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feedforward
optimization

optimization system

ŵ estimate

u

w

y

complex specifications & decision
optimal, constrained, & multivariable
strong requirements
precise model, full state, disturbance
estimate, & computationally intensive

vs. feedback
control

controller systemr +
u

y

w

−

simple feedback policies
suboptimal, unconstrained, & SISO
forgiving nature of feedback
measurement driven, robust to
uncertainty, fast & agile response

→ typically complementary methods are combined via time-scale separation

optimization controller systemr +
u

y

−

offline & feedforward
∣∣∣ real-time & feedback
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Example: power system balancing
offline optimization: dispatch based
on forecasts of loads & renewables
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online control based on frequency
Frequency

Control
Power

System
50Hz +

u

y

frequency measurement

−

re-schedule set-point to mitigate severe
forecasting errors (redispatch, reserve, etc.)

more uncertainty & fluctuations→ infeasible
& inefficient to separate optimization & control

50 Hz

51 49

generation

load

control [Milano, 2018]
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Synopsis & proposal for control architecture
power grid: separate decision layers hit limits under increasing uncertainty
similar observations in other large-scale & uncertain control systems :
process control systems & queuing / routing / infrastructure networks

proposal: open︸ ︷︷ ︸
with inputs & outputs

and online︸ ︷︷ ︸
running & non-batch

optimization algorithm as feedback︸ ︷︷ ︸
real-time interconnected

control

optimization
algorithm

e.g.,

u+ = u−∇φ(y, u)

dynamical
system

ẋ = f (x, u, w)
y = h(x, u, w)

actuation
u

measurement
y

operational
constraints

u ∈ U

disturbance w
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Historical roots & conceptually related work
process control: reducing the effect of uncertainty in sucessive optimization
Optimizing Control [Garcia & Morari, 1981/84], Self-Optimizing Control [Skogestad, 2000], Modifier
Adaptation [Marchetti et. al, 2009], Real-Time Optimization [Bonvin, ed., 2017], . . .

extremum-seeking: derivative-free but hard for high dimensions & constraints
[Leblanc, 1922], . . . [Wittenmark & Urquhart, 1995], . . . [Krstić & Wang, 2000], . . . , [Feiling et al., 2018]

MPC with anytime guarantees (though for dynamic optimization): real-time MPC
[Zeilinger et al. 2009], real-time iteration [Diel et al. 2005], [Feller & Ebenbauer 2017], etc.

optimal routing, queuing, & congestion control in communication networks:
e.g., TCP/IP [Kelly et al., 1998/2001], [Low, Paganini, & Doyle 2002], [Srikant 2012], [Low 2017], . . .

optimization algorithms as dynamic systems: much early work [Arrow et al., 1958],
[Brockett, 1991], [Bloch et al., 1992], [Helmke & Moore, 1994], . . . & recent revival [Holding & Lestas,
2014], [Cherukuri et al., 2017], [Lessard et al., 2016], [Wilson et al., 2016], [Wibisono et al, 2016], . . .

recent system theory approaches inspired by output regulation [Lawrence et al. 2018]
& robust control methods [Nelson et al. 2017], [Colombino et al. 2018], [Simpson-Porco 2020], . . .
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Feedback optimization literature
lots of recent theory development stimulated by power systems problems

Optimization Algorithms as Robust Feedback Controllers

Adrian Hauswirth, Saverio Bolognani, Gabriela Hug, and Florian Dörfler
Department of Information Technology and Electrical Engineering, ETH Zürich, Switzerland

A Survey of Distributed Optimization and Control
Algorithms for Electric Power Systems

Daniel K. Molzahn,∗ Member, IEEE, Florian Dörfler,† Member, IEEE, Henrik Sandberg,‡ Member, IEEE,
Steven H. Low,§ Fellow, IEEE, Sambuddha Chakrabarti,¶ Student Member, IEEE,

Ross Baldick,¶ Fellow, IEEE, and Javad Lavaei,∗∗ Member, IEEE

Time-Varying Convex Optimization:
Time-Structured Algorithms and Applications

Andrea Simonetto, Emiliano Dall’Anese, Santiago Paternain, Geert Leus, and Georgios B. Giannakis
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Fig. 1: Example metabolic network.

theory↔ power literature: KKT control [Jokic et al, 2009]

→ really kick-started ∼ 2013 by EU & US groups

implemented in microgrids (DTU, EPFL, Aachen . . . ),
demo projects (PNNL, NREL), & commercially (AEW)

feedback optimization increasingly adopted in robotics
& process control domain + parallel work in comms

recent theory: distributed, games, nonlinear, data, . . .
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Overview

theory : optimization algorithms in closed loop
stylized warm-up example & academic analysis
practical, robust, & performant extensions

power systems case studies
device-level control & system-level operation
numerics, experiments, & industrial deployments
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ACADEMIC WARM-UP PROBLEM: STYLIZED

ALGORITHM DESIGN & CLOSED-LOOP ANALYSIS



Stylized optimization problem & algorithm
simple optimization problem

minimize
y,u

φ(y, u)

subject to y = h(u)

u ∈ U

cont.-time projected gradient flow

u̇ = Πg
U

(
−∇φ

(
h(u), u

))
= Πg

U

(
−
[
∂h
∂u

I
]
· ∇φ(y, u)

)∣∣∣
y=h(u)

Fact: a regular† solution u : [0,∞]→U
converges to critical points if φ has Lip-
schitz gradient & compact sublevel sets.

