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Thoughts on data-driven control
• indirect data-driven control via models:

data SysID−→ model + uncertainty → control
• growing trend: direct data-driven control

by-passing models . . . (again) hyped, why ?

The direct approach is viable alternative
• for some applications : model-based

approach is too complex to be useful
→ too complex models, environments, sensing
modalities, specifications (e.g., wind farm)

• due to (well-known) shortcomings of ID
→ too cumbersome, models not identified for
control, incompatible uncertainty estimates, ...

• when brute force data/compute available

data-driven

control

u2

u1 y1

y2

Central promise: It is often
easier to learn a control policy
from data rather than a model.

Example: PID [Åström et al., ’73]

→ theory trade-offs: (non)modular + (in)tractable + (sub)optimal (?) 2/19



Today: tractable direct approach
1. behavioral system theory: fundamental lemma

2. DeePC : data-enabled predictive control

3. robustification via salient regularizations

4. cases studies from wind & power systems

blooming literature (2-3 ArXiv / week)
→ survey & tutorial to get started:

DATA-DRIVEN CONTROL BASED ON BEHAVIORAL APPROACH:
FROM THEORY TO APPLICATIONS IN POWER SYSTEMS

Ivan Markovsky, Linbin Huang, and Florian Dörfler
I. Markovsky is with ICREA, Pg. Lluis Companys 23, Barcelona, and CIMNE, Gran Capitàn, Barcelona, Spain
(e-mail: imarkovsky@cimne.upc.edu),
L. Huang and F. Dörfler are with the Automatic Control Laboratory, ETH Zürich, 8092 Zürich, Switzerland (e-mails:
linhuang@ethz.ch, dorfler@ethz.ch).

Summary

Behavioral systems theory decouples the behavior of a
system from its representation. A key result is that, under

a persistency of excitation condition, the image of a Hankel
matrix constructed from the data equals the set of finite-
length trajectories of a linear time-variant system. This result
is the cornerstone of a recently emerged approach to direct
data-driven control. This self-contained tutorial reviews its
foundations and shows how they can be leveraged for data-
driven control. We present a generic data-driven interpola-
tion / approximation formulation encompassing many well
known problem instances, among others finite-horizon data-
driven control. We embed this problem formulation into a
predictive control setting, robustify it to inexact data by
means of regularizations, and apply the resulting methods in
the context of power electronics dominated power systems.

Physics aims to describe, classify, and predict natural phenom-
ena, while engineering aims to design new or modify existing
ones. A phenomenon is characterized by some observed vari-
ables. Three common problems control engineers solve are

» simulation: predict the variables in a new experiment,
» smoothing: remove measurement noise from observations

and infer hidden/latent variables, and
» control: modify the behavior of some variables by manip-

ulating other variables.
In order to solve them, prior knowledge about the phenomenon is
needed. This knowledge is usually given by a model, which is a
dynamical system that ideally has the same behavior as the real-
life phenomenon. The model may be obtained from physical laws
(first principles modeling), observed data (black-box modeling),
or a combination of physical laws and observed data (grey-box

modeling). Modeling using observed data, possibly incorporating
some prior knowledge from the physical laws (that is, black-box
and grey-box modeling) is called system identification.

System identification is generally applicable and mostly auto-
mated (user input may be needed for tuning hyper-parameters).
Modeling from first principles in contrast is domain specific and
laborious. Identification methods allow also for an accuracy–
complexity trade-off, so that simplified approximate models can
be obtained, while modeling from first principles delivers exact
models. Thus, system identification is often used for modeling
complex phenomena, for which models from first principles are
difficult or even impossible to obtain. The approximation aspect
of system identification, however, poses an important question:
“What is the best approximate model for design?” that is “What
is the best model for achieving our ultimate goals: simulation,
smoothing, and control?”. The question gives rise to new areas of
research, such as identification for control [1]–[3], dual control
[4]–[7], and control-regularized identification [8], [9].

