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feedforward feedback

.. . VS.
optimization control
1 b estimate w lw
| optimization |T>| system l—y> :@f—»{ controller |7| system l——y>
= complex specifications & decision m simple feedback policies
optimal, constrained, & multivariable suboptimal, unconstrained, & SISO
= strong requirements m forgiving nature of feedback
precise model, full state, disturbance measurement driven, robust to
estimate, & computationally intensive uncertainty, fast & agile response

— typically complementary methods are combined via time-scale separation

oz} { oot | oo |1

offline & feedforward ’ real-time & feedback
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Example: power system balancing

m offline optimization: dispatch based
on forecasts of loads & renewables

n
=3
S

<

% mm Renewables
@ 150  mmNuclear energy
E = ignite

‘g 100/  mmmHard coal

% Natural gas
£ 50| mmFueloi

g

o

=)

= n @ P a =23 ~ [ ©
(=} o o o (=} (=} (=} o o
Capacity in GW

00l

= online control based on frequency

50Hz + Frequency Power Y
-~ Control u’| System

frequency measurement

m re-schedule set-point to mitigate severe
forecasting errors (redispatch, reserve, etc.)

more uncertainty & fluctuations — infeasible
& inefficient to separate optimization & control

control

[Milano, 2018]
Re-scheduling costs
Germany [mio. €]
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[Bundesnetzagentur, Monitoringbericht 2012-2019]
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Synopsis & proposal for control architecture

m power grid: separate decision layers hit limits under increasing uncertainty
m similar observations in other large-scale & uncertain control systems:

process control systems & queuing/routing/infrastructure networks

proposal: open
N——"

with inputs & outputs running & non-batch

——

real-time interconnected

operational

cgnstraints disturblance w
T A I SN
| optimization |1} actyation ||  dynamical
| algorithm | ST ] system
: e.g., 5 | X = f(x,uw
Jut=u—-Ve(y,u) | y |y =hx,uw
| " measurement |

and online optimization algorithm as feedback control
N —
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Historical roots & conceptually related work

m process control: reducing the effect of uncertainty in sucessive optimization
Optimizing Control [Garcia & Morari, 1981/84], Self-Optimizing Control [Skogestad, 2000], Modifier
Adaptation [Marchetti et. al, 2009], Real-Time Optimization [Bonvin, ed., 2017], ...

m extremum-seeking: derivative-free but hard for high dimensions & constraints
[Leblanc, 1922], ... [Wittenmark & Urquhart, 1995], ...[Krsti¢ & Wang, 2000], ..., [Feiling et al., 2018]

m MPC with anytime guarantees (though for dynamic optimization): real-time MPC
[Zeilinger et al. 2009], real-time iteration [Diel et al. 2005], [Feller & Ebenbauer 2017], etc.

m optimal routing, queuing, & congestion control in communication networks:
e.g., TCP/IP [Kelly et al., 1998/2001], [Low, Paganini, & Doyle 2002], [Srikant 2012], [Low 2017], ...

m optimization algorithms as dynamic systems: much early work [Arrow et al., 1958],
[Brockett, 1991], [Bloch et al., 1992], [Helmke & Moore, 1994], ... & recent revival [Holding & Lestas,
2014], [Cherukuri et al., 2017], [Lessard et al., 2016], [Wilson et al., 2016], [Wibisono et al, 2016], ...

m recent system theory approaches inspired by output regulation [Lawrence et al. 2018]
& robust control methods [Nelson et al. 2017], [Colombino et al. 2018], [Simpson-Porco 2020], ...
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Feedback optimization literature

m |ots of recent theory development stimulated by power systems problems

0 . .
Lo e A Survey of Distributed Optimization and Control
e = Algorithms for Electric Power Systems
datastroams Daniel K. Molzahn," IEEE, Florian Drfler,! EE, s 2.} Member, IEEE,
B K ootz o
Ross Baldick," Fellow, IEEE, and Javad Lavaei,** Member, IEEE

