

Data-Driven Control in Autonomous Energy Systems Florian Dörfler, ETH Zürich 2020 GT Workshop on Energy Systems & Optimization

Acknowledgements

Jeremy Coulson

Linbin Huang

Paul Beuchat

Ivan Markovsky

Further: Ezzat Elokda, Daniele Alpago, Jianzhe (Trevor) Zhen, Saverio Bolognani, Andrea Favato, Paolo Carlet, & IfA DeePC team

Control in a data-rich world

- ever-growing trend in CS & applications: data-driven control by-passing models
- canonical problem: black/gray-box system control based on I/O samples
 - **Q:** Why give up physical modeling & reliable model-based algorithms?

Data-driven control is viable alternative when

- models are too complex to be useful e.g., wind farm interactions & building automation
- first-principle models are not conceivable e.g., human-operator-in-the-loop & demand control
- modeling & system ID is too cumbersome e.g., drives & electronics applications

Central promise: It is often easier to learn control policies directly from data, rather than learning a model.

Example: PID [Åström, '73]

Abstraction reveals pros & cons

indirect (model-based) data-driven control

minimize control cost (x, u) subject to (x, u) satisfy state space model	outer separation & certainty
where x estimated from (u, y) & model	$\begin{cases} equivalence \\ middle opt. \end{cases} \left(\begin{array}{c} equivalence \\ (\rightarrow LQG case) \end{array} \right)$
where model identified from $\left(u^d, y^d\right)$ data	a $\left. \right\}$ inner opt. $\left. \right\} \frac{\mathbf{no}}{(\rightarrow ID-4\text{-control})}$
\rightarrow nested multi-level optimization problem	
direct (black-box) data-driven control	→ trade-offs
minimize control cost (u,y)	suboptimal (?) vs. optimal
subject to $\left(u,y ight)$ consistent with $\left(u^{d},y^{d} ight)$ dat	a convex vs. non-convex (?)

Additionally: all above should be min-max or $\mathbb{E}(\cdot)$ accounting for *uncertainty*...

today: something very different

Dictionary learning + predictive control

1 trajectory *dictionary learning*

- motion primitives / basis functions
- theory: Koopman & Liouville practice: (E)DMD & particles

2 predictive optimization over dictionary

 \rightarrow huge *theory vs. practice* gap

 \rightarrow back to basics: *impulse response*

today: arbitrary, finite, & corrupted data, ... stochastic & nonlinear?

Contents

I. Data-Enabled Predictive Control (DeePC): Basic Idea

J. Coulson, J. Lygeros, and F. Dörfler. *Data-Enabled Predictive Control: In the Shallows of the DeePC*. [arxiv.org/abs/1811.05890].

II. From Heuristics & Numerical Promises to Theorems

- J. Coulson, J. Lygeros, and F. Dörfler. *Distributionally Robust Chance Constrained Data-enabled Predictive Control*. [https://arxiv.org/abs/2006.01702].
- I. Markovsky and F. Dörfler. Identifiability in the Behavioral Setting. [link]

III. Application: End-to-End Automation in Energy & Robotics

- L. Huang, J. Coulson, J. Lygeros, and F. Dörfler. *Decentralized Data-Enabled Predictive Control for Power System Oscillation Damping*. [arxiv.org/abs/1911.12151].
- E. Elokda, J. Coulson, P. Beuchat, J. Lygeros, and F. Dörfler. *Data-Enabled Predictive Control for Quadcopters*. [link].

Preview

complex 4-area power *system*: large (n = 208), few sensors (8), nonlinear, noisy, stiff, input constraints, & decentralized control specifications

control objective: oscillation damping without model

(grid has many owners, models are proprietary, operation in flux, ...)

seek a method that **works reliably**, can be **efficiently** implemented, & **certifiable**

 \rightarrow automating ourselves

Reality check: magic or hoax?

surely, nobody would put apply such a shaky data-driven method

- on the world's most complex engineered system (the electric grid),
- using the world's biggest actuators (Gigawatt-sized HVDC links),
- and subject to real-time, safety, & stability constraints ... right?

at least someone believes that DeePC is practically useful ...

