

Feedback Optimization on the Power Flow Manifold Institut für Automation und angewandte Informatik (IAI) Karlsruhe Institute of Technology (KIT)

Florian Dörfler

Automatic Control Laboratory, ETH Zürich

Acknowledgements

Adrian Hauswirth

Saverio Bolognani

Gabriela Hug

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Energie BFE Swiss Federal Office of Energy SFOE

FNSNF Fonds national subse Sonweizenischen Nati

SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SMIZZERO SWISS NATIONAL SCIENCE FOUNDATION

Eidgenéssische Technische Hochschule Zürich Swiss Tederal Institute of Technology Zurich

Power system operation: supply chain without storage

- principle: deliver power from generators to loads
- physical constraints: Kirchhoff's and Ohm's laws
- operational constraints: thermal and voltage limits
- performance objectives: running costs, reliability, quality of service
- fit-and-forget design:

historically designed according to worst-case possible demand

New challenges and opportunities

variable renewable energy sources

- poor short-range prediction & correlations
- fluctuations on all time scales (low inertia)

distributed microgeneration

- conventional and renewable sources
- congestion and under-/over-voltage

electric mobility

- large peak (power) & total (energy) demand
- flexible but spatio-temporal patterns

inverter-interfaced storage/generation

- extremely fast actuation
- modular & flexible control

information & comm technology

- inexpensive reliable communication
- increasingly ubiquitous sensing

Recall: feedforward vs. feedback or optimization vs. control

⇒ typically complementary methods are combined via time-scale separation

offline & feedforward

real-time & feedback

Example: power systems load/generation balancing

optimization stage

economic dispatch based on load/renewable prediction

real-time interface

manual re-dispatch, area balancing services

 Iow-level automatic control frequency regulation at the individual generators

The price for time-scale separation: sky-rocketing re-dispatch

- re-dispatch to deal with unforeseen load, congestion, & renewables
- ⇒ ever more uncertainty & fluctuations on all time scales
- ⇒ operation architecture becomes infeasible & inefficient

[[]Bundesnetzagentur, Monitoringbericht 2016]

Cost of ancillary services of German TSOs

There must be a better way of operation.

Synopsis ... for essentially all ancillary services

- · real-time balancing
- frequency control
- · economic re-dispatch
- voltage regulation
- voltage collapse prevention
- · line congestion relief
- reactive power compensation
- losses minimization

recall new challenges:

- increased variability
- poor short-term prediction
- correlated uncertainties

recall new opportunities:

- fast actuation
- ubiquitous sensing
- reliable communication

Today: these services are partially automated, implemented independently, online or offline, based on forecasts (or not), and operating on different time/spatial scales.

One central paradigm of "smart(er) grids": real-time operation

Future power systems will require faster operation, based on online control and monitoring, in order to meet the operational specifications in real time.

Control-theoretic core of the problem

time-scale separation of complementary feedback/feedforward architectures

ideal approach: optimal feedback policies (from HJB, Pontryagin, etc.)

- \rightarrow explicit ($T = \infty$) feedback policies are **not tractable** analytically or computationally
- → usually a decent trade-off: receding horizon model predictive control MPC ⇒ not suited for power systems (due to dimension, robustness, uncertainty, etc.)

Today we will follow a different approach

- drop exact argmin
- drop integral/stage costs
- let physics solve equality constraints (dynamics)

Instead we apply online optimization in closed loop with fast/stationary physics:

Very brief review on related online optimization in closed loop

- historical roots: optimal routing and queuing in communication networks, e.g., in the internet (TCP/IP) [Kelly et al. 1998/2001, Low, Paganini, and Doyle 2002, Srikant 2012, ...]
- lots of recent theory development in power systems & other infrastructures

lots of related work: [Bolognani et. al, 2015], [Dall'Anese and Simmonetto, 2016/2017], [Gan and Low, 2016], [Tang and Low, 2017], ...

A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems

Daniel K. Molzahn," Member, IEEE, Florian Dörfler,[†] Member, IEEE, Henrik Sandberg,[†] Member, IEEE, Steven H. Low,[†] Fellow, IEEE, Sambaddha Chakhabari,[†] Samber, IEEE, Ross Baldick,[†] Fellow, IEEE, and Javael,⁺ Member, IEEE

- MPC version of "dropping argmin": real-time iteration [Diel et al. 2005], real-time MPC [Zeilinger et al. 2009], ... and related papers with *anytime* guarantees
- independent literature in process control [Bonvin et al. 2009/2010] or extremum seeking [Krstic and Wang 2000], ... and probably much more
- plenty of interesting recent system theory coming out [Nelson and Mallada 2017]

OVERVIEW

- 1. Problem setup & preview of a solution
- 2. Technical ingredient I: the power flow manifold
- 3. Technical ingredient II: manifold optimization
- 4. Case studies: tracking, feasibility, & dynamics

AC power flow model, constraints, and objectives

$$S_k = \sum_{l \in N(k)} \frac{1}{z_{kl}^*} V_k (V_k^* - V_l^*) \quad \forall k \in \mathcal{N}$$

(all variables and parameters are \mathbb{C} -valued)

- objective: economic dispatch, minimize losses, distance to collapse, etc.
- operational constraints: generation capacity, voltage bands, congestion
- control: state measurements and actuation via generation set-points

What makes power flow optimization interesting?