Most design methods are model-based—they assume a given
model. Recently, an alternative paradigm, called data-driven,
emerged. Instead of a model, in the data-driven design paradigm,
the prior knowledge about the phenomenon is observed raw data.
The aim then is to achieve a direct map from the data to the
desired solution without identification of a model, see Figure 1.

Since ultimately both paths in Figure 1 from data to control
are based on data, the somewhat ambiguous term “data-driven”
has been used for both. Following [10], we adopt the terminology

data

model

control
model identification model-based design

direct data-driven design

FIGURE 1 The direct data-driven design paradigm aims to achieve
a map from data to result (simulated, smoothed, or control signal)
without identification of a model of the data-generating process.
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Behavioral systems theory in data-driven analysis, signal processing, and
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A B S T R A C T

The behavioral approach to systems theory, put forward 40 years ago by Jan C. Willems, takes a representation-
free perspective of a dynamical system as a set of trajectories. Till recently, it was an unorthodox niche of
research but has gained renewed interest for the newly emerged data-driven paradigm, for which it is uniquely
suited due to the representation-free perspective paired with recently developed computational methods.
A result derived in the behavioral setting that became known as the fundamental lemma started a new
class of subspace-type data-driven methods. The fundamental lemma gives conditions for a non-parametric
representation of a linear time-invariant system by the image of a Hankel matrix constructed from raw time
series data. This paper reviews the fundamental lemma, its generalizations, and related data-driven analysis,
signal processing, and control methods. A prototypical signal processing problem, reviewed in the paper, is
missing data estimation. It includes simulation, state estimation, and output tracking control as special cases.
The direct data-driven control methods using the fundamental lemma and the non-parametric representation
are loosely classified as implicit and explicit approaches. Representative examples are data-enabled predictive
control (an implicit method) and data-driven linear quadratic regulation (an explicit method). These methods
are equally amenable to certainty-equivalence as well as to robust control. Emphasis is put on the robustness of
the methods under noise. The methods allow for theoretical certification, they are computationally tractable,
in comparison with machine learning methods require small amount of data, and are robustly implementable
in real-time on complex physical systems.

1. Introduction

The behavioral approach to system theory was put forward by
Jan C. Willems in the early 1980s to resolve ‘‘many awkward things
with input/output thinking’’ (Willems, 2007b, Section 8). In addi-
tion to enforcing ‘‘input/output thinking’’, conventional system theory
approaches invariably associate a dynamical system with one of its
representations, e.g., a convolution, transfer function, or state–space
representation. The new perspective brought by the behavioral ap-
proach separates the system from its numerous representations by
defining a system as a set of trajectories. This abstract set-theoretic
perspective makes the ‘‘input/output thinking’’ a choice rather than a
requirement.

In addition to making the input/output thinking optional, separa-
tion of the system from its representations has other far reaching con-
sequences. It gives a geometric view of a linear time-invariant system
as a (low-dimensional) shift-invariant subspace in a (high-dimensional)
trajectory space. This geometric viewpoint is often simpler and more

< Corresponding author.
E-mail addresses: imarkovs@vub.be (I. Markovsky), dorfler@ethz.ch (F. Dörfler).

natural than the classical frequency-domain and state–space ones. It
led to a ‘‘clear and rational foundation under the problem of obtain-
ing models from time series’’ (Willems, 1986, 1987). In particular,
the global total least squares (Roorda & Heij, 1995), deterministic
subspace (Van Overschee & De Moor, 1996), and structured low-
rank approximation (Markovsky, 2013, 2019) approaches to system
identification are motivated by Willems (1986, 1987). More recently,
the behavioral approach contributed key ideas and techniques for data-
driven analysis, signal processing, and control. This paper reviews these
ideas and techniques, presents some of the methods that originate from
them, and outlines research directions for future work.