Behavioral view on LTI systems

Definition: A discrete-time dynamical				
<i>system</i> is a 3-tuple $(\mathbb{Z}_{\geq 0}, \mathbb{W}, \mathscr{B})$ where				
(i) $\mathbb{Z}_{\geq 0}$ is the discrete-time axis,				
(ii) \mathbb{W} is a signal space, and	B is the set of			
(iii) $\mathscr{B} \subseteq \mathbb{W}^{\mathbb{Z}_{\geq 0}}$ is the behavior.	an indjectories			

Definition: The dynamical system $(\mathbb{Z}_{\geq 0}, \mathbb{W}, \mathscr{B})$ is

- (i) *linear* if \mathbb{W} is a vector space & \mathscr{B} is a subspace of $\mathbb{W}^{\mathbb{Z} \ge 0}$
- (ii) and *time-invariant* if $\mathscr{B} \subseteq \sigma \mathscr{B}$, where $\sigma w_t = w_{t+1}$.

LTI system = shift-invariant subspace of trajectory space

LTI systems and matrix time series

foundation of state-space subspace system ID & signal recovery algorithms

 $\begin{array}{c} u(t) \\ u_1 \ u_3 \ u_4 \\ u_2 \ u_5 \ u_6 \end{array} \\ \\ u_2 \end{array}$

 $\left(u(t), y(t)\right)$ satisfy recursive difference equation

$$b_0 u_t + b_1 u_{t+1} + \ldots + b_n u_{t+n} +$$

 $a_0 y_t + a_1 y_{t+1} + \ldots + a_n y_{t+n} = 0$

(ARX/kernel representation)

 $\begin{bmatrix} 0 & b_0 & a_0 & b_1 & a_1 & \dots & b_n & a_n & 0 \end{bmatrix}$ in left nullspace of *trajectory matrix* (collected data)

where $y_{t,i}^d$ is *t*th sample from *i*th experiment

Fundamental Lemma [Willems et al. '05], [Markovsky & Dörfler '20]

set of all *T*-length trajectories = $\left\{ (u, y) \in \mathbb{R}^{(m+p)T} : \exists x \in \mathbb{R}^{n} \text{ s.t.} \\ x^{+} = Ax + Bu, y = Cx + Du \right\}$ colspan $\begin{bmatrix} \begin{pmatrix} u_{1,1}^{d} \end{pmatrix} \begin{pmatrix} u_{1,2}^{d} \end{pmatrix} \begin{pmatrix} u_{1,3}^{d} \end{pmatrix} \cdots \\ \begin{pmatrix} u_{2,1}^{d} \end{pmatrix} \begin{pmatrix} u_{2,2}^{d} \end{pmatrix} \begin{pmatrix} u_{2,3}^{d} \end{pmatrix} \cdots \\ \vdots & \vdots & \vdots \\ \begin{pmatrix} u_{2,1}^{d} \end{pmatrix} \begin{pmatrix} u_{2,2}^{d} \end{pmatrix} \begin{pmatrix} u_{2,3}^{d} \end{pmatrix} \cdots \\ \vdots & \vdots & \vdots \\ \begin{pmatrix} u_{2,1}^{d} \end{pmatrix} \begin{pmatrix} u_{2,2}^{d} \end{pmatrix} \begin{pmatrix} u_{2,3}^{d} \end{pmatrix} \cdots \\ \vdots & \vdots & \vdots \\ \begin{pmatrix} u_{2,1}^{d} \end{pmatrix} \begin{pmatrix} u_{2,2}^{d} \end{pmatrix} \begin{pmatrix} u_{2,3}^{d} \end{pmatrix} \cdots \\ \vdots & \vdots & \vdots \\ \begin{pmatrix} u_{2,1}^{d} \end{pmatrix} \begin{pmatrix} u_{2,2}^{d} \end{pmatrix} \begin{pmatrix} u_{2,3}^{d} \end{pmatrix} \cdots \\ u_{2,2}^{d} \end{pmatrix} \\ parametric state-space model$ non-parametric model from raw data

if and only if the trajectory matrix has rank $m \cdot T + n$ for all $T > \ell$

all trajectories constructible from finitely many previous trajectories

- can also use other matrix data structures: (mosaic) Hankel, Page, ...
- novelty (?): motion primitives, DMD, dictionary learning, subspace system id, ... all implicitly rely on this equivalence → c.f. "fundamental"
- standing on the shoulders of giants: classic Willems' result was only "if" & required further assumptions: Hankel, persistency of excitation, controllability

