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Thoughts on data in control systems
increasing role of data-centric methods
in science / engineering / industry due to
• methodological advances in statistics,

optimization, & machine learning (ML)
• unprecedented availability of brute force:

deluge of data & computational power
• . . . and frenzy surrounding big data & ML

Make up your own opinion, but ML works
too well to be ignored – also in control ?!?

“ One of the major developments in control
over the past decade – & one of the most

important moving forward – is the interaction
of ML & control systems. ” [CSS roadmap]
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Scientific landscape
long & rich history (auto-tuning, system
identification, adaptive control, RL, . . . ) &
vast & fragmented research landscape
−→ useful direct / indirect classification

?
x+ = f(x, u)

y = h(x, u)
y

u

direct data-driven control

minimize control cost
(
u, y
)

subject to trajectory
(
u, y
)

compatible with data
(
ud, yd

)

model-based design

{

system identification

{

indirect (model-based) data-driven control

minimize control cost
(
u, y
)

subject to trajectory
(
u, y
)

compatible with the model

where model ∈ argmin fitting criterion
(
ud, yd

)

subject to model belongs to certain class 4/25



Indirect vs. direct
• models are useful for

design & beyond

• modular→ easy
to debug & interpret

• id = projection on
model class

• id = noise filtering

• harder to propagate
uncertainty through id

• no (robust) separation
principle→ suboptimal

• . . .

?

x+ = f(x, u)

y = h(x, u)

y

u

• some models are too
complex to be useful

• end-to-end→ suit-
able for non-experts

• harder to inject side
info but no bias error

• noise handled in design

• transparent: no
unmodeled dynamics

• possibly optimal but
often less tractable

• . . .

lots of pros, cons, counterexamples, & no universal conclusions [discussion]
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Today’s menu
1. {behavioral systems} ∩ {subspace ID}: fundamental lemma

2. potent direct method: data-enabled predictive control DeePC

3. salient regularizations for robustification & inject side info

4. case studies from robotics & energy domain + tomatoes ,

blooming literature (2-3 ArXiv / week)

→ tutorial [link] to get started
• [link] to graduate school material
• [link] to survey
• [link] to related bachelor lecture
• [link] to related publications
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Summary

Behavioral systems theory decouples the behavior of a
system from its representation. A key result is that, under

a persistency of excitation condition, the image of a Hankel
matrix constructed from the data equals the set of finite-
length trajectories of a linear time-variant system. This result
is the cornerstone of a recently emerged approach to direct
data-driven control. This self-contained tutorial reviews its
foundations and shows how they can be leveraged for data-
driven control. We present a generic data-driven interpola-
tion / approximation formulation encompassing many well
known problem instances, among others finite-horizon data-
driven control. We embed this problem formulation into a
predictive control setting, robustify it to inexact data by
means of regularizations, and apply the resulting methods in
the context of power electronics dominated power systems.

Physics aims to describe, classify, and predict natural phenom-
ena, while engineering aims to design new or modify existing
ones. A phenomenon is characterized by some observed vari-
ables. Three common problems control engineers solve are

» simulation: predict the variables in a new experiment,
» smoothing: remove measurement noise from observations

and infer hidden/latent variables, and
» control: modify the behavior of some variables by manip-

ulating other variables.
In order to solve them, prior knowledge about the phenomenon is
needed. This knowledge is usually given by a model, which is a
dynamical system that ideally has the same behavior as the real-
life phenomenon. The model may be obtained from physical laws
(first principles modeling), observed data (black-box modeling),
or a combination of physical laws and observed data (grey-box

modeling). Modeling using observed data, possibly incorporating
some prior knowledge from the physical laws (that is, black-box
and grey-box modeling) is called system identification.

System identification is generally applicable and mostly auto-
mated (user input may be needed for tuning hyper-parameters).
Modeling from first principles in contrast is domain specific and
laborious. Identification methods allow also for an accuracy–
complexity trade-off, so that simplified approximate models can
be obtained, while modeling from first principles delivers exact
models. Thus, system identification is often used for modeling
complex phenomena, for which models from first principles are
difficult or even impossible to obtain. The approximation aspect
of system identification, however, poses an important question:
“What is the best approximate model for design?” that is “What
is the best model for achieving our ultimate goals: simulation,
smoothing, and control?”. The question gives rise to new areas of
research, such as identification for control [1]–[3], dual control
[4]–[7], and control-regularized identification [8], [9].