projected dynamical system

ẋ ∈ Πg
X [f ](x) , arg min

v∈TxX
‖v − f(x)‖g(x)

I domain X
I vector field f
I metric g
I tangent cone TxX

all sufficiently regular†

† for details → Hauswirth et al. (2021) “Projected Dynamical Systems on Irregular Non-Euclidean Domains for Nonlinear Optimization” 8 / 32



Algorithm in closed loop with LTI dynamics
optimization problem

minimize
y,u

φ(y, u)

subject to y = Hiou+Rdow

u ∈ U

→ open & scaled projected gradient flow

u̇ = ΠU
(
−ε
[
HT
io I

]
· ∇φ(y, u)

)

LTI dynamics
ẋ = Ax+Bu+ Ew

y = Cx+Du+ Fw

const. disturbance w & steady-statemaps

x = −A−1B︸ ︷︷ ︸
His

u −A−1E︸ ︷︷ ︸
Rds

w

y =
(
D − CA−1B

)︸ ︷︷ ︸
Hio

u +
(
F − CA−1E

)︸ ︷︷ ︸
Rdo

w

ε
∫

U
u

B
∫

w E A

∇u φ D F

HT
io∇y φ

y
C

+ x

++

++
+

− ++−
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Stability, feasibility, & asymptotic optimality
Theorem: Assume that

regularity of cost function φ: compact sublevel sets & `-Lipschitz gradient

LTI system asymptotically stable: ∃ τ > 0 , ∃P � 0 : PA+ATP � −2τP

sufficient time-scale separation (small gain): 0 < ε < ε? , 2τ
cond(P )

· 1
`‖Hio‖

⇐⇒ systemgain · algorithmgain < 1

Then the closed-loop system is stable and globally converges to the critical
points of the optimization problem while remaining feasible at all times.

Proof: LaSalle/Lyapunov analysis via singular perturbation [Saberi & Khalil ’84]

Ψδ(u, e) = δ · eTP e︸ ︷︷ ︸
LTI Lyapunov function

+ (1− δ) · φ
(
h(u), u

)
︸ ︷︷ ︸
merit function

with parameter δ∈(0, 1) & steady-state error coordinate e=x−Hisu−Rdsw

→ derivative Ψ̇δ(u, e) is non-increasing if ε ≤ ε? & for judicious choice of δ
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Example: optimal frequency control
dynamic LTI power system model

economic balancing objective

control generation set-points

unmeasured load disturbances

measurements: frequency + constraint variables (injections & flows)

I linearized swing dynamics
I 1st-order turbine-governor
I primary frequency droop
I DC power flow approximation

optimization problem

→ objective: φ(y, u) = cost(u)︸ ︷︷ ︸
economic generation

+ 1
2
‖max{0, y − y}‖2Ξ + 1

2
‖max{0, y − y}‖2Ξ︸ ︷︷ ︸

operational limits (line flows, frequency, . . . )

→ hard constraints: actuation u ∈ U︸ ︷︷ ︸
enforced by projection

& steady-state map y = Hiou+Rdow︸ ︷︷ ︸
enforced by physics

→ control u̇ = ΠU (. . .∇φ) ≡ super-charged Automatic Generation Control
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Test case: contingencies in IEEE118 system
events: generator outage at 100 s & double line tripping at 200 s

0 50 100 150 200 250 300
0

2

4

6

Time [s]

Power Generation (Gen 37) [p.u.]

Setpoint Output
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How conservative is ε < ε? ?
still stable for ε = 2 ε?
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Note: conservativeness depends on the problem, e.g., on soft penalty scalings
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Highlights & comparison of our approach

Weak assumptions on plant
internal stability

→ no observability / controllability
→ no passivity or primal-dual structure

measurements & steady-state sensitivity
→ no knowledge of model or disturbances
→ no full state measurement
→ steady-state constraint enforced by plant

Weak assumptions on cost
Lipschitz gradient + properness

→ no (strict / strong) convexity required

Parsimonious but powerful setup
potentially conservative bound on
time-scale separation — but

→ minimal assumptions on control
system & optimization problem

robust & extendable methodology
→ nonlinear & sampled-data dynamics
→ general equilibrium seeking algorithms
→ time-varying disturbances, noise, . . .

take-away: open online optimization
algorithms can be applied in feedback

−→ all of these insights extend to
much more general problem setups !

→ Hauswirth et al. (2020)
“Timescale Separation in Autonomous Optimization”

→ Menta et al. (2018)
“Stability of Dynamic Feedback Optimization . . . ”
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GENERAL NONLINEAR SYSTEMS & DISTURBANCES



Motivation: steady-state AC power flow
stationary model
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imagine constraints slicing this set
⇒ nonlinear, non-convex, disconnected

additionally the parameters are ±20%

uncertain . . . this is only the steady state!

graphical illustration of AC power flow

[Hiskens, 2001]

[Molzahn, 2016]
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Key insights on physical equality constraint

1.5

1

0.5

q
2

0

-0.5

-11.5
1

0.5

p
2

0
-0.5

-1

1.2

1

1.4

0.8

0.6

v
2

vdc

idc

m

iI

v

LI

CI GI

RI

τm

θ, ω

vf

v

if

τe

is

Lθ

M
rf

rs rs

v

iTLT

CG GqC v

RTiI

AC power flow is complex but takes
the form of a smooth manifold

→ local tangent plane approximations,
local invertibility, & generic LICQ

→ regularity (algorithmic flexibility)

