C1

uniqueness of solutions prox regular C0,1 C0,1 C1,1

→ also forward-Lipschitz continuity of time-varying constraints
→ continuity with respect to initial conditions and parameters

→ Hauswirth, Bolognani, Hug, & Dörfler (2018)
“Projected Dynamical Systems on Irregular, Non-Euclidean Domain
for Nonlinear Optimization”

→ Hauswirth, Subotic, Bolognani, Hug, & Dörfler (2018)
“Time-varying Projected Dynamical Systems with Applications to
Feedback Optimization of Power Systems” 28
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Implementation issue: how to induce the gradient flow?

Open-loop system

ẋ1 = u controlled generation

0 = h(x1, x2, δ) AC power flow manifold

relating x1 & other variables

Desired closed-loop system

ẋ1 = f1(x1, x2) desired projected

ẋ2 = f2(x1, x2) gradient descent

where f (x) = ΠK (x,−gradφ(x))

Solution use non-singularity of the physics: 0 = h(x1, x2, δ) can be solved for x2

Feedback equivalence

The trajectories of the desired closed
loop coincide with those of the open
loop under the feedback u = f1(x1, x2).

feedback
optimizer

ΠK (x, −gradφ(x))1

open-loop
system

ẋ1 = u
0 = h(x1, x2, δ)

actuate
u

x
measure

→ closed-loop trajectory remains feasible at all times and converges to optimality
→ no need to numerically solve the optimization problem or any power flow equation

29



Implementation issue: discrete-time manifold optimization

always feasible↔ trajectory/sequence x(t) remains on manifoldM

discrete-time gradient descent onM:

1. gradφ(x): gradient of cost function

2. ΠM (x,−gradφ(x)): projection of gradient

3. Euler integration of gradient flow:
x̃(t+1) = x(t)−εΠM (x,−gradφ(x))

4. retraction step: x(t + 1) = Rx(t)
(
x̃(t + 1)

)                manifold

linear approximant

x(t)

Gradient of cost function

Projected gradient

x(t + 1)
Retraction

Discrete-time control implementation:
→ manifold is attractive steady state for ambient dynamics
→ retraction is taken care of by the physics: “nature enforces feasibility”
→ can be made rigorous using singular perturbation theory (Tikhonov)

30



CASE STUDIES: TRACKING, FEASIBILITY, & DYNAMICS
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Simple illustrative case study

0 50 100 150 200 250 300
0

5

10
Objective Value [$]

real time cost

global minimum

0 50 100 150 200 250 300
0.95

1

1.05

Bus voltages [p.u.]

0 50 100 150 200 250 300

iteration

0

1

2
Active power generation [MW]

Slack bus Gen A Gen B

feedback
optimizer

ΠK (x, −gradφ(x))1

open-loop
system

ẋ1 = u
0 = h(x1, x2, δ)

actuate
u

x
measure
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The tracking problem
power system affected by exogeneous time-varying inputs δt

→ under disturbances state could leave feasible region K (ill-defined)

feedback
optimizer

ΠK (x, −gradφ(x))1

open-loop
system

ẋ1 = u
0 = h(x1, x2, δt)

u

x

U
δt

constraints satisfaction for non-controllable variables:

K accounts only for hard constraints on controllable variables u (e.g., generation limits)

gradient projection becomes input saturation (saturated proportional feedback control)

soft constraints included via penalty functions in φ (e.g., thermal and voltage limits)
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Tracking performance
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Tracking performance

G1

G2 C1

C3 C2

W

S

Generator

Synchronous Condensor

Solar

Wind

G

C

S

W

Comparison

closed-loop feedback trajectory
benchmark: feedforward OPF
(ground-truth solution of an ideal OPF with access to
exact disturbance and without computation delay)

practically exact tracking

+ trajectory feasibility
+ robustness to

model mismatch
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

500

1,000

1,500

Time [hrs]

Generation cost

Feedback OPF

Optimal cost

35



Trajectory feasibility
The feasible region K =M∩X often has disconnected components.

M

Kx∗

x0

feedforward (OPF)
– optimizer x? = argminx∈K φ(x) can be in different disconnected component
→ no feasible trajectory exists: x0 → x? must violate constraints

feedback (gradient descent)
→ continuous closed-loop trajectory x(t) guaranteed to be feasible
→ convergence of x(t) to a local minimum is guaranteed
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Illustration of continuous trajectories & reachability

5-bus example known to have two
disconnected feasible regions:
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[Molzahn, 2016]

[0s,2000s]: separate feasible regions

[2000s,3000s]: loosen limits on
reactive power Q2 → regions merge

[4000s,5000s]: tighten limits on Q2
→ vanishing feasible region
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Feedback optimization with frequency

frequency ω as global variable

primary control: P = PG − Kω

secondary frequency control
incorporated via dual multiplier

20% step increase in load
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Same feedback optimization with grid dynamics
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dynamic grid model: swing equation & simple turbine governor
work in progress based on singular perturbation methods
⇒ dynamic and quasi-stationary dynamics are “close” and converge to

the same optimal solutions under “sufficient” time-scale separation
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Feedback optimization in dynamic IEEE 30-bus system
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events:
→ generator outage at 4:00
→ PV generation drops

at 11:00 and 14:15

⇒ feedback optimization can provide
all ancillary services + optimal +
constraints + robust + scalable + . . .
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Conclusions

Summary:

necessity of real-time power system operation

our starting point: online optimization as feedback control

technical approach: manifold optimization & projected dyn. systems

unified framework accommodating various constraints & objectives

Ongoing and future work:

fun: questions on existence of trajectories, reachability, . . .

quantitative guarantees for robustness, tracking, etc.

interaction of optimization algorithm with low level grid dynamics

efficient implementation, discretization, experiments, RTE collaboration

extensions: transient optimality à la MPC & model-free à la extremum seeking
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Thanks !

Florian Dörfler
http://control.ee.ethz.ch/~floriand

dorfler@ethz.ch
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