Time-VaIying Convex Optimization' Optimization Algorithms as Robust Feedback Controllers
Time-Structured Algorithms and Applications Adrian Hauswirth, Saverio Bolognani, Gabriela Hug, and Florian Drfler
Andrea Simonetto, Emiliano Dall’Anese, Santiago Paternain, Geert Leus, and Georgios B. Giannakis Department of Inforn ‘echnology and Blectrical Bugineering, ETH Zirich, Switzerland

. ' /WJ\ ‘V““ﬁ*“"\f\f*
m theory <> power literature: KKT control [Jokic et al, 2009] “Ifr H—

— really kick-started ~ 2013 by EU & US groups

= implemented in microgrids (DTU, EPFL, Aachen ...),
demo projects (PNNL, NREL), & commercially (AEW)

m feedback optimization increasingly adopted in robotics
& process control domain + parallel work in comms

= recent theory: distributed, games, nonlinear, data, ...




Overview

= theory : optimization algorithms in closed loop
m stylized warm-up example & academic analysis
m practical, robust, & performant extensions

= power systems case studies
m device-level control & system-level operation
® numerics, experiments, & industrial deployments
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ACADEMIC WARM-UP PROBLEM: STYLIZED
ALGORITHM DESIGN & CLOSED-LOOP ANALYSIS



Stylized optimization problem & algorithm

simple optimization problem Y
minimize  ¢(y,u) K
Y, u
subjectto y = h(u)
uel

cont.-time projected gradient flow projected dynamical system

i = T, (=6 (h(u),w)) i € I3fl(e) £ argmin v — £(z)lyco

=11f, (=[5 1 - Vély.u))

y=h(u) R" domain X

\ T,R" vector field f
Fact: a regular solution w: [0, co] = + metric g

converges to critical points if ¢ has Lip- T, X
schitz gradient & compact sublevel sets.

tangent cone T, X

all sufficiently regular®

for details — Hauswirth et al. (2021) “Projected Dynamical Systems on Irregular Non-Euclidean Domains for Nonlinear Optimization” 8/32



Algorithm in closed loop with LTI dynamics

optimization problem LTI dynamics

minimize  ¢(y, u) & = Az + Bu + Ew
Y, u

=Czx+Du+F
subjectto y = Hiou + Raow ¢ z+ Du+ Fw

uwel const. disturbance w & steady-state maps
z=-A"'Bu —A'Ew
—— N——

— open & scaled projected gradient flow

i =Ty (—e[HE 1] - Vo(y,w)

H;s Rgs

y=(D-CA'B)u + (F-CAT'E)w




Stability, feasibility, & asymptotic optimality

Theorem: Assume that
m regularity of cost function ¢: compact sublevel sets & ¢-Lipschitz gradient
m | TI system asymptotically stable: 37 >0, 3P >~ 0: PA+ ATP < —27P

N 1 . PR * A 27 1
m sufficient time-scale separation (smallgain): 0 < € < € = 5 77

= |system gain - algorithm gain < 1

Then the closed-loop system is stable and globally converges to the critical
points of the optimization problem while remaining feasible at all times.

Proof: LaSalle/Lyapunov analysis via singular perturbation [Saberi & Khalil '84]

Us(u,e) = - e'Pe + (1-6)- ¢(h(u),w)
~—— ———
LTI Lyapunov function merit function

with parameter § € (0, 1) & steady-state error coordinate e=z — H;su — Rqsw

— derivative W;(u, €) is non-increasing if e < ¢* & for judicious choice of 4
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Example: optimal frequency control

m dynamic LTI power system model
m economic balancing objective
m control generation set-points
m unmeasured load disturbances

= measurements: frequency + constraint variables (injections & flows)

m optimization problem

— objective: ¢(y,u) =cost(u) + 3||max{0,y — y}||Z + ]| max{0,y — F}|2
N——
economic generation operational limits (line flows, frequency, ...)

