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Thoughts on data-driven control

® jndirect data-driven control via models:

SysID .
data 25 model + uncertainty — control

® growing trend: direct data-driven control
by-passing models ... (again) hyped, why ?

The direct approach is viable alternative
¢ for some applications: model-based
approach is too complex to be useful

— too complex models, environments, sensing
modalities, specifications (e.g., wind farm)

¢ due to (well-known) shortcomings of ID ' Ceniral promise: It is often

— too cumbersome, models not identified for easier to learn a control policy
control, incompatible uncertainty estimates, ... = from data rather than a model.

e when brute force data/compute available ~ Example: PID [Astrom et al., 73]

— theory trade-offs: (non)modular + (in)tractable + (sub)optimal (?) 219



Today: tractable direct approach

1. behavioral system theory: fundamental lemma
DeePC: data-enabled predictive control

robustification via salient regularizations

A 0D

cases studies from wind & power systems

blooming literature (2-3 ArXiv/week)

— survey & tutorial to get started:

F e Annual Reviews in Control
DATA-DRIVEN CONTROL BASED ON BEHAVIORAL APPROACH: = ot omepage s s coo el
FROM THEORY TO APPLICATIONS IN POWER SYSTEMS — —

Review article ®
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Preview

complex 4-area power system:
large (n=208), few sensors (8),

nonlinear, noisy, stiff, input
constraints, & decentralized
control specifications

control objective: oscillation

damping

(grid has many owners, models are

proprietary, operation in flux, ...)
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Reality check: magic or hoax ?

surely, nobody would put apply such a shaky data-driven method
® on the world’s most complex engineered system (the electric grid),
® using the world’s biggest actuators (Gigawatt-sized HVDC links),

® and subject to real-time, safety, & stability constraints . ..right?

Dear Linbin and Florian,

| just submitted a very favourable review of your paper [..] which | believe could be of
importance to our work at Hitachi Power Grids. We do have [...] require off-line tuning that [...]
col Pgrid .. few days after AN adaptive approach would be very interesting.
02 sending our code
If - DeePC approach with our more detailed HVDC
sy oblem. Could so some code be made available
[... 0 her to do such a demonstration ? [...]
-
0.2
It works! ... even HITACHI ARl
04 on an entirely i
’ different model & - |53
0 10 20 software platform
=

at least someone believes that DeePC is practically useful ... i



Behavioral view on LTI systems

Definition: A discrete-time dynamical
system is a 3-tuple (Z>(, W, #) where

(i) Z>o is the discrete-time axis,
(i) W is a signal space, & £ is the set of

all trajectories
(iiiy B C W#=0 is the behavior.

Definition: The dynamical system (Z>, W, &) is
(i) linear if W is a vector space & 4 is a subspace of WZ=o

(i) & time-invariant if # C 0%, where cw; = w¢41.

LTI system = shift-invariant subspace of trajectory space

— abstract perspective suited for data-driven control
6/19



FU ndame ntal Le m m a [Willems et al.’05 + many recent extensions]

. d Tt . lag ¢
Given: data (“},) € R™*tP & LTI complexity parameters { g
Yi order n
set of all T-length trajectories = (/:’:) (/:’Z) <.~‘:’f>

ug ug 5 Lot
{ (u,y) e RT3y e R g f, ——— colspan (u’./ 1) w'_f_)) <.u’_! x)

2t = Az + Bu, y = Cz + Du } <IL§_1> (u‘{:z> (u;g)

parametric state-space model raw data (every column is an experiment)

if and only if the trajectory matrix has rank m - T +n forall T > ¢
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set of all T-length trajectories = <!/‘.’.1) ('vh) (u‘(t,)

{ (u,y) € RT3 e R gt ——— colspan <yg,]> (‘/1> (‘/'s)

2t = Az + Bu, y=Cx+ Du } (u%]) (u%z) <qu~,>

all trajectories constructible from finitely many previous trajectories

¢ standing on the shoulders of giants: A mote on persstency of exciation
classic Willems’ result was only “if” & Jan C. Willems', Paolo Rapisarda, Ivan Markovsky** Bt LM. De Moor'
required further assumptions: Hankel, ;
persistency of excitation, controllability

® terminology fundamental is justified : motion primitives, subspace SysID,
dictionary learning, (E)DMD, ... all implicitly rely on this equivalence

® many recent extensions to other system classes (bi-linear, descriptor,
LPV, delay, Volterra series, Wiener-Hammerstein, ...), other matrix
data structures (mosaic Hankel, Page, ...), & other proof methods

® blooming literature (2-3 / week) on theory, applications, & computation



Output Model Predictive Control

The canonical receding-horizon MPC optimization problem:

Tiulure . .
. _ 2 2 quadratic cost with
wipdize 2 e —riellg + lluelle R 0,Q> 08 ref. 1
=i
subject to  xp11 = Awzk + Buyg, Yk € {1, ..., Tiuture }» model for prediction
yr = Cxp + Dug, Vk e {1,..., Tiuure}, with & € [1, Thuure]

Tpt1 = Azg + Buy, Vk € {-Tin —1,...,0}, model for estimation
W|thke[ Tini — 1,0] &

yr = Cxp + Dug, Vke{—Tn—1,...,0} Tii > lag (many flavors)

up €U, VE € {1, Truure}, hard operational or

ye €Y, k€L Tuure} safety constraints
Willems *07: “{MPC] has perhaps Elegance aside, for a deterministic
too little system theory and too LTI plant with known model, MPC is
much brute force computation.” truly the gold standard of control.