Most design methods are model-based—they assume a given
model. Recently, an alternative paradigm, called data-driven,
emerged. Instead of a model, in the data-driven design paradigm,
the prior knowledge about the phenomenon is observed raw data.
The aim then is to achieve a direct map from the data to the
desired solution without identification of a model, see Figure 1.

Since ultimately both paths in Figure 1 from data to control
are based on data, the somewhat ambiguous term “data-driven”
has been used for both. Following [10], we adopt the terminology

data

model

control
model identification model-based design

direct data-driven design

FIGURE 1 The direct data-driven design paradigm aims to achieve
a map from data to result (simulated, smoothed, or control signal)
without identification of a model of the data-generating process.
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 https://imarkovs.github.io/tutorial.pdf
http://people.ee.ethz.ch/~floriand/docs/Slides/Dorfler_DTU_2023_Annotated_Handout.pdf
https://www.sciencedirect.com/science/article/pii/S1367578821000754
https://www.bsaver.io/teaching
http://people.ee.ethz.ch/~floriand/bib/Keyword/DATA-DRIVEN-CONTROL.html


Behavioral view on dynamical systems
Definition: A discrete-time dynamical
system is a 3-tuple (Z≥0,W,B) where

(i) Z≥0 is the discrete-time axis,

(ii) W is the signal space, &

(iii) B ⊆ WZ≥0 is the behavior.





B is the set of
all trajectories

Definition: The dynamical system (Z≥0,W,B) is
(i) linear if W is a vector space & B is a subspace of WZ≥0

(ii) & time-invariant if B ⊆ σB, where σwt = wt+1.

LTI system = shift-invariant subspace of trajectory space

−→ abstract perspective suited for data-driven control

y

u
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LTI systems & matrix time series
foundation of subspace system identification & signal recovery algorithms

u(t)

t

u4

u2

u1 u3

u5
u6

u7

y(t)

t

y4

y2

y1

y3

y5

y6

y7

(
u(t), y(t)

)
satisfy LTI

difference equation
b0ut+b1ut+1+. . .+bnut+n+

a0yt+a1yt+1+. . .+anyt+n = 0

(ARX / kernel representation)

⇐
under assumptions

⇒

[ 0 b0 a0 b1 a1 ... bn an 0 ] in left nullspace
of trajectory matrix (collected data)

H
(
ud

yd

)
=




(
ud1,1

yd1,1

) (
ud1,2

yd1,2

) (
ud1,3

yd1,3

)
...

(
ud2,1

yd2,1

) (
ud2,2

yd2,2

) (
ud2,3

yd2,3

)
...

...
...

...
...

(
udT,1

ydT,1

) (
udT,2

ydT,2

) (
udT,3

ydT,3

)
...




︸ ︷︷ ︸
1st experiment

︸ ︷︷ ︸
2nd

︸ ︷︷ ︸
3rd . . .
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Fundamental Lemma
u(t)

t

u4

u2

u1 u3

u5
u6

u7

y(t)

t

y4

y2

y1

y3

y5

y6

y7

Given: data
(
udi
ydi

)
∈ Rm+p & LTI complexity parameters

{
lag `

order n

set of all T -length trajectories =
{
(u, y) ∈ R(m+p)T : ∃x ∈ RnT s.t.

x+ = Ax+Bu , y = Cx+Du
}

︸ ︷︷ ︸ ︸ ︷︷ ︸
parametric state-space model raw data (every column is an experiment)

colspan




(
ud
1,1

yd
1,1

) (
ud
1,2

yd
1,2

) (
ud
1,3

yd
1,3

)
...

(
ud
2,1

yd
2,1

) (
ud
2,2

yd
2,2

) (
ud
2,3

yd
2,3

)
...

...
...

...
...

(
ud
T,1

yd
T,1

) (
ud
T,2

yd
T,2

) (
ud
T,3

yd
T,3

)
...




if and only if the trajectory matrix has rank m · T + n for all T ≥ `
9/25



set of all T -length trajectories =
{
(u, y) ∈ R(m+p)T : ∃x ∈ RnT s.t.

x+ = Ax+Bu , y = Cx+Du
}

︸ ︷︷ ︸ ︸ ︷︷ ︸
parametric state-space model non-parametric model from raw data

colspan




(
ud
1,1

yd
1,1

) (
ud
1,2

yd
1,2

) (
ud
1,3

yd
1,3

)
...