— hard constraints: actuation v € U & steady-state map y = Hio,u + Raow

enforced by projection enforced by physics

— control & =1Iy (... V¢)
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Test case: contingenciesin IEEE 118 system

events: generator outage at 100s & double line tripping at 200 s

Power Generation (Gen 37) [p.u.]

T

T
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Line Power Flow Magnitudes [p.u.]
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Time [s]
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How conservative is € < ¢* ?

still stable for e = 2¢* unstable for e = 10 ¢*

10-2 Frequency Deviation from fy [Hz]
T T

Frequency Deviation from f, [Hz]
T T

— System Frequency 4 " System Frequency
5k ]
2
o 0
2
-5E . . . E . . .
105 Generation cost [$/hr] 107 Generation cost [$/hr]
[ Feedback Opt - - -ground-truth opt. 8 [— Feedback Opt - - -ground-truth opt.
1.4
6
4
2
4 0
Line Power Flow Magnitudes [p.u.] Line Power Flow Magnitudes [p.u.]
3 herscacsoasad —— 23526 — 90526~ flow limit__other ines |9 4f T—23.,26— 90126 - flow limit__other fines
2t 8
y i ——————
0 L L L
0 5 10 15 20 0 B 1‘0 1% 20

Time [s] Time [s]

Note: conservativeness depends on the problem, e.g., on soft penalty scalings
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Highlights & comparison of our approach

Weak assumptions on plant
m internal stability
— no observability / controllability
— no passivity or primal-dual structure

m measurements & steady-state sensitivity
— no knowledge of model or disturbances
— no full state measurement
— steady-state constraint enforced by plant

Weak assumptions on cost
m |ipschitz gradient + properness
— no (strict/strong) convexity required

— all of these insights extend to
much more general problem setups !

Parsimonious but powerful setup

m potentially conservative bound on
time-scale separation — but

— minimal assumptions on control
system & optimization problem
m robust & extendable methodology
nonlinear & sampled-data dynamics
general equilibrium seeking algorithms

4oL

time-varying disturbances, noise, ...

open online optimization

algorithms can be applied in feedback

— Hauswirth et al. (2020)
“Timescale Separation in Autonomous Optimization”
> Menta et al. (2018

“Stability of Dynamic Feedback Optimization ...
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GENERAL NONLINEAR SYSTEMS & DISTURBANCES



Motivation: steady-state AC power flow

m stationary model m graphical illustration of AC power flow
Ohm’s Law Current Law
I
]1 12
v [ X
1y 13
[V =2 0=15+... +1I

AC power Qe A

Gont MW (pu)

Gen2 VA (pu)

[Hiskens, 2001]

AC power flow equations

1
Se= Y W(VZF-V) VhkeN 0s
leN(k) K 04

m imagine constraints slicing this set
=- nonlinear, non-convex, disconnected

m additionally the parameters are +20% I
T Uit A ., (per unit
uncertain ...this is only the steady state! Feslperent o olvan, 2016]
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Key insights on physical equality constraint

vie == CT

m AC power flow is complex but takes
the form of a smooth manifold

— local tangent plane approximations,
local invertibility, & generic LICQ

— regularity (algorithmic flexibility)

—> Bolognani et al. (2015)
“Fast power system analysis via implicit
linearization of the power flow manifold”

—> Hauswirth et al. (2018)
“Generic Existence of Unique Lagrange
Multipliers in AC Optimal Power Flow”

m AC power flow is attractive steady
state for ambient physical dynamics

— physics enforce feasibility even for
non-exact (e.g., discrete) updates

“«m

Ry L;

— robustness (algorithm & model)

—> Gross et al. (2018)

“On the steady-state behavior of
a nonlinear power system model”
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Simple low-dimensional case studies ...