→ Bolognani et al. (2015)
“Fast power system analysis via implicit
linearization of the power flow manifold”

→ Hauswirth et al. (2018)
“Generic Existence of Unique Lagrange
Multipliers in AC Optimal Power Flow”

AC power flow is attractive steady
state for ambient physical dynamics

→ physics enforce feasibility even for
non-exact (e.g., discrete) updates

→ robustness (algorithm & model)

→ Gross et al. (2018)
“On the steady-state behavior of
a nonlinear power systemmodel”
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Simple low-dimensional case studies . . .
. . . can have simple feasible sets . . . or can have really complex sets

v0 = 1

slack bus generator

qG ∈ [q, q]

vref = 1

load

pL(t)

pG

1j

θ0 = 0

0
-2

0.5

3

v

1

2

pG-pL

0

qG

1
0

2 -1

application demands sophisticated level of generality !
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General nonlinear systems & disturbances
Lipschitz continuous nonlinear system ẋ = f(x, u) (output setup also possible)

explicit & differentiable steady-state map x = h(u) so that f(h(u), u) = 0

open-loop stable: Lyapunov functionW (x, u) ≈W (x−h(u)) w.r.t steady-state error
satisfying Ẇ (x, u) ≤ −γ ‖x− h(u)‖2︸ ︷︷ ︸

dissipation rate γ

, ‖∇uW (x, u)‖ ≤ ζ ‖x− h(u)‖︸ ︷︷ ︸
ζ-Lipschitz in steady-state error

⇒ local / global closed-loop stability, convergence to critical points, & feasibility if

systemgain · algorithmgain < 1

where the system gain is ζ/γ = Lipschitz constant / dissipation rate

time-varying disturbances: ẋ = f(x, u, w(t))

assume ‖ẇ(t)‖ bounded & system is input-to-state
stable (ISS) w.r.t. ẇ : Ẇ ≤ −γ ‖x− h(u,w)‖2 + σ(‖ẇ‖)

⇒ tracking certificate: closed-loop ISS w.r.t. ẇ(t)

t

‖x(t)‖

σ(‖ẇ‖)

→ Hauswirth et al. (2020) “Timescale
Separation in Autonomous Optimization”
→ Belgioioso et al. (2022)
“Online Feedback Equilibrium Seeking”
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Tracking performance under disturbances
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5.3.2 30 Bus Power Flow Test Case

To investigate the capabilities of our new scheme under time-varying generation limits and fluc-
tuating load conditions, we consider a power system setup based on the IEEE 30 bus power flow
test case, where wind and solar generation has been added, similar to the one adopted in [13].
The grid topology is shown in Figure 5.4, where the controllable units along with their gener-
ation limits and the operational constraints of the associated buses are listed in Table 5.3. In
particular, the upper power generation limit of the solar and the wind farm are time-varying, due
to the fluctuating nature of the corresponding primary sources. This results in a time-varying
constraint set U of the controllable variables. Additional operational constraints that need to be
satisfied include line current limits for different branches. The total generation cost � we aim to
minimize is composed of the costs of each generator in [$/h], given as aip

2
i +bipi, where ai, bi > 0

are constant cost-coefficients provided in Table 5.3. The marginal operating cost of the solar and
the wind farm is set to zero.

We simulate 24 hours of operation and run Algorithm 1, where the controller receives field
measurements of the system state z every minute. The demand profile is shown in Figure 5.4,
which exhibits an abrupt demand reduction of approximately 20% between 20:30 and 21:30 at
several system buses.
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����������	
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W
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70
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110

120

Figure 5.4: Modified IEEE 30 bus power flow test case.

Unit Type Set-points ai bi p̄gi p
gi

q̄gi q
gi

v̄i vi

G1 Gen.1 V✓, v 0.1 0.9 75 0 50 -50 1.06 0.94
freq. ctrl.

G2 Gen.2 PV p, v 0.04 0.5 60 0 50 -50 1.06 0.94
C1 Cond.1 PV v 0 0 0 0 50 -50 1.06 0.94
C2 Cond.2 PV v 0 0 0 0 50 -50 1.06 0.94
C3 Cond.3 PV v 0 0 0 0 50 -50 1.06 0.94
S Solar PQ p, q 0 0 p̄s(t) 0 50 -50 1.06 0.94
W Wind PQ p, q 0 0 p̄w(t) 0 50 -50 1.06 0.94

line 1-2 line 6-8 line 12-15

Table 5.3: Cost coefficients a and b in [$/MW2h] and [$/MWh], respectively. Active power
generation limits in [MW] and reactive power generation limits in [MVAr], and bus voltage
limits in [p.u.]. The system base power is fixed to 100MVA.
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(a) Simulation results of controlled 30 bus
power system with exact Jacobian matrix
ru,yF (u, y, w).
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(b) Simulation results of controlled 30 bus
power system with constant approximation of
the Jacobian matrix.

Figure 5.5: Simulation results of controlled 30 bus power system for the exact Jacobian matrix
ru,yF (u, y, w) and a constant approximation thereof. The dashed lines represent the constraints
and the colors are the same as in Table 5.3.
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Figure 5.5: Simulation results of controlled 30 bus power system for the exact Jacobian matrix
ru,yF (u, y, w) and a constant approximation thereof. The dashed lines represent the constraints
and the colors are the same as in Table 5.3.
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Optimality despite disturbances&uncertainty

transient trajectory feasibility
practically exact tracking of
ideal optimal power flow (OPF)
(omniscient & no computation delay)

robustness to model mismatch
(asymptotic optimality under wrong model)
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(b) Simulation results of controlled 30 bus
power system with constant approximation of
the Jacobian matrix.