Prediction & estimation [Markovsky & Rapisarda '08]

Problem : predict future output $y \in \mathbb{R}^{p \cdot T_{\text{future}}}$ based on

- initial trajectory $col(u_{ini}, y_{ini}) \in \mathbb{R}^{(m+p) \cdot T_{ini}} \rightarrow to estimate initial x_{ini}$
- input signal $u \in \mathbb{R}^{m \cdot T_{\text{future}}}$
- past data $col(u^d, y^d) \in \mathscr{B}_{T_{data}}$

- \rightarrow to predict forward
- \rightarrow to form trajectory matrix

11/31

Solution: given $u \& col(u_{ini}, y_{ini}) \rightarrow compute g \& y$ from

$$\begin{bmatrix} u_{1,1}^{u} & u_{2,1}^{d} & u_{3,1}^{d} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ u_{1,T_{u}}^{d} & u_{2,T_{u}}^{d} & u_{3,T_{u}}^{d} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \frac{y_{1,1}^{d} & y_{2,1}^{d} & y_{3,1}^{d} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \frac{y_{1,T_{u}}^{d} & y_{2,T_{u}+1}^{d} & u_{3,T_{u}+1}^{d} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \frac{u_{1,T_{u}+1}^{d} & u_{2,T_{u}+1}^{d} & u_{3,T_{u}+1}^{d} & \cdots \\ \frac{y_{1,T_{u}+1}^{d} & u_{2,T_{u}+1}^{d} & y_{3,T_{u}+1}^{d} & \cdots \\ \frac{y_{1,T_{u}+1}^{d} & y_{2,T_{u}+1}^{d} & y_{3,T_{u}+1}^{d} & \cdots \\ y_{1,T_{u}+1}^{d} & y_{2,T_{u}+1}^{d} & y_{3,T_{u}+1}^{d} & \cdots \\ \end{bmatrix}} g = \mathscr{H}_{T_{ini}} + T_{iuture}} \begin{pmatrix} u^{d} \\ y^{d} \end{pmatrix} g = \begin{bmatrix} u_{ini} \\ y_{ini} \\ u \\ y \end{bmatrix}$$

 \Rightarrow observability condition: if $T_{ini} \ge lag$ of system, then y is *unique*

Output Model Predictive Control

The canonical receding-horizon MPC optimization problem :

 $T_{\rm future} - 1$ quadratic cost with $\sum \|y_k - r_{t+k}\|_Q^2 + \|u_k\|_R^2$ minimize $\overline{u, x, y}$ $R \succ 0, Q \succeq 0$ & ref. r subject to $x_{k+1} = Ax_k + Bu_k, \ \forall k \in \{0, \dots, T_{\text{future}} - 1\},\$ model for prediction over $k \in [0, T_{\text{future}} - 1]$ $y_k = Cx_k + Du_k, \quad \forall k \in \{0, \dots, T_{\text{future}} - 1\},$ $x_{k+1} = Ax_k + Bu_k, \ \forall k \in \{-T_{ini} - 1, \dots, -1\},\$ model for estimation $y_k = Cx_k + Du_k, \quad \forall k \in \{-T_{ini} - 1, \dots, -1\},\$ (many variations) $u_k \in \mathcal{U}, \quad \forall k \in \{0, \ldots, T_{\text{future}} - 1\},$ hard operational or $y_k \in \mathcal{Y}, \quad \forall k \in \{0, \dots, T_{\text{future}} - 1\}$ safety constraints

For a deterministic LTI plant and an exact model of the plant, MPC is the *gold standard of control*: safe, optimal, tracking, ...