...can have simple feasible sets

utput P va, 0> v3, O3 vy, Oy
variables
v =1 2 ps="Fr D4
0,=0 @©=0 =0 @=0
slack bus generator A load

generator B
L a=01

...or can have really complex sets
1j

slack bus generator load
vy =1 et =1
0o=0 e

()

application demands sophisticated level of generality !
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General nonlinear systems & disturbances

m Lipschitz continuous nonlinear system & = f(z,u) (output setup also possible)
m explicit & differentiable steady-state map z = h(u) so that f(h(u),u) =0

m open-loop stable: Lyapunov function W (z,u) ~ W(z — h(u)) w.r.t steady-state error
satisfying W (z,u) < —7 |le — h(w)|* , VW (z,u)|| < (llz = h(w)]|

dissipation rate ~ ¢-Lipschitz in steady-state error

= local/global closed-loop stability, convergence to critical points, & feasibility if

‘ systemgain - algorithm gain < 1 ‘

where the system gain is ¢/~ = Lipschitz constant / dissipation rate

llz(®)]

m time-varying disturbances: i = f(z,u, w(t))

m assume ||w(t)|| bounded & system is input-to-state
stable (ISS) w.rt. w: W < —y |z — h(u, w)||? + o (|||

» Hauswirth et al. (2020) “Timescale
Separation in Autonomous Optimization”
= tracking certificate: closed-loop ISS w.r.t. w(t) » Belgioioso et al. (2022)

“Online Feedback Equilibrium Seeking”
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Tracking performance under disturbances

@ Generator 304
@ Synchronous Condensor

@ Solar

@ GeNeRaToRs
© svicHRoNoUs
‘CONDENSORS.

120 Aggregated demand [MW]

101112131415161718192021222324
Time [h]

=3
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Wl
I
ol
ol
<l
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disturbance = net demand: load - (wind + solar)

Active power injection [MW]

01234567389101112131415161718192021222324
Time [h]

Bus voltages [p.u.]

0123456789101112131415161718192021222324
Time [h]

Branch current magnitudes [p.u.]
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Optimality despite disturbances & uncertainty

Generation cost [$/h]

m transient trajectory feasibility

Feedback OPF
Reference OPF

m practically exact tracking of 200
ideal optimal power flow (OPF)
(omniscient & no computation delay) 100

m robustness to model mismatch

(asymptotic optimality under wrong model) ob—— v e e e e
1234567891001112131415161718192021222324
Time [h]
offline optimization feedback optimization

model uncertainty | feasible? | ¢ — ¢ | |jv—v*|| | feasible? | ¢ — ¢ | [lv—v"||

loads +40% no 94.6 0.03 yes 0.0 0.0

line params +20% yes 0.19 0.01 yes 0.01 0.003

2 line failures no -0.12 0.06 yes 0.19 0.007

conclusion: simple algorithm performs extremely well in challenging environment
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WITH DYNAMICS & DISTURBANCES TAKEN CARE OF,
WE NOW FOCUS ON OPTIMIZATION



More general optimization flows

variable metrics different ways of enforcing constraints

3

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

penalty function barrier function

-3 -2 -1 0 1 2 3

Newton: 4 = — V2¢(u) ! - primal-dual saddle flow ora2



Certificates for general optimization flows

m variable-metric Q(u) € S} gradient flow

i=—Qu) " Vé(u)

m examples: Newton method Q(u) = V¢ (u)

or mirror descent Q(u) = V24 (Vip(u) ™)

m stability, convergence, & feasibility if

system gain - algorithm gain < 1 |

with algorithm gain £ - Vh(w) - sup,, ||Q(u)

Bl

Similar results for algorithms with memory:

= momentum methods (e.g., heavy-ball)
i + D(u) i =—Q(u)"" - Vo(u)
m (exp. stable) primal-dual saddle flows

as long as the algorithm gain is bounded

a few non-examples for unbounded gain:

discontinuous subgradient

algebraic plant
dynamic plant

cost value
)