- imagine constraints slicing this set ⇒ nonlinear, non-convex, disconnected
- additionally the parameters are ±20%
 uncertain ... this is only the steady state!

$$\begin{aligned} & \text{AC power flow equations} \\ & S_k = \sum_{l \in N(k)} \frac{1}{z_{kl}^*} V_k (V_k^* - V_l^*) \quad \forall k \in \mathcal{N} \end{aligned}$$

Ancillary services as a real-time optimal power flow

Offline optimal power flow (OPF)						
minimize	$\phi(x,u)$	e.g., losses, generation				
subject to	$h(x,u,\delta)=0$	AC power flow				
	$(x, u) \in \mathcal{X} \times \mathcal{U}$	operational constraints				

- exogenous variables
 - $\rightarrow u$ controllable generation
 - $ightarrow \delta$ exogenous disturbances (e.g., loads & renewables)
- x endogenous variables (voltages)

Idea for an online algorithm

goal: closed-loop gradient flow

$$\begin{bmatrix} \dot{x} \\ \dot{u} \end{bmatrix} = -\operatorname{Proj}_{\mathcal{U} \cap \mathcal{X} \cap \{ \text{linearization of } h \}} \nabla \phi(x, u)$$

- implement control *u* (as above)
- consistency of x ensured by non-singular physics h(x, u, δ) = 0
- discrete-time implementation

Pretty hand-waivy ... I know.

I will make it more precise later.

Let's see if it works!

Preview: simple algorithm solves many problems

- time-variant disturbances/constraints \checkmark
- robustness to noise & uncertainty \checkmark
- dynamics of physical system √
- crude discretization/linearization \checkmark

Preview cont'd: robustness to model mismatch

gradient controller:

- saturation of generation constraints
- soft penalty for operational constraints

	no automatic re-dispatch			feedback optimization		
model uncertainty	feasible ?	f – f*	$\ v - v^*\ $	feasible?	$f - f^*$	$\ v - v^*\ $
loads \pm 40%	no	94.6	0.03	yes	0.0	0.0
line params $\pm 20\%$	yes	0.19	0.01	yes	0.01	0.003
2 line failures	no	-0.12	0.06	yes	0.19	0.007

conclusion: simple algorithm performs extremely well & robust \rightarrow closer look!

TECHNICAL INGREDIENT I: THE POWER FLOW MANIFOLD

Key insights about our physical equality constraint

Gen2 MVAr (pu)

- AC power flow is complex but it defines a smooth manifold
- \rightarrow local tangent plane approximations & $h(x, u, \delta) = 0$ locally solvable for x

→ Bolognani & Dörfler (2015)

"Fast power system analysis via implicit linearization of the power flow manifold"

- AC power flow is attractive* steady state for ambient physical dynamics
- \rightarrow physics enforce feasibility even for non-exact (e.g., discretized) updates

→ Gross, Arghir, & Dörfler (2018)

"On the steady-state behavior of a nonlinear power system model"

Geometric perspective: the power flow manifold

- variables: all of $x = (|V|, \theta, P, Q)$
- power flow manifold: $\mathcal{M} = \{x : h(x) = 0\}$ \rightarrow submanifold in \mathbb{R}^{2n} or \mathbb{R}^{6n} (3-phase)
- tangent space $\frac{\partial h(x)}{\partial x}\Big|_{x^*}^{\top} (x x^*) = \mathbb{O}$ \rightarrow best linear approximant at x^*
- accuracy depends on curvature $\frac{\partial^2 h(x)}{\partial x^2}$ \rightarrow constant in rectangular coordinates

Accuracy illustrated with unbalanced three-phase IEEE13

dirty secret: power flow manifold is very flat (linear) near usual operating points

 \rightarrow Matlab/Octave code @ https://github.com/saveriob/1ACPF

Coordinate-dependent linearizations reveal old friends

- flat-voltage/0-injection point: $x^* = (|V|^*, \theta^*, P^*, Q^*) = (1, 0, 0, 0)$
- ⇒ tangent space parameterization

$$\begin{bmatrix} \Re(Y) & -\Im(Y) \\ -\Im(Y) & \Re(Y) \end{bmatrix} \begin{bmatrix} |V| \\ \theta \end{bmatrix} = \begin{bmatrix} P \\ Q \end{bmatrix}$$

is linear coupled power flow and $\Re(Y) \approx 0$ gives DC power flow approximation