(
ud
2,1

yd
2,1

) (
ud
2,2

yd
2,2

) (
ud
2,3

yd
2,3

)
...

...
...

...
...

(
ud
T,1

yd
T,1

) (
ud
T,2

yd
T,2

) (
ud
T,3

yd
T,3

)
...




all trajectories constructible from finitely many previous trajectories

• standing on the shoulders of giants:
classic Willems’ result was only “if” &
required further assumptions: Hankel,
persistency of excitation, controllability

• terminology fundamental is justified : motion primitives, subspace SysID,
dictionary learning, (E)DMD, . . . all implicitly rely on this equivalence

• many recent extensions to other system classes (bi-linear, descriptor,
LPV, delay, Volterra series, Wiener-Hammerstein, . . . ), other matrix
data structures (mosaic Hankel, Page, . . . ), & other proof methods
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Bird’s view: SysID & today’s path

Fundamental 
Lemma [Willems, 

Rapisarda, & 

Markovsky ’05]

subspace 
intersection 

methods 
[Moonen et al., ’89]

PE in linear 
systems 

[Green & Moore, ’86]

many recent 
variations & 
extensions

[van Waarde et al., ’20]

generalized low-
rank version 

[Markovsky 

& Dörfler, ’20]

deterministic 
data-driven  

control [Markovsky 

& Rapisarda, ’08]

data-driven 
control of linear 

systems 
[de Persis & Tesi, ’19]

regularizations 
& MPC scenario

[Coulson et al., ’19]

data 
informativity

[van Waarde et al., ’20]

LFT formulation
[Berberich et al., ’20]

…

?

explicit

implicit

non-control 
applications: 

e.g., estimation. 
filtering, & SysID stabilization of 

nonlinear 
systems 

[de Persis & Tesi, ’21]

…

robust stability 
& recursive 
feasibility 

[Berberich et al., ’20]

 (distributional) 
robustness 

[Coulson et al., ’20, 

Huang et al., ’21]

regularizer from 
relaxed SysID 
[Dörfler et al., ’21]

…
…

…

subspace 
predictive 

control 
[Favoreel et al., ’99]

subspace 
methods

[Breschi, Chiuso, & 

Formention ’22]

instrumental 
variables

[Wingerden et al., ’22]

1980s 2005 today

ARX methods

[Chiuso later today]
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Output Model Predictive Control (MPC)

minimize
u, x, y

Tfuture∑

k=1

‖yk − rk‖2Q + ‖uk‖2R

subject to xk+1 = Axk +Buk

yk = Cxk +Duk

}
∀k ∈ {1, . . . , Tfuture}

xk+1 = Axk +Buk

yk = Cxk +Duk

}
∀k ∈ {−Tini − 1, . . . , 0}

uk ∈ U
yk ∈ Y

}
∀k ∈ {1, . . . , Tfuture}

quadratic cost with
R � 0, Q � 0 & ref. r

model for prediction
with k ∈ [1, Tfuture]

model for estimation
with k ∈ [−Tini − 1, 0] &
Tini ≥ lag (many flavors)

hard operational or
safety constraints

“[MPC] has perhaps too little system
theory and too much brute force [. . . ], but
MPC is an area where all aspects of the
field [. . . ] are in synergy.” – Willems ’07

Elegance aside, for an LTI
plant, deterministic, & with
known model, MPC is the
gold standard of control.
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Data-enabled Predictive Control (DeePC)

minimize
g, u, y

Tfuture∑

k=1

‖yk − rk‖2Q + ‖uk‖2R

subject to H
(
ud

yd

)
· g =




uini
yini
u
y




uk ∈ U
yk ∈ Y

}
∀k ∈ {1, . . . , Tfuture}

quadratic cost with
R � 0, Q � 0 & ref. r

non-parametric
model for prediction
and estimation

hard operational or
safety constraints

• real-time measurements (uini, yini) for estimation

• trajectory matrix H
(
ud

yd

)
from past

experimental data

updated online

collected offline
(could be adapted online)

→ equivalent to MPC in deterministic LTI case . . .
but needs to be robustified in case of noise / nonlinearity ! 13/25