Data-Enabled Predictive Control

DeePC uses Hankel matrix for receding-horizon prediction / estimation:

 $\begin{array}{ll} \underset{g, u, y}{\operatorname{minimize}} & \sum_{k=0}^{T_{\operatorname{tuture}}-1} \|y_k - r_{t+k}\|_Q^2 + \|u_k\|_R^2 \\ \text{subject to} & \mathscr{H}\left(\begin{smallmatrix} u^{\mathsf{d}} \\ y^{\mathsf{d}} \end{smallmatrix}\right) g = \begin{bmatrix} u_{\operatorname{ini}} \\ y_{\operatorname{ini}} \\ u \\ y \end{bmatrix}, \\ & u_k \in \mathcal{U}, \quad \forall k \in \{0, \dots, T_{\operatorname{tuture}} - 1\}, \\ & y_k \in \mathcal{Y}, \quad \forall k \in \{0, \dots, T_{\operatorname{tuture}} - 1\} \end{array}$

quadratic cost with $R \succ 0, Q \succeq 0$ & ref. r

non-parametric model for prediction and estimation

hard operational or safety **constraints**

• trajectory matrix $\mathscr{H}_{T_{ini}+T_{future}}\begin{pmatrix} u^{d}\\ y^{d} \end{pmatrix}$ from past data

collected **offline** (could be adapted online)

• past $T_{ini} \ge lag$ samples (u_{ini}, y_{ini}) for x_{ini} estimation

updated **online**

Consistency for LTI Systems

Theorem: Consider *DeePC & MPC optimization problems*. If the rank condition holds (= rich data), then *the feasible sets coincide*.

Corollary: closed-loop behaviors under DeePC and MPC coincide.

Aerial robotics case study:

Thus, most of *MPC carries over* to *DeePC*...in the *nominal case* c.f. stability certificate [Berberich et al. '19]

Beyond LTI: what about noise, corrupted data, & nonlinearities?

... playing *certainty-equivalence* fails \rightarrow need robustified approach

Noisy real-time measurements

$$\begin{array}{ll} \underset{g, u, y}{\operatorname{minimize}} & \sum_{k=0}^{T_{\operatorname{ituture}}-1} \|y_k - r_{t+k}\|_Q^2 + \|u_k\|_R^2 + \lambda_y \|\sigma_{\operatorname{ini}}\|\\ \text{subject to} & \mathscr{H}\begin{pmatrix} u^{\mathsf{d}} \\ y^{\mathsf{d}} \end{pmatrix} g = \begin{bmatrix} u_{\operatorname{ini}} \\ y_{\operatorname{ini}} \\ u \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ \sigma_{\operatorname{ini}} \\ 0 \\ 0 \end{bmatrix},\\ u_k \in \mathcal{U}, \quad \forall k \in \{0, \dots, T_{\operatorname{future}} - 1\},\\ y_k \in \mathcal{Y}, \quad \forall k \in \{0, \dots, T_{\operatorname{future}} - 1\} \end{array}$$

Solution : add ℓ_p -slack σ_{ini} to ensure feasibility \rightarrow receding-horizon least-square filter \rightarrow for $\lambda_y \gg 1$: constraint is slack only if infeasible

c.f. *sensitivity analysis* over randomized sims

Trajectory matrix corrupted by noise

$$\begin{array}{ll} \underset{g, u, y}{\operatorname{minimize}} & \sum_{k=0}^{T_{\operatorname{iuture}}-1} \|y_k - r_{t+k}\|_Q^2 + \|u_k\|_R^2 + \lambda_g \|g\| \\ \text{subject to} & \mathscr{H}\left(\begin{smallmatrix} u^{\mathsf{d}} \\ y^{\mathsf{d}} \end{smallmatrix}\right) g = \begin{bmatrix} u_{\operatorname{ini}} \\ y_{\operatorname{ini}} \\ u \\ y \end{bmatrix}, \\ & u_k \in \mathcal{U}, \quad \forall k \in \{0, \dots, T_{\operatorname{future}} - 1\}, \\ & y_k \in \mathcal{Y}, \quad \forall k \in \{0, \dots, T_{\operatorname{future}} - 1\} \end{array}$$

Solution: add a ℓ_1 -penalty on gintuition: ℓ_1 sparsely selects {trajectory matrix columns} = {motion primitives}

 \sim low-order basis

c.f. *sensitivity analysis* over randomized sims

Towards nonlinear systems

Idea : lift nonlinear to large / ∞ -dimensional bi-/linear system \rightarrow Carleman, Volterra, Fliess, Koopman, Sturm-Liouville methods \rightarrow nonlinear system can be approximated by LTI on finite horizon

regularization singles out relevant features/basis functions in data

Consistent observations across case studies — more than a fluke

grid-connected converter

quad coptor fig-8 tracking

energy hub & building automation

power system oscillation damping (see later)

synchronous motor drive

pendulum swing up

let's try to put some theory behind all of this ...