Figure 5.5: Simulation results of controlled 30 bus power system for the exact Jacobian matrix
ru,yF (u, y, w) and a constant approximation thereof. The dashed lines represent the constraints
and the colors are the same as in Table 5.3.
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offline optimization feedback optimization
model uncertainty feasible ? φ− φ∗ ‖v − v∗‖ feasible ? φ− φ∗ ‖v − v∗‖
loads ±40% no 94.6 0.03 yes 0.0 0.0
line params ±20% yes 0.19 0.01 yes 0.01 0.003
2 line failures no -0.12 0.06 yes 0.19 0.007

conclusion: simple algorithm performs extremely well in challenging environment
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WITH DYNAMICS & DISTURBANCES TAKEN CARE OF,

WE NOW FOCUS ON OPTIMIZATION



More general optimization flows
variable metrics different ways of enforcing constraints

gradient: u̇ = − ∇φ(u)

Newton: u̇ = − ∇2φ(u)−1 · ∇φ(u)
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(e) Projected Gradient Flow

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(f) Mixed Saddle-Flow
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(b) Barrier Function
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penalty function barrier function

projected gradient flow primal-dual saddle flow
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Certificates for general optimization flows

variable-metric Q(u) ∈ Sn+ gradient flow

u̇ = −Q(u)−1 · ∇φ(u)

examples: Newton method Q(u)=∇2φ(u)

or mirror descent Q(u)=∇2ψ(∇ψ(u)−1)

stability, convergence, & feasibility if

systemgain · algorithmgain < 1

with algorithm gain ` · ∇h(u) · supu‖Q(u)−1‖

Similar results for algorithms with memory:
momentum methods (e.g., heavy-ball)

ü + D(u) · u̇ = −Q(u)−1 · ∇φ(u)

(exp. stable) primal-dual saddle flows

as long as the algorithm gain is bounded

a few non-examples for unbounded gain:
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Robust implementation of projections
projection & integrator→ windup
→ robust anti-windup approximation
→ saturation often “for free” by physics

K

∫
PU

k(·, u) ẋ = f(x, ·)

+

−

u

PU (u)

−
+

u̇ = ΠU [k(x, ·)](u)K → ∞

disturbance→ time-varyingdomain

f(x)

Πt
X f(x)

X (t)

X (t + δ)

I temporal tangent
cone & vector field

I ensure suff. regularity
& tracking certificates

→ Hauswirth et al. (2020)
“Anti-Windup Approximations of Oblique Projected Dynamical

Systems for Feedback-based Optimization”

handling uncertainty when enforcing
non-input constraints : x ∈ X or y ∈ Y

I cannot measure state x directly
→ Kalman filtering: estimation& separation

I cannot enforce constraints on y=h(u)
by projection (not actuated & h(·)unknown)

→ soft penalty or dualization + grad flows
(inaccurate, violations, & strong assumptions)

→ project on1st order predictionof y=h(u)

y+ ≈ h(u)︸︷︷︸
measured

+ ε ∂h
∂u︸︷︷︸

steady-state
I/O sensitivity

w︸︷︷︸
feasible descent

direction

⇒ global convergence to critical points

→ Häberle et al. (2020)
“Enforcing Output Constraints in Feedback-based Optimization”

→ Hauswirth et al. (2018)
“Time-varying Projected Dynamical Systems with Applications. . . ”23 / 32



COMPUTING HAPPENS IN DISCRETE TIME

−→ SAMPLED-DATA SETTING



Sampled-data setting
continuous-time plant :
same assumptions as before

sampling rate τ & 0th order hold

discrete-time algorithm with
strictly decreasing merit function
& bounded gain

examples: strongly quasi-non-
expansive operator (ADMM, DR,
prox, alternating projection, . . . )

⇒ local / global closed-loop ISS if

systemgain · algorithmgain < 1

⇒ system gain decreases in τ
i.e.sufficiently slowsampling

sample hold

discrete-time

algorithm

continuous-time

plant

z+ = T (z, y)

u = q(z)

ẋ = f(x, u, w)

y = g(x, w)

τ
sampling 

period

0th order

hold

w

VI. ILLUSTRATIVE EXAMPLES

In this section, we demonstrate that the algorithmic pre-
conditions (Assumption 3) in Theorem 5 are sharp in the
sense that if any is not satisfied, in general, one cannot
expect the algorithm-plant interconnection (21) to be robust
to unmeasured disturbances or even stable7.

Consider a single-input single-output dynamic plant gov-
erned by the second-order differential equation

⇠̈ + 0.5⇠̇ + ⇠ = u + w (39)

where y = ⇠ and w is a disturbance term. The plant is an
LTI system of the form ẋ = Ax + B(u + w) with x = (⇠, ⇠̇)
and is asymptotically stable and satisfies Assumption 1 with
steady-state mapping h(u, w) = u+w, Lyapunov function
V (x, u, w) = 1/2|x � (u + w, 0)|2P , where P satisfies AP +
PA> + I = 0, and ↵3 = �min(P ),↵4 = �max(P ), and ↵5 =
�min(P�1). The control objective is encoded as

min
u

1
2 |y � yref|2 s.t. y = h(u, w), u 2 [�10, 10], (40)

which models set-point regulation and satisfies Assumption 2.