Regularizations make it work

minimize
g, u, y, σ

Tfuture∑

k=1

‖yk − rk‖2Q + ‖uk‖2R + λy‖σ‖p + λgh(g)

subject to H
(
ud

yd

)
· g =




uini
yini
u
y


 +




0
σ
0
0




uk ∈ U
yk ∈ Y

}
∀k ∈ {1, . . . , Tfuture}

measurement noise
→ infeasible yini estimate
→ estimation slack σ
→ moving-horizon

least-square filter

noisy or nonlinear
(offline) data matrix
→ any (uy) feasible
→ add regularizer h(g)

Bayesian intuition: regularization ⇔ prior, e.g., h(g) = ‖g‖1 sparsely
selects {trajectory matrix columns} ∼ low-order basis ∼ low-rank surrogate

Robustness intuition: regularization ⇔ robustifies, e.g., in a simple case

min
x
‖Ax−b‖min

x
‖(A+∆)x−b‖

min
x

max
‖∆‖≤ρ

‖(A+∆)x−b‖ ≤
tight

min
x

max
‖∆‖≤ρ

‖Ax−b‖+‖∆x‖ = min
x
‖Ax−b‖+ρ‖x‖
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regularization
m

incorporating priors
+ implicit SysID



Regularization = relaxing low-rank
approximation in pre-processing

minimizeu,y,g control cost
(
u, y

)

subject to

[
u
y

]
= H

(
û
ŷ

)
g

where
(

û
ŷ

)
∈ argmin

∥∥∥
(

û
ŷ

)
−

(
ud

yd

)∥∥∥

subject to rank
(
H

(
û
ŷ

))
= mL+ n

↓ sequence of convex relaxations ↓
minimizeu,y,g control cost

(
u, y

)
+ λg · ‖g‖1

subject to

[
u
y

]
= H

(
ud

yd

)
g

`1-regularization = relaxation of low-rank
approximation & smoothened order selection



 optimal control



 low-rank approximation

!
"#
$%
&
'"
#
#
(
)*
#
$+

realized closed-loop cost

λg
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Regularization ⇔ reformulate subspace ID
partition data as in subspace ID:

H
(
ud

yd

)
∼




Up
Yp
Uf
Yf




}
(m+ p)Tini
}
(m+ p)Tfuture

ID of optimal multi-step predictor

as in SPC: K? = YF

[
Up
Yp
Uf

]†




→ indirect SysID + control problem
minimize

u,y
control cost(u, y)

subject to y = K?



uini
yini
u




where K? = argmin
K

∥∥∥∥∥∥
YF −K



Up
Yp
Uf



∥∥∥∥∥∥

The above is equivalent
to regularized DeePC
where Proj

(
ud

yd

)
projects

orthogonal to ker

[
Up
Yp
Uf

]

minimize
g,u,y

control cost(u, y) +λg

∥∥∥Proj
(
ud

yd

)
g
∥∥∥
p

subject to H
(
ud

yd

)
· g =




uini
yini
u
y
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Regularizations applied to stochastic
LTI system & hyper-parameter selection

‖g‖p∥∥∥kerH
(

ud

yd

)
g
∥∥∥
p

a priori (!)

Hanke-Raus 

heuristic (often)

reveals
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Case study: wind turbine

• turbine & grid model unknown to
commissioning engineer & operator

• detailed industrial model: 37 states &
highly nonlinear (abc↔ dq, MPTT,
PLL, power specs, dynamics, etc.)

• weak grid→oscillations + sync loss

• disturbance to be rejected by DeePC

!"#"

$%&&'$#(%)

*(#+%,#-"!!(#(%)"&-$%)#.%&

%/$(&&"#(%)

%0/'.1'!

h(g) = ‖g‖22
h(g) = ‖g‖1
h(g) =

∥∥∥Proj
(
ud

yd

)
g
∥∥∥
2

2

2''34-"$#(1"#'!