Distributional robust formulation [Coulson et al. '19]

- problem abstraction: $\min_{x \in \mathcal{X}} c\left(\widehat{\xi}, x\right)$ where $\widehat{\xi}$ is measured data
- distributionally robust formulation → "min_{x∈X} max_ξ E[c (ξ, x)]" where max accounts for all stochastic processes (linear or nonlinear) that could have generated the data ... more precisely ↑ p̂

$$\inf_{x \in \mathcal{X}} \sup_{Q \in \mathbb{B}_{\epsilon}(\widehat{P})} \mathbb{E}_{Q} \big[c\left(\xi, x\right) \big]$$

where $\mathbb{B}_{\epsilon}(\widehat{P})$ is an ϵ -Wasserstein ball centered at empirical sample distribution \widehat{P} :

$$\mathbb{B}_{\epsilon}(\widehat{P}) = \left\{ P : \inf_{\Pi} \int \left\| \xi - \widehat{\xi} \right\|_{p} d\Pi \le \epsilon \right\}$$

 $\begin{array}{l} \hline \textbf{Theorem} \colon \text{ Under minor technical conditions:} \\ \inf_{x \in \mathcal{X}} \ \sup_{Q \in \mathbb{B}_{\epsilon}(\widehat{P})} \ \mathbb{E}_{Q} \big[c \left(\xi, x \right) \big] \ \equiv \ \min_{x \in \mathcal{X}} \ c \left(\widehat{\xi}, x \right) \ + \ \epsilon \ \mathsf{Lip}(c) \cdot \|x\|_{p}^{\star} \end{array}$

regularization of DeePC ⇔ distributional robustification in trajectory space

Further ingredients & improvements

- multiple i.i.d. experiments \rightarrow sample average data matrix $\frac{1}{N} \sum_{i=1}^{N} \mathscr{H}_{i}(y^{\mathsf{d}})$
- *measure concentration*: Wasserstein ball $\mathbb{B}_{\epsilon}(\widehat{P})$ includes true distribution \mathbb{P} with high confidence if $\epsilon \sim 1/N^{1/\dim(\xi)}$
- old online measurements → Kalman filtering with hidden state = explicit g^{*}

distributionally robust probabilistic constraints

 $\sup_{Q \in \mathbb{B}_{\epsilon}(\widehat{P})} \mathsf{CVaR}_{1-\alpha}^{\mathbb{Q}} \quad \Leftrightarrow \quad \text{averaging + regularization + tightening}$

All together in action for nonlinear & stochastic quadcoptor setup

control objective

- + regularization
- + matrix predictor
- + averaging
- + CVaR constraints
- + σ_{ini} estimation slack
- \rightarrow DeePC works much better than it should !

main catch : optimization problems become large (no-free-lunch) \rightarrow models are compressed, de-noised, & tidied-up representations

Power system case study

- *complex* 4-area power *system*: large (n = 208), few measurements (8), nonlinear, noisy, stiff, input constraints, & decentralized control
- control objective: damping of inter-area oscillations via HVDC link
- *real-time* MPC & DeePC prohibitive \rightarrow choose T, T_{ini}, & T_{future} wisely

Centralized control

DeePC PEM-MPC = Prediction Error

= Prediction Error Method (PEM) System ID + MPC

 $t < 10\,\mathrm{s}$: open loop data collection with white noise excitat.

 $t > 10 \, \mathrm{s}$: control

Performance: DeePC wins (clearly!)