A. Closing the loop can lead to instability

The proximal-gradient controller [25, § III.A] for this prob-
lem generates control inputs according to the update rule

T (zk, y) = proj[�10, 10]

�
zk � �(y � yref)

�
, (41)

with uk = zk, which satisfies Assumption 3 if � 2 (0, 1], with
↵1 = ↵2 = id, W (z, w) = |z � z⇤(w)|, z⇤(w) = yref � w,
↵(s) =

⇣
1 �

p
1 � �(2 � �)

⌘
s, and LT = �.

Based on Theorem 5, we expect that the interconnection
of (39) and (41) will only be stable for sufficiently large ⌧ .
Since the system (39) is exponentially stable and the algorithm
(41) linearly convergent we can use Corollary 1 to conclude
that the interconnection is stable for ⌧ > 5.44. The simulation
results match our expectations. Figure 4 demonstrates that the
interconnection indeed becomes unstable for small ⌧ , that the
system is stable for sufficiently large ⌧ , and that Corollary 1
can be conservative as ⌧ = 5 leads to a stable interconnection.

B. Subgradient methods lead to oscillations

Consider the optimization problem (40) but with the convex
but nonsmooth cost function |y � yref|1. A common approach
for this class of problems is projected subgradient descent
which leads to the algorithm

T (zk, y) = proj
[�10,10]

(zk � �⇣), ⇣ =

8
><
>:

�1 if y < yref

1 if y > yref

0 else
(42)

which will converge to a neighbourhood of the optimum
for � 2 (0, 1) in the absence of dynamic interactions. The
subgradient control law (42) is discontinuous in y and thus
violates Assumption 3.(iii). As illustrated in Figure 5, this
leads to oscillations in the control input that do not disappear
as the sampling period increases (contrary to Theorem 5).

7The code for the examples in this section is available in [44]

Fig. 4. Simulations of the sampled-data interconnection of the continuous-
time SISO plant (39) and the discrete-time algorithm (41), with � = 0.8,
under different choices of the sampling period ⌧ . On the left, the generated
output; on the right, the correspondent control input trajectory.

Fig. 5. Simulations of the sampled-data interconnection of the continuous-
time SISO plant (39) with the subgradient algorithm (42) and � = 0.7. The
interconnection produces oscillations on the control input and the plant output
that do not decay as the sampling period ⌧ increases.

Fig. 6. Simulations of the sampled-data interconnection of the continuous-
time SISO plant (39), subject to the additive disturbance w(t) = 5 ·10�2t,
and the discrete-time algorithm (41), under different choices of the step size
sequence �k . The output tracking error diverges if the sequence vanishes as
in (43), while it stabilizes for constant step sizes. The oscillations are due to
the combined effect of time-varying disturbance and sampled-data control.

C. Vanishing steps do not track solutions trajectories

Finally, consider the algorithm (41), where the step size is
time-varying (� depends on the iteration k) and such that

�k � 0 8k,
P

k2N �
k = 1,

P
k2N(�k)2 < 1. (43)

Gradient-based algorithms with vanishing steps of this kind
are popular in the context of optimization and game theory,
e.g., for stochastic approximation and gradient tracking. Here,
a vanishing step size results in a vanishing control gain, and
thus unsurprisingly this class of algorithms does not admit
a merit function8 in the sense of Assumption 3. Hence, ISS
cannot be guaranteed in online settings. This is illustrated in
Figure 6 which shows that whenever the step sizes of the (41)
vanish to zero, as in (43), the tracking error diverges.

8In fact, for k ! 1 the K-function of (41) yields limk!1 ↵k(·) =⇣
1 �

p
1 � �k(2 � �k)

⌘
· = 0 since limk!1 �k = 0 by (43).
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Example: building temperature control

Fig. 7. Example building generated via the BRCM toolbox [45].

VII. APPLICATION EXAMPLES

A. Temperature Regulation in Smart Buildings

In this section, we illustrate how FES can be applied to
smart building automation. Consider the 5-room single-story
office building in Figure 7. Its dynamics are of the form

ẋ = Ax + Buu + Bww +

nuX

i=1

(Bwu,iw + Bxu,ix) ui, (44)

and are generated using the BRCM toolbox [45]. The state
x 2 L113 contains the temperatures of the rooms and wall
layers, floor layers, etc. The control inputs u 2 L8 are an
air handling unit (AHU) consisting of air flow (0–1 kg/s),
cooling/heating power between 102W and 103W, and one
radiator in each room emitting between 0 and 25 W/m2. The
disturbances w 2 L10 include the solar radiation, the ambient
outdoor air temperature, the temperature of the ground, and
the internal heat gains coming from building occupants. The
measurement y 2 L7 contains the room, outside air, and
ground temperatures. The solar radiation and the heat emitted
by the buildings occupants are unmeasured. The nonlinearities
are caused by the AHU whose control authority depends on the
ambient air temperature and room temperatures. We model 15
building occupants (providing an internal heat gain of 100W
each) by a Markov chain, with a time-dependent probability
of being in a given room [46]. The solar radiation and ambient
temperature are periodic functions yielding temperatures and
solar gains representative of central European springtime.