5“‘\‘%

Lo YWY Y Y YY
0 10 20 30 40 50

Nesterov acceleration

100
algebraic plant
10% dynamic plant |
" w”\/\'/\/n\’w vV
I
|
T S -
107 AV
1 0—1 [
20 40 60 80 100
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Robust implementation of projections

m projection & integrator — windup m handling uncertainty when enforcing
non-input constraints: z € X ory € Y

v

> Haberle et al. (2020)

“Enforcing Output Constraints in Feedback-based Optimization”

— Hauswirth et al. (2020)

“Anti-Windup Approximations of Oblique Projected Dynamical
Systems for Feedback-based Optimization” “Time-varying Projected Dynamical Systems with Applicaﬂongg.fé’z

— Hauswirth et al. (2018)



COMPUTING HAPPENS IN DISCRETE TIME
— SAMPLED-DATA SETTING



Sampled-data setting

m continuous-time plant:
same assumptions as before

m sampling rate 7 & Oth order hold

m discrete-time algorithm with
strictly decreasing merit function
& bounded gain

m examples: strongly quasi-non-
expansive operator (ADMM, DR,
prox, alternating projection, ...)

= local/global closed-loop ISS if

system gain - algorithm gain < 1 ‘

= system gain decreases in 7
i.e. sufficiently slow sampling

sample

10
>

VYV LY

20

discrete-time
algorithm
| | =T !
u=q(z) I
v
sampling Oth order | hod
period T hold /ﬁﬂ
continuous-time l
plant
. |l e——O=w
T = f(:E7 u7 w)
y=g(zw)
[—7=5[s] —r=1]s] 10 J]

10 20
Time [s]

30 0 10 20
Time [s

30
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Example: building temperature control

70005

Z000a
3 2550 o001
1

[ 30
15 l 0002 j. . 20

10
10

North 0 0 Fast

m building model from BRCM toolbox
with 118 states (bilinear dynamics),
10 disturbances, 8 inputs, & 7 outputs

m objective: minimize energy cost &
keep temperatures in comfort range

m online SQP (sequential quadratic

programming) for feedback optimization

m note: algorithm is not predictive &
doesn’t use any forecast or reference

Radiator [W/m?

Air Flow [kg/s]|

o) T
=25 —— a — -
| r
a || [ b ! [
g LI [ 1 (- -
ﬁ 20 P
= E
3
S5 , , , , ,
m 0 20 40 60 80 100
Time [Hrs]
g — a
20 H
L Rad:
10 e Rad5 [ ||
| RN (L[
0 20 40 60 80 100 120 140 160
Time [Hrs|
N - 0k
=
E
0 o

comparison to hysteresis (threshold-
based) control: 32% cost reduction &
28% reduction in constraint violations
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ALL ALGORITHMS REQUIRE THE GRADIENT
9 4(h(u), ) = [2 1] - Vo(y,u)
ou ) ou Y, u y=h(u)
& THUS THE MODEL SENSITIVITY % !

MODEL-FREE IMPLEMENTATIONS WITHOUT SENSITIVITY ?



Example: power grid operation

wind power [%] UNICORN project with RTE
0% m automation of Blocaux zone

= rapid change in generation

— line / voltage limits violations

— resolve most economically &
under severe uncertainty &
time-varying disturbances

RTE Grid
= 400 KV %r

225 kV
90 kV 50%
0% 5 minutes

25 minutes

Abbeville T/\F

o,

Technical problem setup
m simulation of entire French grid

T - T QT m realistic constraints & cost

& Aumalee

m gctuation & sensing in Blocaux
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Current mode of operation

Wind Power [%]
100 T T T T T T T

Available
90 Used .

80 1

0 L L L L L L L
0 200 400 600 800 1000 1200 1400 1600
Time [sec]

offline optimization & curtailment at 70% to not violate line/voltage limits
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Feedback optimization

Line Usage [p.u.]

Power Curtailment [MW]

30}

20

10 .

