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Thoughts on data in control systems

increasing role of data-centric methods
in science/engineering/industry due to

* methodological advances in statistics,
optimization, & machine learning (ML)

¢ unprecedented availability of brute force:
deluge of data & computational power

__.:/ & -
Ve -
il
e ...and frenzy surrounding big data & ML -t

Data Driven Control

Make up your own opinion, but ML works
too well to be ignored — also in control 2!?

“One of the major developments in control
over the past decade — & one of the most
important moving forward — is the interaction
of ML & control systems.” [CSS roadmap]




long & rich history (auto-tuning, system
identification, adaptive control, RL, ...) &
vast & fragmented research landscape

— useful direct/indirect classification

direct data-driven control

minimize control cost (u, )

subject to trajectory (u,y) compatible with data (u?, y%)

indirect (model-based) data-driven control

minimize  control cost (u, y)
model-based design

subject to trajectory (u, y) compatible with the model
model € argmin fitting criterion (u?, y?)

where
system identification . .
subject to model belongs to certain class
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direct

some models are too
complex to be useful

Indirect

models are useful for
design & beyond

modular — easy // end-to-end — suit-
to debug & interpret able for non-experts
id = projection on harder to inject side
model class info but no bias error
id = noise filtering

noise handled in design

harder to propagate
uncertainty through id

transparent: no
unmodeled dynamics

no (robust) separation
principle — suboptimal

possibly optimal but
often less tractable

lots of pros, cons, counterexamples, & no universal conclusions [discussion]
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http://people.ee.ethz.ch/~floriand/docs/Articles/CSS-editorial-2.pdf

Today’s menu

1. {behavioral systems} N {subspace ID}: fundamental lemma
2. potent direct method: data-enabled predictive control DeePC
3. salient regularizations for robustification & inject side info

4. case studies from robotics & energy domain + tomatoes ®

blooming literature (2-3 ArXiv/week)
— tutorial [1inx] to get started

® [1ink] to graduate school material DATA-DRIVEN CONTROL BASED ON BEHAVIORAL APPROACH:
FROM THEORY TO APPLICATIONS IN POWER SYSTEMS

® [1link] to survey

Ivan Markovsky, Linbin Huang, and Florian Dorfler

(] [ s ] 1. Markovsky is with ICREA, Pg. Lluis Companys 23, Barcelona, and CIMNE, Gran Capitan, Barcelona, Spain
link tO related baCheIOr IeCtU re (e-mail: imarkovsky@cimne.upc.edu),

L. Huang and F. Dérfler are with the Automatic Control Laboratory, ETH Zirich, 8092 Zirrich, Switzerland (e-mails:

linhuang@ethz.ch, dorfler@ethz.ch).

® [1ink] to related publications
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 https://imarkovs.github.io/tutorial.pdf
http://people.ee.ethz.ch/~floriand/docs/Slides/Dorfler_DTU_2023_Annotated_Handout.pdf
https://www.sciencedirect.com/science/article/pii/S1367578821000754
https://www.bsaver.io/teaching
http://people.ee.ethz.ch/~floriand/bib/Keyword/DATA-DRIVEN-CONTROL.html

Behavioral view on dynamical systems

Definition: A discrete-time dynamical

system is a 3-tuple (Z>(, W, #) where

(i) Z>o is the discrete-time axis,

(i) W is the signal space, & % is the set of
all trajectories

(iiiy B C W#=0 is the behavior.

Definition: The dynamical system (Z>, W, &) is
(i) linear if W is a vector space & 4 is a subspace of WZ=o

(i) & time-invariant if # C 0%, where cw; = w¢41.