- nonlinear change to quadratic coordinates $|V| \rightarrow |V|^2$
- \Rightarrow linearization is (non-radial) LinDistFlow [M.E. Baran and F.F. Wu, '88] \Rightarrow more exact in |V|

TECHNICAL INGREDIENT II: MANIFOLD OPTIMIZATION

Unconstrained manifold optimization: the smooth case

geometric objects:

manifold $\mathcal{M} = \{x : h(x) = 0\}$ objective $\phi : \mathcal{M} \to \mathbb{R}$ tangent space $T_x \mathcal{M} = \ker \frac{\partial h(x)}{\partial x}^\top$ Riemann metric $g : T_x \mathcal{M} \times T_x \mathcal{M} \to \mathbb{R}$ (degree of freedom)(degree of freedom)(degree of freedom)

- **target state:** local minimizer on the manifold $x^* \in \arg \min_{x \in \mathcal{M}} \phi(x)$
- **always feasible** \leftrightarrow trajectory/sequence x(t) remains on manifold \mathcal{M}

Constrained manifold optimization: the wild west

dealing with operational constraints $g(x) \leq 0$

- **1. penalty** in cost function ϕ
- \rightarrow barrier: not practical for online implementation
- ightarrow soft penalty: practical but no real-time feasibility
- 2. dualization and gradient flow on Lagrangian
- ightarrow poor performance & no real-time feasibility
- \rightarrow theory: close to none available on manifolds

→ Hauswirth, Bolognani, Hug, & Dörfler (2018) "Generic Existence of Unique Lagrange Multipliers in AC Optimal Power Flow"

3. projection of gradient flow trajectory x(t) on feasible set $\mathcal{K} = \mathcal{M} \cap \{g(x) \leq 0\}$

 $\dot{x} = \Pi_{\mathcal{K}} (x, -\operatorname{grad} \phi(x)) \in \arg \min_{v \in \mathcal{T}_{c}^{>} \mathcal{K}} \| - \operatorname{grad} \phi(x) - v \|_{g}$

where $T_x^> \mathcal{K} \subset T_x \mathcal{M}$ is inward tangent cone

Projected gradient descent on manifolds

Theorem (simplified)

Let $x : [0,\infty) \to \mathcal{K}$ be a Carathéodory solution of the initial value problem

 $\dot{x} = \Pi_{\mathcal{K}} \left(x, -\operatorname{grad} \phi(x) \right) \;, \quad x(0) = x_0 \,.$

If ϕ has compact level sets on \mathcal{K} , then x(t) will converge to a critical point x^* of ϕ on \mathcal{K} .

 \rightarrow Hauswirth, Bolognani, Hug, & Dörfler (2016) "Projected gradient descent on Riemanniann manifolds with applications to online power system optimization"

Hidden assumption: existence of a Carathéodory solution $x(t) \in \mathcal{K}$

- \rightarrow when does it exist, is forward complete, unique, and sufficiently regular ?
 - (in absence of convexity, Euclidean space, and other regularity properties)

Analysis via projected systems hit mathematical bedrock

power flow manifold

disconnected regions

cusps & corners (convex and/or inward)

	constraint set	gradient field	metric	manifold
existence (Krasovski)	loc. compact	loc. bounded	-	C^1
Krasovski = Carathéodory	Clarke regular	C^0	C^0	C^1
uniqueness of solutions	prox regular	$C^{0,1}$	<i>C</i> ^{0,1}	<i>C</i> ^{1,1}

 \rightarrow also forward-Lipschitz continuity of time-varying constraints \rightarrow continuity with respect to initial conditions and parameters

 \rightarrow Hauswirth, Bolognani, Hug, & Dörfler (2018) "Projected Dynamical Systems on Irregular, Non-Euclidean Domain for Nonlinear Optimization" \rightarrow Hauswirth, Subotic, Bolognani, Hug, & Dörfler (2018) "Time-varying Projected Dynamical Systems with Applications to Feedback Optimization of Power Systems"

Implementation issue: how to induce the gradient flow?