: [f
0 500 1000 1500

Time [sec]

using constant (wrong) sensitivity

Wind Power [%]

100
Available
80 f|— Used
60
40
20
0 1 1 ]
0 500 1000 1500
Tap Ratio in the Blocaux area
1.1

-
0.95 w

0.9

0.85
0 500 1000 1500

Time [sec]
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Model-free feedback optimization

m feedback optimization is robust
to inaccurate sensitivity, though
the performance might be inferior

m online sensitivity estimation of
Oh n Y178t yig Kalman filter
u Ug 1 —Ut

m (-order optimization building
one-point gradient estimates

9

ou
where 7 is random probing direction
& 4 is (small) smoothing parameter
— constructed via single actuation

(w) = im E[Fo(u+35-n)]

u : stochastic approximation,
extremum seeking, ...do poorly

o' 1

1 00 J

1071 ——
ground truth: exact sensitivity
robust to inaccurate sensitivity|
online sensitivity estimation

102 ¢ —— Oth-order optimization method|
stochastic extremum seeking

10 ¢

10 :

0 1 2 3 4 5

Number of Iterations x10°

» Colombino et al. (2020) “Towards robustness guarantees for
feedback-based optimization”

— Picallo et al. (2022) “Adaptive Real-Time Grid Operation via Online
Feedback Optimization with Sensitivity Estimation”

» He et al. (2022) “Model-Free Nonlinear Feedback Optimization”
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THE WORLD IS NOT AN OPTIMIZATION PROBLEM

— EXTENSIONS TO THE GAME-THEORETIC SETUP



Feedback equilibrium seeking

motivation: multi-area power system

» different system operators whose
cost functions are not aligned

» physical & operational coupling

m game theory as lingua franca:
minuu; ¢i(Ys, ui)

subject to constraints coupling (u;, y;)
m opt. solution = Nash equilibrium

m equilibrium-seeking algorithms
using local gradients a%iqﬁi(yi, ui)

m similar assumptions as before &

systemgain - algorithm gain < 1 ‘

= all results extend analogously !

us

active power [MW]

local feedback
optimization

local feedback
optimization

Uy

~
L O Ay S S R _|_ price of
_anarchy

-
-

— - = centralized optimality seeking
—— multi-area equilibrium seeking

0 1000 2000 3000 4000 5000 6000 7000 8000
ime [s]

— PQgeno.areal Pagenl areal — PQgen2,area3|

— Belgioioso et al. (2022) “Online Feedback Equilibrium Seeking”
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FROM LAB DEMONSTRATIONS
TO COMMERCIAL DEPLOYMENT



Deployment at Swiss utility (AEW)

m virtual grid reinforcement through reactive
power/voltage support & power flow control

m strong economic incentives (rewards &
penalties) from higher-level system operator

7 TR m feedback optimization on legacy hardware

~ &

= runs robustly, 24/7, & makes money in
presence of time-varying incentives

) e — 200
P 08 ind. =[Setpoint
Communication channel 085 ind. | — Reactive Power 150
—— Active Power 100
0.9 ind. =
9 50 z
% 0.95 ind. %
3
£ ! o s
12} <
0.95 cap. —50 E
0.9 cap. ~100
0.85 cap.
o —150
0.8 cap.

Y N N V9

CADPOP DI TS APV B>
OGN QP LA QNS AN ANINEN
SRV PG R o

— Ortmann et al. (2022) “Deployment of an Online

31/32



CONCLUSIONS



Conclusions

Summary

m open & online feedback optimization algorithms as controllers

m unified framework for broad class of systems, algorithms, decision-
making problems, interconnection scenarios, & implementation aspects

m jllustrated throughout with non-trivial power systems case studies

m complete TRL scale covered: theory — industrial deployment

Ongoing work & open directions
m theory: get rid off time-scale separation & many other extensions

m new application domains: supply chains & recommender systems

It works in theory and in practice !
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