LTI system = shift-invariant subspace of trajectory space
— abstract perspective suited for data-driven control
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LTI systems & matrix time series

foundation of subspace system identification & signal recovery algorithms
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Fundamental Lemma

u(t)

—_— g
Uy us Q u7
* y

\" “, ¢ NSt

v ¥
s 116 Y2 o

lag ¢

d
Given: data (“g) € R™*tP & LTI complexity parameters
Yi order n

set of all T-length trajectories = (/: :) (m"j>
{ (u,y) € RMHPT ;. 3y e R sip. ——— colspan (”Z‘]“) <“"~’l:~‘>

¥ = Az + Bu,y=Cz+ Du } (ltll;,_l> <uf2>

parametric state-space model raw data (every column is an experiment)

if and only if the trajectory matrix has rank m - T +n forall T > ¢

9/25



set of all T-length trajectories =

{ (u,y) € R+PT ;. 3p e R s t,

2t = Az + Bu, y=Cz+ Du }

uf 4 uf ui g
d i d
Y11 Y12 Y13
d ol d
CO]SP‘(LH Y21 Y2,2 Y23

all trajectories constructible from finitely many previous trajectories

e standing on the shoulders of giants:
classic Willems’ result was only “if” &
required further assumptions: Hankel,
persistency of excitation, controllability

A note on persistency of excitation
arda®

Jan C. Willems®, Paolo Ra

SESAT, SCDISISTA, K.U.

van Markovsky®*

10.8

Bart L.M. De Moor*

® terminology fundamental is justified : motion primitives, subspace SysID,
dictionary learning, (E)DMD, ... all implicitly rely on this equivalence

® many recent extensions to other system classes (bi-linear, descriptor,
LPV, delay, Volterra series, Wiener-Hammerstein, ...), other matrix

data structures (mosaic Hankel, Page, ..

.), & other proof methods
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Bird’s view: SysID & today’s path

non-control a
applications: int at? "
imati informativity
PE in linear e.g., estimation. - / —
systems filtering, & SysID data-driven | | [van Waarde etal, 20) stabilization of
[Green & Moore, '86] control of linear > nonlinear
systems systems
S [de Persis & Tesi, 19] [~ [de Persis & Tesi, '21]
S LFT formulation
Sa [Berberich et al., *20]
imrescti Fundamental | _explicit robust stability
intersection | _ 3| Lemma witems, implicit .
methods Rapisarda, & implict & recursive
[Moonen et al., "89] Markovsky '05] \ many recent feasmlllty,
7 4 variations & [Berberich et al, ’20]
Pid 7 extensions /
s / [van Waarde et al., '20] (distributional)
? / izati robustness
/ P regularlzatlon§ ——>| [cousonetal, 20,
/ deterministic & MPC scenario Huang et al, '21]
/ data-driven [Coulson et al., "19]
,/ control ]
/ & Rapisarda, '08] generalized low- regularizer from
subspace rank version —>| relaxed SysID

[Favoresl et al., '99]

1980s 2005

>
>

today

dicti [Markovsky [Dérfler et al, 21]
predictive \—&M
control / ﬂ \

instrumental
variables
[Wingerden et al., '22]

subspace
P ARX methods
methods
[Breschi, Chiuso, & [Chiuso later today]
Formention '22]
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Output Model Predictive Control (MPC)

Tfuture

. 2 2 quadratic cost with
sfpignize D o = rillg + uelle R 0.Q %08 ref. r

subject to = icti
I St B iy TR
Tp41 = Az + Buy
yr = Cxp + Duy,
up € U
Y €Y }

model for estimation
} Vk € {=Thi—1,...,0} withk € [T —1,0] &
Tini > lag (many flavors)

Vk e {1,..., Tre} hard operational or
safety constraints

“IMPC] has perhaps too little system
theory and too much brute force [...], but
MPC is an area where all aspects of the
field [...] are in synergy.” — Willems ‘07

Elegance aside, for an LTI
plant, deterministic, & with
known model, MPC is the
gold standard of control.
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Data-enabled Predictive Control (DeePC)

Tfuture . .
L. Z ” . ”2 4 ||u ”2 quadratic cost with
R T 2 Y = Tkl kiR R>0,Q>0&ref. r
Uini non-parametric
subject to %p(uj) g = Yini model for prediction
& U and estimation
Y
up €U hard operational or
Y €Y } vk € {1, Thuwe} safety constraints