In the contemporary language of machine learning, the new tech-
niques are unsupervised and non-parametric. The techniques are un-
supervised in the sense that they use directly the raw time-series
data without labeling or pre-processing inputs and outputs, which
require human decision making. The methods are non-parametric in
the sense that they do not involve a parametric model representation

https://doi.org/10.1016/j.arcontrol.2021.09.005
Received 15 July 2021; Received in revised form 26 September 2021; Accepted 27 September 2021
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Preview
complex 4-area power system:
large (n=208), few sensors (8),
nonlinear, noisy, stiff, input
constraints, & decentralized
control specifications

control objective: oscillation
damping without model
(grid has many owners, models are
proprietary, operation in flux, . . . )

!"#$

!"#%

!"#&

!"#'

()*+#$ ()*+#%

!"#,

!"#-

!"#.

!"#/

()*+#& ()*+#'

$ ,

% '

&0

/- .

$1

$$

$%

$&

$'

$, $0

$- $. $/

%1

234*#$5,

234*#%5,

234*#,5-

234*#-5.5$

234*#-5.5%

234*#.5/5$

234*#.5/5%

234*#/50

234*#05&

234*#05'

234*#-5$1

234*#$%5%1

234*#/5$/

234*#$$5$,

234*#$%5$,

234*#$,5$-

234*#$-5$.5$

234*#$-5$.5%

234*#$.5$/5$

234*#$.5$/5%

234*#$/5$0

234*#$05$&

234*#$05$'

6!758697
!:+:3;4#$

6!758697
!:+:3;4#%

7;4:);<#!3=4+<>

7;4:);<#!3=4+<>

!?>:*@
A+):3:3;434=

2;+B#$ 2;+B#%

2;+B#& 2;+B#'

control

control

! " #! #" $! $" %!

!&!

!&$

!&'

!&(

10

time (s)

uncontrolled flow (p.u.) 

collect data controlti
e
 l
in

e
 fl

o
w

 (
p

.u
.)

!"#$%&'(
! " #! #" $! $" %!

!&!

!&$

!&'

!&( seek a method that works
reliably, can be efficiently
implemented, & certifiable
→ automating ourselves
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Reality check: magic or hoax ?
surely, nobody would put apply such a shaky data-driven method
• on the world’s most complex engineered system (the electric grid),
• using the world’s biggest actuators (Gigawatt-sized HVDC links),
• and subject to real-time, safety, & stability constraints . . . right?
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at least someone believes that DeePC is practically useful . . .
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Behavioral view on LTI systems
Definition: A discrete-time dynamical
system is a 3-tuple (Z≥0,W,B) where

(i) Z≥0 is the discrete-time axis,

(ii) W is a signal space, &

(iii) B ⊆ WZ≥0 is the behavior.





B is the set of
all trajectories

Definition: The dynamical system (Z≥0,W,B) is
(i) linear if W is a vector space & B is a subspace of WZ≥0

(ii) & time-invariant if B ⊆ σB, where σwt = wt+1.

LTI system = shift-invariant subspace of trajectory space

−→ abstract perspective suited for data-driven control

y

u

6/19



Fundamental Lemma [Willems et al. ’05 + many recent extensions]

u(t)

t

u4

u2

u1 u3

u5
u6

u7

y(t)

t

y4

y2

y1

y3

y5

y6

y7

Given: data
(
udi
ydi

)
∈ Rm+p & LTI complexity parameters

{
lag `

order n

set of all T -length trajectories =
{
(u, y) ∈ R(m+p)T : ∃x ∈ RnT s.t.

x+ = Ax+Bu , y = Cx+Du
}

︸ ︷︷ ︸ ︸ ︷︷ ︸
parametric state-space model raw data (every column is an experiment)

colspan




(
ud
1,1

yd
1,1

) (
ud
1,2

yd
1,2

) (
ud
1,3

yd
1,3

)
...

(
ud
2,1

yd
2,1

) (
ud
2,2

yd
2,2

) (
ud
2,3

yd
2,3

)
...

...
...

...
...