919



Data-Enabled Predictive Control

Tfuture . .
. 2 2 quadratic cost with
m.g’l}l?’lbze kz::l lyx — Tk”Q + ”ukHR R=0,Q = 0&ref. r

non-parametric
model for prediction

subject to %”(“:) g = or pr
Yy and estimation

up €U, Vke{l,..., T}, hard operational or
yn €Y, Vke{l,..., True} safety constraints

¢ real-time measurements (uini, yini) for estimation  updated online

 trajectory matrix %”(7;;) from past collected offline
experimental data (could be adapted online)

— equivalent to MPC in deterministic LTl case ...
but needs to be robustified in case of noise/ nonlinearity ! 10118



Regularizations counter-acting noise

Thure measurement noise
m1n1m1ze Z lye — 7’k||Q + HukHR + A, llell, + A h(g) — infeasible yin estimate
¥ O — estimation slack o

— moving-horizon

. d least-square filter
subject to %(Zd> g =

(o RN IES I en)

noisy or nonlinear
(offline) data matrix
ug €U, Yk €L, Tuure}, — any (i) feasible

yr €Y, Vke{l,..., Thuure} — add regularizer h(g)

Bayesian intuition: regularization < prior, e.g., h(g) = ||g||1 sparsely
selects {trajectory matrix columns} = {motion primitives} ~ low-order basis

Robustness intuition: regularization < robustifies, e.g., in a simple case

mln”glﬁlx [[(A+A)z—b| < mln”max | Az—0b||+]| Ax|| *mmHAx b||+pl|z]]
x < x
119



Regularization = relaxation of bi-level ID

minimize,, , , controlcost (u7 y)

. u a optimal control
subject to LJ = (y) g

where <y) € argmin ( ) (y )H system identification

subject to rank(%(%)) =mL+n

1 sequence of convex relaxations | T
(1-regularization

minimize,  , control cost(u, y) + Ag - llglla — relaxation of id
. smoothening order

subject to {u} =K (ud) g . 9 .
Y Y selection (no bias)

— similar results for ID of parametric predictor via least squares
Uini
y= K- |yni| where K is low-rank + causal sparsity + correlated

= relaxations yields regularizer errjf( ) gH
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Towards nonlinear systems

idea: lift nonlinear system to large/oco-dimensional bi-/linear system
— Carleman, Volterra, Fliess, Koopman, Sturm-Liouville methods
— nonlinear dynamics can be approximated by LTI on finite horizon

regularization singles out relevant features / basis functions in data

13/19



Works very well across case studies

wi wi ed ws

quad coptor fig-8 tracking quadruped (by Fawcett, Afsari Amers, & Hamed) G ST I AL S R T)

chaging curentdensty (4/m)
(et e condition)

stte o chargets0) (3100%)

robotic excavator pendulum swing up. traffic coordination (by J. Wang et al.) battery charging (by K. Chen et al) wind turbine control

grid-connected converter synchronous motor drive energy hub & buiiding automation power system oscillation damping
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Reason: distributional robustness

® problem abstraction: mingcx ¢ (E, x) where 5 is measured data

e distributionally robust formulation — “mingcx maxe ¢ (&, x)”

where max accounts for all stochastic processes (linear or nonlinear)
that could have generated the data ... more precisely ? P

infxeX SUPgep. ) EQ [c (& 2)]

~

where B.(P) is an e-Wasserstein ball
centered at empirical sample distribution P:

B. (P) = {P : i%f/||§—£||pdn < e}

Theorem: inf sup Eg[c(¢,z)] = min ¢ (A, x) + eLip(c) - [|z]]},
z€X QEB.(P) TEX

distributional robust formulation previous regularized DeePC formulation 18719



Case study: wind turbine T

— h(g) = lgll3
oscillation data h(g) gl
observed  collection
unknown system outer Hkﬂ W( )gH

control loops

T
DeePC activated

VAVAVAV‘DVI\VJ\VJI

o
©
o

current outputs

control loop

active power (p.u.)
o
©

o
@
o

DeePC activated

AﬁﬂﬂﬂﬁJ

v"vvvrq q

o

detailed industrial model: 37 states & ,
highly nonlinear (abc «» dq, MPTT, 0 2 . 5 s 0 12