¢ real-time measurements (uinj, yini) for estimation  updated online

¢ trajectory matrix %(ﬁ,) from past collected offline
experimental data (could be adapted online)

— equivalent to MPC in deterministic LTI case ...
but needs to be robustified in case of noise/nonlinearity ! 1325



Regularizations make it work

Thuure measurement noise
minimize Y [lye — rillg + lurllh + Aylloll, + Agh(g) — infeasible yiy estimate
A — — estimation slack o

Uini 0 — moving-horizon
ini least-square filter
subject to %(ZZ) g = Yi 4 g q
U
Y 0 noisy or nonlinear

(offline) data matrix

} Vk € {1,..., Tuure} — any () feasible
— add regularizer h(g)

up €U
Yk €Y

Bayesian intuition: regularization < prior, e.g., h(g) = ||g|/: sparsely
selects {trajectory matrix columns} ~ low-order basis ~ low-rank surrogate

Robustness intuition: regularization < robustifies, e.g., in a simple case

min max |[(A+A)z—b|| < min max ||Az—>b||+||Az| = min|Az—b||+p| |
T [lAll<p tight = [lA[I<p x
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regularization

0

incorporating priors
+ implicit SysID



Regularization = relaxing low-rank
approximation in pre-processing

minimize,, , , control cost (u, y)
bject ¢ Y=
subject to o = (y) g

where (Z) € argmin

O]

subject to rank (' (%)) = mL +n

J sequence of convex relaxations |

minimize,  , controlcost(u,y) + A, - |91
u d
bject t = ()
subject to Lj vl

(y-regularization = relaxation of low-rank
approximation & smoothened order selection

}
|

10°%¢
i realized closed-loop cost

optimal control

low-rank approximation




Regularization < reformulate subspace ID

partition data as in subspace ID: — indirect SysID + control problem
U o« e .
§ Ys (m + p) T minimize control cost(u, y)
yf(yd) U Ui
Y, (m ~+ p)Tiuture subjectto y = K* Yini
u
ID of optimal multi-step predictor Up
v, 1t where K* = argmin ||[Yp — K | Y,
as in SPC: K*:YF[YP:| K U,
Ut

The above is equivalent
to regularized DeePC

p

minimize control cost(u,y)+ A, HPI‘Oj <Z:) g
g,u.y :

where Proj ( ZS) projects Uini
Up : ud _ Yini

orthogonal to ker | v; subject to 7 o) 9= u
Ui

Y
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Regularizations applied to stochastic
LTI system & hyper-parameter selection
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Case study: wind turbi

unknown system

outer
control loops
1.
S

current outputs

control loop

turbine & grid model unknown to
commissioning engineer & operator

detailed industrial model: 37 states &
highly nonlinear (abc «+ dqg, MPTT,
PLL, power specs, dynamics, etc.)

weak grid — oscillations + sync loss

disturbance to be rejected by DeePC

active power (p.u.)

reactive power (p.u.)

closed-loop cost

o
©
5

e
©
T

o
™
o

ne

oscillation data
observed  collection

—— without additional control
— (o) = llgl3
— hlg) = llglh s
fud
o= [per ()

DeePC activated

AvAﬁAvﬂvﬁvﬁvJ\x

8 10 12

DeePC activated

m

‘2 A A TVy
8 10 12
time [s]
regularizer tuning — h(g) = H.‘7H§
I — hlg) = llglhs .
oot [ _ i
[ T L

|- Hanke-Raus heuristic
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Case study +++ : wind farm

—— without additional control —— subspace ID + control
[(— n(g) = llgllx — h(g) = gl
DeePC + fud 2
|~ hig)= ||Pr01 (‘;4) y”
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¢ high-fidelity models for turbines,
machines, & IEEE-9-bus system

rotor speed (p.u.)
o o
(== ©
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¢ fast frequency response via