2''34-"$#(1"#'!

regularizer tuning h(g) = ‖g‖22
h(g) = ‖g‖1
h(g) =

∥∥∥Proj
(
ud

yd

)
g
∥∥∥
2

2

Hanke-Raus heuristic
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Case study +++ : wind farm

SG 1

SG 2 SG 3

1

2 3

4

5 6

7 9
8

IEEE nine-bus system

wind farm

1
2

3
4

5

6

7
8910

• high-fidelity models for turbines,
machines, & IEEE-9-bus system

• fast frequency response via
decentralized DeePC at turbines

h(g) =
∥∥∥Proj

(
ud

yd

)
g
∥∥∥
2

2

subspace ID + control
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Towards a theory for nonlinear systems
naive idea : lift nonlinear system to large/∞-dim. bi-/linear system
→ Carleman, Volterra, Fliess, Koopman, Sturm-Liouville methods
→ nonlinear dynamics can be approximated by LTI on finite horizon

regularization singles out relevant features / basis functions in data

https://www.research-collection.ethz.ch/handle/20.500.11850/493419
20/25
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Works very well across case studies
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regularization
m

robustification



Distributional robustification beyond LTI
• problem abstraction : minx∈X c

(
ξ̂, x

)
= minx∈X Eξ∼P̂

[
c (ξ, x)

]

where ξ̂ denotes measured data with empirical distribution P̂ = δξ̂

⇒ poor out-of-sample performance of above sample-average solution x?

for real problem: Eξ∼P

[
c (ξ, x?)

]
where P is the unknown distribution of ξ

• distributionally robust formulation accounting for all (possibly nonlinear)
stochastic processes that could have generated the data

inf
x∈X

supQ∈Bε(P̂) Eξ∼Q

[
c (ξ, x)

]

where Bε(P̂) is an ε-Wasserstein ball
centered at empirical sample distribution P̂ :

Bε(P̂) =

{
P : inf

Π

∫ ∥∥ ξ − ξ̂
∥∥
p
dΠ ≤ ε

}

ξ̂

ξ

P̂

P

Π22/25



• distributionally robustness ≡ regularization : under minor conditions

Theorem: inf
x∈X

sup
Q∈Bε(P̂)

Eξ∼Q

[
c (ξ, x)

]

︸ ︷︷ ︸
distributional robust formulation

≡ min
x∈X

c
(
ξ̂, x
)

+ εLip(c) · ‖x‖?p
︸ ︷︷ ︸
previous regularized DeePC formulation

Cor : `∞-robustness in trajectory space
⇐⇒ `1-regularization of DeePC

!
"#
$%
&
'"
#
#
(
)*
#
$+

realized closed-loop cost

ǫ

• similar for distributionally robust constraints

• measure concentration: average N i.i.d. data sets & ε ∼ 1/N1/ dim(ξ)

=⇒ P ∈ Bε(P̂) with high confidence

• more structured uncertainty sets :
tractable reformulations (relaxations)
& performance guarantees
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white elephant: how does DeePC
perform against SysID + control ?

surprise: DeePC consistently
beats (certainty-equivalence)

identification & control of LTI
models across all real case studies !

why ?!?



Comparison: direct vs. indirect control
indirect ID-based data-driven control

minimize control cost
(
u, y
)

subject to
(
u, y
)

satisfy parametric model

where model ∈ argmin id cost
(
ud, yd

)

subject to model ∈ LTI(n, `) class

}
ID

ID projects data on LTI
class to learn predictor
• with parameters (n, `)

• removes noise & thus
lowers variance error

• suffers bias error if
plant is not in LTI(n, `)

direct regularized data-driven control

minimize control cost
(
u, y
)

+ λ· regularizer

subject to
(
u, y
)

consistent with
(
ud, yd

)
data

• no de-noising & no bias
• regularization robustifies

prediction (not predictor)
• trade-off ID & control costs

take-away : ID wins when model class is known, noise is well behaved, &
control task doesn’t bias ID. Otherwise, DeePC can beat ID . . . it often does !
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Conclusions
main take-aways
• matrix time series as predictive model
• robustness & side-info by regularization
• method that works in theory & practice
• focus is robust prediction not predictor ID

ongoing work
→ certificates for adaptive & nonlinear cases
→ applications with a true “business case”,

push TRL scale, & industry collaborations SG 1

SG 2 SG 3

1

2 3

4

5 6

7 9
8

IEEE nine-bus system

wind farm

1
2

3
4

5

6

7
8910

questions we should discuss
• catch? violate no-free-lunch theorem ? → more real-time computation
• DeePC = subspace ID + robustification ? → more accessible & flexible
• when does direct beat indirect ? → Id4Control & bias/variance issues ? 25/25



Thanks !