(
ud
T,1

yd
T,1

) (
ud
T,2

yd
T,2

) (
ud
T,3

yd
T,3

)
...




if and only if the trajectory matrix has rank m · T + n for all T > `

7/19



set of all T -length trajectories =
{
(u, y) ∈ R(m+p)T : ∃x ∈ RnT s.t.

x+ = Ax+Bu , y = Cx+Du
}

︸ ︷︷ ︸ ︸ ︷︷ ︸
parametric state-space model non-parametric model from raw data

colspan




(
ud
1,1

yd
1,1

) (
ud
1,2

yd
1,2

) (
ud
1,3

yd
1,3

)
...

(
ud
2,1

yd
2,1

) (
ud
2,2

yd
2,2

) (
ud
2,3

yd
2,3

)
...

...
...

...
...

(
ud
T,1

yd
T,1

) (
ud
T,2

yd
T,2

) (
ud
T,3

yd
T,3

)
...




all trajectories constructible from finitely many previous trajectories

• standing on the shoulders of giants:
classic Willems’ result was only “if” &
required further assumptions: Hankel,
persistency of excitation, controllability

• terminology fundamental is justified : motion primitives, subspace SysID,
dictionary learning, (E)DMD, . . . all implicitly rely on this equivalence

• many recent extensions to other system classes (bi-linear, descriptor,
LPV, delay, Volterra series, Wiener-Hammerstein, . . . ), other matrix
data structures (mosaic Hankel, Page, . . . ), & other proof methods

• blooming literature (2-3 / week) on theory, applications, & computation 8/19



Output Model Predictive Control
The canonical receding-horizon MPC optimization problem :

minimize
u, x, y

Tfuture∑

k=1

‖yk − rk‖2Q + ‖uk‖2R

subject to xk+1 = Axk +Buk, ∀k ∈ {1, . . . , Tfuture},
yk = Cxk +Duk, ∀k ∈ {1, . . . , Tfuture},
xk+1 = Axk +Buk, ∀k ∈ {−Tini − 1, . . . , 0},
yk = Cxk +Duk, ∀k ∈ {−Tini − 1, . . . , 0},
uk ∈ U , ∀k ∈ {1, . . . , Tfuture},
yk ∈ Y, ∀k ∈ {1, . . . , Tfuture}

quadratic cost with
R � 0, Q � 0 & ref. r

model for prediction
with k ∈ [1, Tfuture]

model for estimation
with k ∈ [−Tini − 1, 0] &
Tini ≥ lag (many flavors)

hard operational or
safety constraints

Willems ’07: “[MPC] has perhaps
too little system theory and too
much brute force computation.”

Elegance aside, for a deterministic
LTI plant with known model, MPC is
truly the gold standard of control.
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Data-Enabled Predictive Control

minimize
g, u, y

Tfuture∑

k=1

‖yk − rk‖2Q + ‖uk‖2R

subject to H
(
ud

yd

)
· g =




uini
yini
u
y


 ,

uk ∈ U , ∀k ∈ {1, . . . , Tfuture},
yk ∈ Y, ∀k ∈ {1, . . . , Tfuture}

quadratic cost with
R � 0, Q � 0 & ref. r

non-parametric
model for prediction
and estimation

hard operational or
safety constraints

• real-time measurements (uini, yini) for estimation

• trajectory matrix H
(
ud

yd

)
from past

experimental data

updated online

collected offline
(could be adapted online)

→ equivalent to MPC in deterministic LTI case . . .
but needs to be robustified in case of noise / nonlinearity ! 10/19



Regularizations counter-acting noise

minimize
g, u, y, σ

Tfuture∑

k=1

‖yk − rk‖2Q + ‖uk‖2R + λy‖σ‖p + λgh(g)

subject to H
(
ud

yd

)
· g =




uini
yini
u
y


 +




0
σ
0
0


 ,

uk ∈ U , ∀k ∈ {1, . . . , Tfuture},
yk ∈ Y, ∀k ∈ {1, . . . , Tfuture}

measurement noise
→ infeasible yini estimate
→ estimation slack σ
→ moving-horizon

least-square filter

noisy or nonlinear
(offline) data matrix
→ any (uy) feasible
→ add regularizer h(g)