=

reactive power (p.u.)
o
o
o

PLL, power specs, dynamics, etc.) time [s]

. . R 1 2w i 1 Rt
turbine & grid model unknown to el g L T 1 g hﬁjﬁ HjH
commissioning engineer & operator 8. fa o i) = [Rer (1) o
weak grid + PLL + fault — lossof sync 8 «/ "« . .~ °

. :
10? 100 10? 10t 10! 102 10° 10°

disturbance to be rejected by DeePC A A T



Case study ++ : wind farm

—— without additional control ~ —— subspace ID + control
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Conclusions

main take-aways
® matrix time series as predictive model
® robustness & implicit ID via regularizations

¢ method that works in theory & practice
for stochastic & weakly nonlinear systems

¢ jllustrated via energy system case studies

ongoing work
— certificates for truly nonlinear systems
— explicit policies & direct adaptive control

— applications with a true “business case”

only catch (no-free-lunch): optimization problems become large
— models are compressed, de-noised, & tidied-up representations
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Thanks!

Florian Dérfler
mail: dorfler@ethz.ch
[1ink] to homepage

[1ink] to related publications
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back-up slides



Performance of least-square-induced
regularizer on stochastic LTI system

14000 - — ”g”%
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Further

® measure concentration: average matrix
1 N d - .
~ 2ieq J6G(y®) fromi.i.d. experiments

Tracking Error vs. €

L;é
— ambiguity set B(P) includes true P g
with high confidence if ¢ ~ 1/N1/dim(&) E w [
A N =10
e distributionally robust constraints * adsorstein ball radius ¢

SUDGep_(B) CVaR?_a <= averaging + regularization + tightening

300

I Unstructured set pu = 27.39

e more structured uncertainty sets :
tractable reformulations (relaxations) &
guarantees on realized performance

200 Structured set p; = 0.016

AJ_I_I_IJ_I_llJJ gt |

<10 25 30 35 40 2450
Realized cost

Number of simulations

* replace (finite) moving horizon estimation via () by recursive

Kalman filtering based on explicit optimizer ¢g* as hidden state



how does DeePC relate to
sequential SysID + control ?

surprise: DeePC consistently
beats models across all our
case studies'!



Abstraction reveals pros & cons

indirect (model-based) data-driven control

minimize  control cost (u, z) } outer separation &
| i & optimization certainty

subjectto (u,z) satisfy state-space model p atiumlonce

where x estimated from (u,y) & model } middle opt. (— LQG case)

where  model identified from (u?,y?) data } inner opt. } no separation
(— 1D-4-control)

— nested multi-level optimization problem

direct (black-box) data-driven control — trade-offs

modular vs. end-2-end
suboptimal (?) vs. optimal
subject to (u,y) consistent with (ud,yd) data  convex vs. non-convex (?)

minimize  control cost (u, y)

Additionally: account for uncertainty (hard to propagate in indirect approach)



Comparison: direct vs. indirect control

indirect ID-based data-driven control ID projects data on
the set of LTI models

® with parameters (n, ¢)

subjectto (u,y) satisfy parametric model e removes noise & thus
} lowers variance error
ID

minimize ~ control cost (u, y)

where  model € argmin id cost (u?, y?) _ _
e suffers bias error if

subject to model € LTl(n, ¢) class plant is not LTI(n, £)

direct regularized data-driven control ® regularization robustifies

— choosing A makes it work

minimize control cost (u,y) + A- regularizer .
® no projectionon LTI(n, ¢)

subjectto (u,y) consistent with (u?,y?) data ~ no de-noising & no bias

hypothesis: 1D wins in stochastic (variance) & DeePC in nonlinear (bias) case



Case study: direct vs. indirect control

stochastic LTI case — indirect IDwins nonlinear case — direct DeePC wins
¢ LQR control of 5th order LTI system e Lotka-Volterra + control: % = f(z,u)
¢ Gaussian noise with varying noise to e interpolated system

signal ratio (100 rollouts each case) T = € finearized (T, 1) + (1 —€) - f(z,u)

e /i-regularized DeePC, SysID via e same ID & DeePC as on the left
N4SID, & judicious hyper-parameters & 100 initial =, rollouts for each e

‘—Direct —— Indirect + mean‘ ‘—Direct ——Indirect + mean
6
g x10* . 910

8

~

7

o

> model-based

: 6

o

£5

IS

3

=
Eo ] H 2
&1 ) i i
xR & B O - Pk : yom

DUT ST L FL S ST ST ST ST - - 0
0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%11%12%13%14%15% 0.00 0.06 0.12 0.19 0.25 0.31 0.38 0.44 0.50 0.56 0.62 0.69 0.75 0.81 0.88 0.94 1.00

deterministic Noise-to-signal Ratio noisy  nonlinear ¢ linear
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