Open-loop system

 $\dot{x}_1 = u$ controlled generation $\mathbb{O} = h(x_1, x_2, \delta)$ AC power flow manifold relating x_1 & other variables

Desired closed-loop system

$$\begin{split} \dot{x}_1 &= f_1(x_1, x_2) & \text{desired projected} \\ \dot{x}_2 &= f_2(x_1, x_2) & \text{gradient descent} \\ & \text{where } f(x) = \Pi_{\mathcal{K}} \left(x, -\text{grad}\phi(x) \right) \end{split}$$

Solution use **non-singularity** of the physics: $0 = h(x_1, x_2, \delta)$ can be solved for x_2

ightarrow closed-loop trajectory remains feasible at all times and converges to optimality

 \rightarrow no need to numerically solve the optimization problem or any power flow equation

Implementation issue: discrete-time manifold optimization

- **always feasible** \leftrightarrow trajectory/sequence x(t) remains on manifold \mathcal{M}
- **discrete-time** gradient descent on *M*:
 - **1.** grad $\phi(x)$: gradient of cost function
 - **2.** $\Pi_{\mathcal{M}}(x, -\operatorname{grad}\phi(x))$: **projection** of gradient
 - **3. Euler integration** of gradient flow: $\tilde{x}(t+1) = x(t) - \varepsilon \prod_{\mathcal{M}} (x, -\text{grad}\phi(x))$
 - **4.** retraction step: $x(t + 1) = \mathcal{R}_{x(t)}(\tilde{x}(t + 1))$

Discrete-time control implementation:

- ightarrow manifold is attractive steady state for ambient dynamics
- ightarrow retraction is taken care of by the physics: "nature enforces feasibility"
- ightarrow can be made rigorous using singular perturbation theory (Tikhonov)

CASE STUDIES: TRACKING, FEASIBILITY, & DYNAMICS

Simple illustrative case study

The tracking problem

- power system affected by exogeneous time-varying inputs δ_t
- $\rightarrow\,$ under disturbances state could leave feasible region ${\cal K}$ (ill-defined)

constraints satisfaction for non-controllable variables:

- K accounts only for hard constraints on controllable variables u (e.g., generation limits)
- gradient projection becomes input saturation (saturated proportional feedback control)
- soft constraints included via penalty functions in ϕ (e.g., thermal and voltage limits)

Tracking performance

controller: penalty + saturation

Tracking performance

Comparison

- closed-loop feedback trajectory
- benchmark: feedforward OPF

(ground-truth solution of an ideal OPF with access to exact disturbance and without computation delay)

- practically exact tracking
- + trajectory feasibility
- + robustness to model mismatch

Trajectory feasibility

The feasible region $\mathcal{K} = \mathcal{M} \cap \mathcal{X}$ often has **disconnected components**.

feedforward (OPF)

- optimizer x^* = arg min_{$x \in \mathcal{K}$} $\phi(x)$ can be in different **disconnected component**
- ightarrow no feasible trajectory exists: $x_0 \rightarrow x^{\star}$ must violate constraints

feedback (gradient descent)

- \rightarrow continuous closed-loop trajectory x(t) guaranteed to be **feasible**
- \rightarrow convergence of x(t) to a **local minimum** is guaranteed

Illustration of continuous trajectories & reachability

5-bus example known to have two disconnected feasible regions:

- [0s,2000s]: separate feasible regions
- [2000s,3000s]: loosen limits on reactive power $\underline{Q}_2 \rightarrow$ regions merge
- [4000s,5000s]: tighten limits on <u>Q</u>₂ → vanishing feasible region

Lower [p.u.]

0 10 20 30 40 50 60 70 80 90

0.1

0

20 30

10

0.05 0 0 -0.05 -0.1 -0.15

Feedback optimization with frequency

- frequency ω as global variable
- primary control: $P = P_G K\omega$
- secondary frequency control incorporated via dual multiplier

Active Power Generation

Time [s] Frequency

50 60 70

Time [s]

on

40

20% step increase in load

Same feedback optimization with grid dynamics

- dynamic grid model: swing equation & simple turbine governor
- work in progress based on singular perturbation methods
 - ⇒ dynamic and quasi-stationary dynamics are "close" and converge to the same optimal solutions under "sufficient" time-scale separation

Feedback optimization in dynamic IEEE 30-bus system

events:

- \rightarrow generator outage at 4:00
- → PV generation drops at 11:00 and 14:15
- ⇒ feedback optimization can provide all ancillary services + optimal + constraints + robust + scalable + ...

Conclusions

Summary:

- necessity of real-time power system operation
- our starting point: online optimization as feedback control
- technical approach: manifold optimization & projected dyn. systems
- unified framework accommodating various constraints & objectives

Ongoing and future work:

- fun: questions on existence of trajectories, reachability, ...
- quantitative guarantees for robustness, tracking, etc.
- interaction of optimization algorithm with low level grid dynamics
- efficient implementation, discretization, experiments, RTE collaboration
- extensions: transient optimality à la MPC & model-free à la extremum seeking

Thanks!

Florian Dörfler

http://control.ee.ethz.ch/~floriand

dorfler@ethz.ch