Bayesian intuition: regularization⇔ prior, e.g., h(g) = ‖g‖1 sparsely
selects {trajectory matrix columns} = {motion primitives} ∼ low-order basis

Robustness intuition: regularization⇔ robustifies, e.g., in a simple case

min
x
‖(A+∆)x−b‖

min
x

max
‖∆‖≤ρ

‖(A+∆)x−b‖
tight
≤ min

x
max
‖∆‖≤ρ

‖Ax−b‖+‖∆x‖ = min
x
‖Ax−b‖+ρ‖x‖
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Regularization = relaxation of bi-level ID
minimizeu,y,g control cost

(
u, y

)

subject to

[
u
y

]
= H

(
û
ŷ

)
g

where
(

û
ŷ

)
∈ argmin

∥∥∥
(

û
ŷ

)
−

(
ud

yd

)∥∥∥

subject to rank
(
H

(
û
ŷ

))
= mL+ n

↓ sequence of convex relaxations ↓
minimizeu,y,g control cost

(
u, y

)
+ λg · ‖g‖1

subject to

[
u
y

]
= H

(
ud

yd

)
g



 optimal control



 system identification

`1-regularization
= relaxation of id
smoothening order
selection (no bias)

→ similar results for ID of parametric predictor via least squares

y = K ·



uini
yini
u


 where K is low-rank + causal sparsity + correlated

⇒ relaxations yields regularizer
∥∥∥kerH

(
ud

yd

)
g
∥∥∥
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Towards nonlinear systems
idea : lift nonlinear system to large/∞-dimensional bi-/linear system
→ Carleman, Volterra, Fliess, Koopman, Sturm-Liouville methods
→ nonlinear dynamics can be approximated by LTI on finite horizon

regularization singles out relevant features / basis functions in data
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Works very well across case studies
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Reason: distributional robustness
• problem abstraction : minx∈X c

(
ξ̂, x
)

where ξ̂ is measured data

• distributionally robust formulation −→ “minx∈X maxξ c (ξ, x)”
where max accounts for all stochastic processes (linear or nonlinear)
that could have generated the data . . . more precisely

inf
x∈X

supQ∈Bε(P̂) EQ
[
c (ξ, x)

]

where Bε(P̂) is an ε-Wasserstein ball
centered at empirical sample distribution P̂ :

Bε
(

P̂
)

=

{
P : inf

Π

∫ ∥∥ξ − ξ̂
∥∥
p
dΠ ≤ ε

}

ξ2

ξ 1

P̂

P

Π

Theorem : inf
x∈X

sup
Q∈Bε(P̂)

EQ
[
c (ξ, x)

]

︸ ︷︷ ︸
distributional robust formulation

≡ min
x∈X

c
(
ξ̂, x
)

+ εLip(c) · ‖x‖?p
︸ ︷︷ ︸
previous regularized DeePC formulation 15/19



Case study: wind turbine

• detailed industrial model: 37 states &
highly nonlinear (abc↔ dq, MPTT,
PLL, power specs, dynamics, etc.)

• turbine & grid model unknown to
commissioning engineer & operator

• weak grid + PLL + fault→ loss of sync

• disturbance to be rejected by DeePC
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h(g) = ‖g‖22
h(g) = ‖g‖1
h(g) =

∥∥∥kerH
(
ud

yd

)
g
∥∥∥
2

2

2''34-"$#(1"#'!

2''34-"$#(1"#'!

regularizer tuning h(g) = ‖g‖22
h(g) = ‖g‖1
h(g) =

∥∥∥kerH
(
ud

yd

)
g
∥∥∥
2

2
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Case study ++ : wind farm

SG 1

SG 2 SG 3

1

2 3

4

5 6

7 9
8

IEEE nine-bus system

wind farm

1
2

3
4

5

6

7
8910

• high-fidelity models for turbines,
machines, & IEEE-9-bus system

• fast frequency response via
decentralized DeePC at turbines

h(g) =
∥∥∥kerH

(
ud

yd

)
g
∥∥∥
2

2

subspace ID + control
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Conclusions
main take-aways
• matrix time series as predictive model
• robustness & implicit ID via regularizations
• method that works in theory & practice

for stochastic & weakly nonlinear systems
• illustrated via energy system case studies

ongoing work
→ certificates for truly nonlinear systems
→ explicit policies & direct adaptive control
→ applications with a true “business case”

SG 1

SG 2 SG 3

1

2 3

4

5 6

7 9
8

IEEE nine-bus system

wind farm

1
2

3
4

5

6

7
8910

only catch (no-free-lunch) : optimization problems become large
→ models are compressed, de-noised, & tidied-up representations

18/19



Thanks !