Our objective is to minimize energy usage while main-
taining the room temperatures within a comfortable range
T = [Tmin Tmax]. This control objective is implicitly encoded
via an NLP with composite cost function as in (10), i.e.,

�(⇠, u) =
✏

2
|[ ⇠u ]|2 + c>u, ⇠ = h(u, w), (45a)

'(⇠) =
⌘

2

5X

i=1

max{0, Tmin,i � ⇠i, ⇠i � Tmax,i}, (45b)

where ⌘ > 0 is a tuning parameter, c collects the electricity
prices, and Tmin,i, Tmax,i are the comfort constraints on the
temperature in the i-th room. The quadratic term in �(u, ⇠)
is a regularizer, with typically small tuning parameter ✏, that
improves regularity of the minimizers. The purpose of '

Fig. 8. Simulations of the SQP controller (46) on the building dynamics (44).
The comfort temperature (output) constraints are (approximately) satisfied
throughout the simulations, while heating and cooling effort is minimized.

is to penalize the comfort constraint violations of the room
temperatures. A 1-norm penalty on the violation is used for
two reasons. First, the electrical cost of heating is linear in
the control input. Second, ' is an exact penalty function, and
so for a well-tuned parameter ⌘, the (disturbance-free) system
can be exactly driven within the temperature bounds [47].

Given the control objective (45) and the steady-state sensi-
tivity associated with (44), we form a FES controller using
the JN algorithm, as explained in Section IV. Given the
measurements y, the current control input u, and the controller
state ⇠, the resulting sampled-data SQP controller sets the next
control inputs as the solutions (du-component) of the QP

min
d⇠,du,�

✏
2

���
h

d⇠

du

i���
2

+ 1
2d>u c + ⌘

2

P5
i=1 �i

s.t. d⇠ = ruh(u, w)du + y � ⇠
u + du 2 U
⇠i + d⇠,i � Tmax  �i, 8i = 1, . . . , 5
⇠i + d⇠,i � Tmin � ��i, 8i = 1, . . . , 5
�i � 0, 8i = 1, . . . , 5

(46)

where �i are slack variables that allow to reformulate the
nonsmooth cost term '(⇠ + d⇠) as linear constraints. We set
⌘ = 5 ·104, ✏ = 10�5, and a discrete time step of ⌧ = 3 [min].
Simulation results are presented in Figure 8. The proposed
controls are able to keep the rooms between the temperature
bounds, with only minor constraint violations. We compare
the controller performance to a hysteresis-based thermostat
controller, which turns the radiators and AHU heater on when
Troom  Tmin+Tmax

2 � 2 and off when Troom � Tmin+Tmax

2 . The
AHU cooler is turned on when Troom � Tmin+Tmax

2 +2, and off
when Troom  Tmin+Tmax

2 , with all temperatures in �C. In our
example, the SQP controller provides a 27.84% reduction in
constraint violations, and a 32.29% reduction in total cost as
measured by (45) compared to the hysteresis controller. The
code for this application example is available in [44].

building model from BRCM toolbox
with 118 states (bilinear dynamics),
10 disturbances, 8 inputs, & 7 outputs

objective: minimize energy cost &
keep temperatures in comfort range

online SQP (sequential quadratic
programming) for feedback optimization

note: algorithm is not predictive &
doesn’t use any forecast or reference

Fig. 7. Example building generated via the BRCM toolbox [45].

VII. APPLICATION EXAMPLES

A. Temperature Regulation in Smart Buildings

In this section, we illustrate how FES can be applied to
smart building automation. Consider the 5-room single-story
office building in Figure 7. Its dynamics are of the form

ẋ = Ax + Buu + Bww +

nuX

i=1

(Bwu,iw + Bxu,ix) ui, (44)

and are generated using the BRCM toolbox [45]. The state
x 2 L113 contains the temperatures of the rooms and wall
layers, floor layers, etc. The control inputs u 2 L8 are an
air handling unit (AHU) consisting of air flow (0–1 kg/s),
cooling/heating power between 102W and 103W, and one
radiator in each room emitting between 0 and 25 W/m2. The
disturbances w 2 L10 include the solar radiation, the ambient
outdoor air temperature, the temperature of the ground, and
the internal heat gains coming from building occupants. The
measurement y 2 L7 contains the room, outside air, and
ground temperatures. The solar radiation and the heat emitted
by the buildings occupants are unmeasured. The nonlinearities
are caused by the AHU whose control authority depends on the
ambient air temperature and room temperatures. We model 15
building occupants (providing an internal heat gain of 100W
each) by a Markov chain, with a time-dependent probability
of being in a given room [46]. The solar radiation and ambient
temperature are periodic functions yielding temperatures and
solar gains representative of central European springtime.

Our objective is to minimize energy usage while main-
taining the room temperatures within a comfortable range
T = [Tmin Tmax]. This control objective is implicitly encoded
via an NLP with composite cost function as in (10), i.e.,

�(⇠, u) =
✏

2
|[ ⇠u ]|2 + c>u, ⇠ = h(u, w), (45a)

'(⇠) =
⌘

2

5X

i=1

max{0, Tmin,i � ⇠i, ⇠i � Tmax,i}, (45b)

where ⌘ > 0 is a tuning parameter, c collects the electricity
prices, and Tmin,i, Tmax,i are the comfort constraints on the
temperature in the i-th room. The quadratic term in �(u, ⇠)
is a regularizer, with typically small tuning parameter ✏, that
improves regularity of the minimizers. The purpose of '

Fig. 8. Simulations of the SQP controller (46) on the building dynamics (44).
The comfort temperature (output) constraints are (approximately) satisfied
throughout the simulations, while heating and cooling effort is minimized.

is to penalize the comfort constraint violations of the room
temperatures. A 1-norm penalty on the violation is used for
two reasons. First, the electrical cost of heating is linear in
the control input. Second, ' is an exact penalty function, and
so for a well-tuned parameter ⌘, the (disturbance-free) system
can be exactly driven within the temperature bounds [47].