DeePC hyper-parameter tuning

regularizer λ_g

- for distributional robustness ≈ radius of Wasserstein ball
- wide range of sweet spots
 → choose λ_a = 20

estimation horizon Tini

- for model complexity \approx lag
- T_{ini} ≥ 50 is sufficient & low computational complexity
 - \rightarrow choose $T_{\text{ini}} = 60$

prediction horizon T_{future}

 nominal MPC is stable if horizon T_{future} long enough

 \rightarrow choose $T_{\rm future} = 120$ and apply first 60 input steps

data length T

 long enough for low-rank condition but card(g) grows

$$\rightarrow$$
 choose $T = 1500$
(data matrix \approx square)

Computational cost

• T = 1500

•
$$\lambda_g = 20$$

•
$$T_{\text{ini}} = 60$$

- T_{future} = 120 & apply first 60 input steps
- sampling time = 0.02 s
- solver (OSQP) time = 1 s (on Intel Core i5 7200U)
- ⇒ implementable

Comparison: Hankel & Page matrix

- comparison baseline: Hankel and Page matrices of same size
- perfomance : Page consistency beats Hankel matrix predictors
- offline *denoising via SVD threshholding* works wonderfully for Page though obviously not for Hankel (entries are constrained)
- effects very pronounced for *longer horizon* (= open-loop time)
- price-to-be-paid : Page matrix predictor requires more data

Decentralized implementation

- *plug'n'play MPC:* treat interconnection P₃ as disturbance variable w with past disturbance w_{ini} measurable & future w_{future} ∈ W uncertain
- for each controller augment trajectory matrix with disturbance data w
- decentralized *robust min-max DeePC:* $\min_{g,u,y} \max_{w \in W}$

Decentralized control performance

- colors correspond to different hyperparameter settings (not discernible)
- ambiguity set $\mathcal W$ is ∞ -ball (box)
- for computational efficiency W is downsampled (piece-wise linear)
- solver time $\approx 2.6 \, \text{s}$

 \Rightarrow implementable

Summary & conclusions

main take-aways

- matrix time series serves as predictive model
- data-enabled predictive control (DeePC)
- ✓ consistent for deterministic LTI systems
- \checkmark distributional robustness via regularizations

future work

- $\rightarrow\,$ tighter certificates for nonlinear systems
- ightarrow explicit policies & direct adaptive control
- ightarrow online optimization & real-time iteration

Why have these powerful ideas not been mixed long before ? Willems '07: "[MPC] has perhaps too little system theory and too much brute force computation in it."

The other side often proclaims "behavioral systems theory is beautiful but did not prove utterly useful."

Thanks!

Florian Dörfler

mail: dorfler@ethz.ch [link] to homepage [link] to related publications

relation to system ID

Data-driven control: a classification

indirect data-driven control

control cost (u, y)

subject to (u, y) consistent with (u^d, y^d) data

minimize

minimize	control cost (x, u)	٦	outer	
subject to	$\left(x,u ight)$ satisfy state-space model	Ĵ	optimization	ł
where	x estimated from $\left(u,y ight)$ & model	}	middle opt.	
where	model identified from $\left(u^d,y^d ight)$ data	}	inner opt.	ł
\rightarrow nested	multi-level optimization problem			
c	lirect data-driven control		\rightarrow trade-offs	

certainty equivalence $(\rightarrow LQG case)$ **no** separation

separation &

$(\rightarrow$	ID-4-contro	ľ
----------------	-------------	---

~	trai	10-	offe
~	ua	16-	0115

modular vs. end-2-end suboptimal (?) vs. optimal convex vs. non-convex (?)

Additionally: all above should be min-max or $\mathbb{E}(\cdot)$ accounting for *uncertainty*...

recall the *central promise*: it is easier to learn control policies directly from data, rather than learning a model

Comparison: DeePC vs. ID + MPC

consistent across all nonlinear case studies : DeePC always wins

reason (?): DeePC is robust, whereas certainty-equivalence control is based on identified model with a bias error

stochastic LTI comparison (no bias) show certainty-equivalence vs. robust control trade-offs (mean vs. median)

link: DeePC includes implicit sys ID though ① biased by control objective,
② data not projected on LTI class, &
③ robustified through regularizations

ightarrow more to be understood ... ArXiv paper coming