. . ®03f
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Towards a theory for nonlinear systems

naive idea: lift nonlinear system to large/oo-dim. bi-/linear system
— Carleman, Volterra, Fliess, Koopman, Sturm-Liouville methods
— nonlinear dynamics can be approximated by LTI on finite horizon

regularization singles out relevant features / basis functions in data

¥ 9ﬁtcps://ww.reseaxch—cou 0.11850/493419
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https://www.research-collection.ethz.ch/handle/20.500.11850/493419

Works very well across case studies

os 2

D auadruped by Fawoets, Afsari o ‘combined cycle power plant (by P Mahdavipour et. al)

charging currnt densty (4/m)
{satity PE condtion)

- =

[tae of charge (50C) (9%-100%)

J. Wang etal) battery charging (by K. Chen et al) ‘wind turbine control

(o control)

grid-connected converter ‘synchronous motor drive ‘energy hub & building automation power system oscillation damping
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regularization

0

robustification



Distributional robustification beyond LTI

* problem abstraction: minzcx c( {,x) = mingex E, p[c(¢, )]

where ¢ denotes measured data with empirical distribution P = og

= poor out-of-sample performance of above sample-average solution z*
for real problem: E:_p[c (& 2*)] where P is the unknown distribution of ¢

e distributionally robust formulation accounting for all (possibly nonlinear)
stochastic processes that could have generated the data T P

infxex SUPGcp_(B) EgNQ [C (fax)]

~

where B.(P) is an e-Wasserstein ball B [ ,,r’ T
centered at empirical sample distribution P :

Be(ﬁ) = {P : irﬁf/”f—é“p dIl < 6} :— Y

wr 2PI2p




o distributionally robustness = regularization : under minor conditions

Theorem: inf sup E¢q[c(§,2)] = min ¢ (2, :c) + eLip(c) - [|z[3,
zEXQEB, (P) zEX

distributional robust formulation previous regularized DeePC formulation

realized closed-loop cost

Cor: (.-robustness intrajectory space
<= (;-regularization of DeePC

10°
10?2 10° 10% 10% 10°

¢ similar for distributionally robust constraints

* measure concentration: average N i.i.d. data sets & ¢ ~ 1/N1/dim(®)

~

= P € B.(P) with high confidence

2 300
% I Unstructured set py, = 27.39
* more structured uncertainty sets: & *® i
tractable reformulations (relaxations) 2 o | I ‘ |
Qo
& performance guarantees 5 . i I I
<10 1.5 2.0 2.5 3.0 3.5 1.0 > ég/éé(“ﬁ)

Realized cost



white elephant: how does DeePC
perform against SysID + control ?

surprise: DeePC consistently

beats (certainty-equivalence)

identification & control of LTI
models across all real case studies!

why ?1?



Comparison: direct vs. indirect control

indirect ID-based data-driven control ID projects data on LTI
class to learn predictor

® with parameters (n, ¢)
subjectto (u,y) satisfy parametric model e removes noise & thus
lowers variance error

e suffers bias error if
plant is not in LTI(n, £)

minimize control cost (u, y)

where model € argmin id cost (u?,y?) }ID

subject to model € LTI(n, ¢) class

direct regularized data-driven control ® no de-noising & no bias

® reqgularization robustifies
prediction (not predictor)

e frade-off ID & control costs

minimize control cost (u,y) + A- regularizer

subject to (u,y) consistent with (u?, y?) data

take-away : ID wins when model class is known, noise is well behaved, &
control task doesn’t bias ID. Otherwise, DeePC can beat ID ...it often does !
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Conclusions

main take-aways
® matrix time series as predictive model
® robustness & side-info by regularization

method that works in theory & practice
o focus is robust prediction not predictor ID

ongoing work
— certificates for adaptive & nonlinear cases

— applications with a true “business case”,
push TRL scale, & industry collaborations

questions we should discuss
® catch? violate no-free-lunch theorem? — more real-time computation
® DeePC = subspace ID + robustification ? — more accessible & flexible

e when does direct beat indirect ? — |d4Control & bias/variance issues ? s
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