Florian Dörfler
mail: dorfler@ethz.ch
[link] to homepage

[link] to related publications

mailto://dorfler@ethz.ch
http://control.ee.ethz.ch/~floriand/
http://people.ee.ethz.ch/~floriand/bib/Keyword/DATA-DRIVEN-CONTROL.html


back-up slides



Performance of least-square-induced
regularizer on stochastic LTI system

‖g‖22∥∥∥kerH
(

ud

yd

)
g
∥∥∥
2

2



Further . . .
• measure concentration: average matrix

1
N

∑N
i=1 Hi(y

d) from i.i.d. experiments

=⇒ ambiguity set Bε(P̂) includes true P

with high confidence if ε ∼ 1/N1/ dim(ξ)
N = 1
N = 10

• distributionally robust constraints

supQ∈Bε(P̂) CVaRQ
1−α ⇐⇒ averaging + regularization + tightening

• more structured uncertainty sets :
tractable reformulations (relaxations) &
guarantees on realized performance

• replace (finite) moving horizon estimation via (uini
yini) by recursive

Kalman filtering based on explicit optimizer g? as hidden state



how does DeePC relate to
sequential SysID + control ?

surprise: DeePC consistently
beats models across all our

case studies !



Abstraction reveals pros & cons
indirect (model-based) data-driven control

minimize control cost
(
u, x

)

subject to
(
u, x

)
satisfy state-space model

where x estimated from
(
u, y
)

& model

where model identified from
(
ud, yd

)
data

→ nested multi-level optimization problem

}
outer
optimization

}
middle opt.

}
inner opt.





separation &
certainty
equivalence
(→ LQG case)}
no separation
(→ ID-4-control)

direct (black-box) data-driven control

minimize control cost
(
u, y
)

subject to
(
u, y
)

consistent with
(
ud, yd

)
data

→ trade-offs
modular vs. end-2-end

suboptimal (?) vs. optimal
convex vs. non-convex (?)

Additionally: account for uncertainty (hard to propagate in indirect approach)



Comparison: direct vs. indirect control
indirect ID-based data-driven control

minimize control cost
(
u, y
)

subject to
(
u, y
)

satisfy parametric model

where model ∈ argmin id cost
(
ud, yd

)

subject to model ∈ LTI(n, `) class

}
ID

ID projects data on
the set of LTI models
• with parameters (n, `)

• removes noise & thus
lowers variance error

• suffers bias error if
plant is not LTI(n, `)

direct regularized data-driven control

minimize control cost
(
u, y
)

+ λ· regularizer

subject to
(
u, y
)

consistent with
(
ud, yd

)
data

• regularization robustifies
→ choosing λ makes it work

• no projection on LTI(n, `)
→ no de-noising & no bias

hypothesis: ID wins in stochastic (variance) & DeePC in nonlinear (bias) case



Case study: direct vs. indirect control
stochastic LTI case→ indirect ID wins
• LQR control of 5th order LTI system
• Gaussian noise with varying noise to

signal ratio (100 rollouts each case)
• `1-regularized DeePC, SysID via

N4SID, & judicious hyper-parameters

deterministic noisy

nonlinear case→ direct DeePC wins
• Lotka-Volterra + control: x+ = f(x, u)

• interpolated system
x+ = ε ·flinearized(x, u) + (1− ε) ·f(x, u)

• same ID & DeePC as on the left
& 100 initial x0 rollouts for each ε

nonlinear linear
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