Given the control objective (45) and the steady-state sensi-
tivity associated with (44), we form a FES controller using
the JN algorithm, as explained in Section IV. Given the
measurements y, the current control input u, and the controller
state ⇠, the resulting sampled-data SQP controller sets the next
control inputs as the solutions (du-component) of the QP

min
d⇠,du,�

✏
2

���
h

d⇠

du

i���
2

+ 1
2d>u c + ⌘

2

P5
i=1 �i

s.t. d⇠ = ruh(u, w)du + y � ⇠
u + du 2 U
⇠i + d⇠,i � Tmax  �i, 8i = 1, . . . , 5
⇠i + d⇠,i � Tmin � ��i, 8i = 1, . . . , 5
�i � 0, 8i = 1, . . . , 5

(46)

where �i are slack variables that allow to reformulate the
nonsmooth cost term '(⇠ + d⇠) as linear constraints. We set
⌘ = 5 ·104, ✏ = 10�5, and a discrete time step of ⌧ = 3 [min].
Simulation results are presented in Figure 8. The proposed
controls are able to keep the rooms between the temperature
bounds, with only minor constraint violations. We compare
the controller performance to a hysteresis-based thermostat
controller, which turns the radiators and AHU heater on when
Troom  Tmin+Tmax

2 � 2 and off when Troom � Tmin+Tmax

2 . The
AHU cooler is turned on when Troom � Tmin+Tmax

2 +2, and off
when Troom  Tmin+Tmax

2 , with all temperatures in �C. In our
example, the SQP controller provides a 27.84% reduction in
constraint violations, and a 32.29% reduction in total cost as
measured by (45) compared to the hysteresis controller. The
code for this application example is available in [44].

comparison to hysteresis (threshold-
based) control: 32% cost reduction &
28% reduction in constraint violations
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ALL ALGORITHMS REQUIRE THE GRADIENT

∂

∂u
φ
(
h(u), u

)
=

[
∂h
∂u I

]
· ∇φ(y, u)

∣∣
y=h(u)

& THUS THE MODEL SENSITIVITY ∂h
∂u !

MODEL-FREE IMPLEMENTATIONS WITHOUT SENSITIVITY?



Example: power grid operation
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5 minutes

UNICORN project with RTE
automation of Blocaux zone
rapid change in generation
→ line / voltage limits violations
→ resolvemost economically&

under severe uncertainty &
time-varying disturbances

Technical problem setup
simulation of entire French grid
→ power flow + tap changer
actuation & sensing in Blocaux
→ tap, reactive & active power
→ voltage& currentmagnitudes
realistic constraints & cost
→ curtailment + losses
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Current mode of operation
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offline optimization & curtailment at 70% to not violate line / voltage limits
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Feedback optimization using constant (wrong) sensitivity

Power Curtailment [MW]

Line Usage [p.u.]
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Model-free feedback optimization

feedback optimization is robust
to inaccurate sensitivity, though
the performance might be inferior

online sensitivity estimation of
∂h
∂u
≈ yt+1−yt

ut+1−ut
via Kalman filter

0th-order optimization building
one-point gradient estimates

∂

∂u
φ(u) = lim

δ↘0
E
[η
δ
φ(u+ δ · η)

]
where η is random probing direction
& δ is (small) smoothing parameter
→ constructed via single actuation

others: stochastic approximation,
extremum seeking, . . . do poorly

ground truth: exact sensitivity

online sensitivity estimation

stochastic extremum seeking

0th-order optimization method

robust to inaccurate sensitivity

→ Colombino et al. (2020) “Towards robustness guarantees for
feedback-based optimization”

→ Picallo et al. (2022) “Adaptive Real-Time Grid Operation via Online
Feedback Optimization with Sensitivity Estimation”

→ He et al. (2022) “Model-Free Nonlinear Feedback Optimization”
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THE WORLD IS NOT AN OPTIMIZATION PROBLEM

−→ EXTENSIONS TO THE GAME-THEORETIC SETUP



Feedback equilibrium seeking
motivation: multi-area power system
I different system operators whose

cost functions are not aligned
I physical & operational coupling

game theory as lingua franca:
minuiUi φi(yi, ui)

subject to constraints coupling (ui, yi)

opt. solution = Nash equilibrium

equilibrium-seeking algorithms
using local gradients ∂

∂ui
φi(yi, ui)

similar assumptions as before &
systemgain · algorithmgain < 1

⇒ all results extend analogously !

local feedback 

optimization

local feedback 

optimization

local feedback 

optimization

local feedback 

optimization

local feedback 

optimization

centralized optimality seeking

multi-area equilibrium seeking

price of

anarchy

→ Belgioioso et al. (2022) “Online Feedback Equilibrium Seeking”
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FROM LAB DEMONSTRATIONS

TO COMMERCIAL DEPLOYMENT



Deployment at Swiss utility (AEW)

→ Ortmann et al. (2022) “Deployment of an Online

Feedback Optimization Controller . . . ”

virtual grid reinforcement through reactive
power/voltage support & power flow control

strong economic incentives (rewards &
penalties) from higher-level system operator

feedback optimization on legacy hardware

runs robustly, 24 / 7, & makes money in
presence of time-varying incentives
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Fig. 7: Change of the setpoint and reactive power when the
cost function changes at noon.

there exists potential to virtually reinforce the grid by mitigat-
ing voltage limit violations. The implementation shows that
the controller is robust against model mismatch, is compatible
with the legacy grid infrastructure, and can work with triggered
measurements. We consider this 24/7 implementation to be a
system prototype demonstration in an operational environment
and conclude that the OFO control method has therefore
reached technology readiness level 7.
Further investigations are needed to quantify the monetary
value of the virtual grid reinforcement that voltage control
through reactive power can provide. Also, given the high
technology readiness level, OFO might be considered for
commercial control room software. Finally, the principle of
defining a control problem as an optimization problem and
then using an OFO controller to solve the optimization and
therefore the control problem could be applied to more
problems, e.g. active power curtailment, curative actions and
automatic redispatch, disaggregation of flexibility commands
onto several resources.
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[22] V. Häberle, A. Hauswirth, L. Ortmann, S. Bolognani, and F. Dörfler,
“Non-convex feedback optimization with input and output constraints,”
IEEE Control Systems Letters, vol. 5, no. 1, pp. 343–348, 2020.

[23] L. Ortmann, J. Maeght, P. Panciatici, F. Dörfler, and S. Bolognani,
“Online feedback optimization for subtransmission grid operation,”
arXiv preprint arXiv:2212.07795, 2023.

[24] S. Bolognani and F. Dörfler, “Fast power system analysis via implicit
linearization of the power flow manifold,” in 2015 53rd Annual Allerton
Conference on Communication, Control, and Computing (Allerton).
IEEE, 2015, pp. 402–409.

[25] M. Colombino, J. W. Simpson-Porco, and A. Bernstein, “Towards
robustness guarantees for feedback-based optimization,” in 58th Con-
ference on Decision and Control (CDC). IEEE, 2019, pp. 6207–6214.

[26] M. Picallo, L. Ortmann, S. Bolognani, and F. Dörfler, “Adaptive real-
time grid operation via online feedback optimization with sensitivity
estimation,” Electric Power Systems Research, vol. 212, p. 108405, 2022.

[27] Z. He, S. Bolognani, J. He, F. Dörfler, and X. Guan, “Model-free
nonlinear feedback optimization,” arXiv:2201.02395, 2022.

[28] M. Picallo, S. Bolognani, and F. Dörfler, “Closing the loop: Dynamic
state estimation and feedback optimization of power grids,” Electric
Power Systems Research, vol. 189, p. 106753, 2020.

[29] “VDE-AR-N 4105: Generators connected to the LV distribution network
– Technical requirements for the connection to and parallel operation
with low-voltage distribution networks,” 2018.

31 / 32



CONCLUSIONS



Conclusions

Summary

open & online feedback optimization algorithms as controllers

unified framework for broad class of systems, algorithms, decision-
making problems, interconnection scenarios, & implementation aspects

illustrated throughout with non-trivial power systems case studies

complete TRL scale covered: theory −→ industrial deployment

Ongoing work & open directions

theory: get rid off time-scale separation & many other extensions

new application domains: supply chains & recommender systems

It works in theory and in practice !
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Publications http://people.ee.ethz.ch/~floriand/

Optimization Algorithms as Robust Feedback Controllers

Adrian Hauswirth, Saverio Bolognani, Gabriela Hug, and Florian Dörfler
Department of Information Technology and Electrical Engineering, ETH Zürich, Switzerland

Abstract

Mathematical optimization is one of the cornerstones of modern engineering research and practice. Yet, throughout all
application domains, mathematical optimization is, for the most part, considered to be a numerical discipline. Opti-
mization problems are formulated to be solved numerically with specific algorithms running on microprocessors. An
emerging alternative is to view optimization algorithms as dynamical systems. While this new perspective is insightful
in itself, liberating optimization methods from specific numerical and algorithmic aspects opens up new possibilities to
endow complex real-world systems with sophisticated self-optimizing behavior. Towards this goal, it is necessary to un-
derstand how numerical optimization algorithms can be converted into feedback controllers to enable robust “closed-loop
optimization”. In this article, we review several research streams that have been pursued in this direction, including
extremum seeking and pertinent methods from model predictive and process control. However, our primary focus lies
on recent methods under the name of “feedback-based optimization”. This research stream studies control designs that
directly implement optimization algorithms in closed loop with physical systems. Such ideas are finding widespread
application in the design and retrofit of control protocols for communication networks and electricity grids. In addition
to an overview over continuous-time dynamical systems for optimization, our particular emphasis in this survey lies on
closed-loop stability as well as the enforcement of physical and operational constraints in closed-loop implementations.
We further illustrate these methods in the context of classical problems, namely congestion control in communication
networks and optimal frequency control in electricity grids, and we highlight one potential future application in the form
of autonomous reserve dispatch in power systems.

a
rX

iv
:2

1
0
3
.1

1
3
2
9
v
1
  
[m

a
th

.O
C

] 
 2

1
 M

a
r 

2
0
2
1

2021 Survey paper https://arxiv.org/abs/2103.11329



Thanks !

Florian Dörfler
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