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Abstract

The strategy of pre-training a large model on a diverse dataset, then fine-tuning for a particular
application has yielded impressive results in computer vision, natural language processing, and
robotic control. This strategy has vast potential in adaptive control, where it is necessary to rapidly
adapt to changing conditions with limited data. Toward concretely understanding the benefit of pre-
training for adaptive control, we study the adaptive linear quadratic control problem in the setting
where the learner has prior knowledge of a collection of basis matrices for the dynamics. This
basis is misspecified in the sense that it cannot perfectly represent the dynamics of the underlying
data generating process. We propose an algorithm that uses this prior knowledge, and prove upper
bounds on the expected regret after T interactions with the system. In the regime where T is small,
the upper bounds are dominated by a term that scales with either poly(log T ) or

p
T , depending

on the prior knowledge available to the learner. When T is large, the regret is dominated by a term
that grows with �T , where � quantifies the level of misspecification. This linear term arises due
to the inability to perfectly estimate the underlying dynamics using the misspecified basis, and is
therefore unavoidable unless the basis matrices are also adapted online. However, it only dominates
for large T , after the sublinear terms arising due to the error in estimating the weights for the basis
matrices become negligible. We provide simulations that validate our analysis. Our simulations
also show that offline data from a collection of related systems can be used as part of a pre-training
stage to estimate a misspecified dynamics basis, which is in turn used by our adaptive controller.

1. Introduction

Transfer learning, whereby a model is pre-trained on a large dataset, and then finetuned for a specific
application, has exhibited great success in computer vision (Dosovitskiy et al., 2020) and natural
language processing (Devlin et al., 2018). Efforts to apply these methods to control have shown
exciting preliminary results, particularly in robotics (Dasari et al., 2019). The principle underpin-
ning the success of transfer learning is to use diverse datasets to extract compressed, broadly useful
features, which can be used in conjunction with comparatively simple models for downstream ob-
jectives. These simple models can be finetuned with relatively little data from the downstream task.
However, errors in the pre-training stage may cause this two-step strategy to underperform learning
from scratch when ample task-specific data is available. This tradeoff may be acceptable in settings
such as adaptive control, where the learner must rapidly adapt to changes with limited data.

Driven by the potential of pre-training in adaptive control, we study the adaptive linear quadratic
regulator (LQR) in a setting where imperfect prior information about the system is available. The
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Linear Quadratic Dual Control
Anders Rantzer

Abstract—This is a draft paper posted on Arxiv as a docu-
mentation of a plenary lecture at CDC2023. Some of the core
material has been submitted for publication at L4DC 2024.

An adaptive controller subject to (unknown) linear dynamics
and a (known) quadratic objective is derived based on a “data-
driven Riccati equation”. The main result quantifies closed loop
performance in terms of input excitation level and the degree of
the plant stabilizability.

I. INTRODUCTION

Adaptive control has a long history, dating back to aircraft
autopilot development in the 1950s. Following the landmark
paper [1], a surge of research activity during the 1970s
derived conditions for convergence, stability, robustness and
performance under various assumptions. For example, [12]
analysed adaptive algorithms using averaging, [7] derived an
algorithm that gives mean square stability with probability one,
while [9] gave conditions for the optimal asymptotic rate of
convergence. On the other hand, conditions that may cause
instability were studied in [6], [10] and [16]. Altogether, the
subject has a rich history documented in numerous textbooks,
such as [2], [8], and [17].

In this paper, the focus is on worst-case models for dis-
turbances and uncertain parameters, as discussed in [5], [18],
[19], [13] and more recently in [14], [4], [11]. However, the
disturbances in this paper are assumend to be bounded in terms
of past states and inputs. This causality constraint is different
from above mentioned references.

II. NOTATION

The set of n×m matrices with real coefficients is denoted
Rn×m. The transpose of a matrix A is denoted A⊤. For a
symmetric matrix A ∈ Rn×n, we write A ≻ 0 to say that
A is positive definite, while A ≽ 0 means positive semi-
definite. Given x ∈ Rn and A ∈ Rn×n, the notation |x|2A
means x⊤Ax. The expression minK

[

I

K

]⊤
Q
[

I

K

]

is equivalent
to Qxx −Qxu(Quu)−1Qux where Q =

[

Qxx Qux

Qxu Quu

]

.

III. A DATA-DRIVEN RICCATI EQUATION

Consider a linear quadratic optimal control problem:

Minimize

∞
∑

t=0

(

|xt|2 + |ut|2
)

subject to xt+1 = Axt +Bxt.

The author is affiliated with Automatic Control LTH, Lund University,
Box 118, SE-221 00 Lund, Sweden. He is a member of the Excellence
Center ELLIIT and Wallenberg AI, Autonomous Systems and Software
Program (WASP). Support was received from the European Research Council
(Advanced Grant 834142)

Assuming that the system is stabilizable, the optimal value
has the form |x0|2P where P can be obtained by solving the
Riccati equation

|x|2P = min
u

[

|x|2 + |u|2 + |Ax+Bu|2P
]

. (1)

Define Q by
[

x
u

]⊤
Q
[

x
u

]

= |x|2 + |u|2+ |Ax+Bu|2P . Then (1)
can alternatively be written as

[

x
u

]⊤

(Q − I)

[

x
u

]

= x⊤
+ min

K

[

I
K

]⊤

Q

[

I
K

]

x+ (2)

where x+ = Ax+Bu. Without knowing the model parameters
(A,B), it is possible to collect data points (x, u, x+) and use
(2) to get information about Q. In fact, the total matrix Q can
be computed from a trajectory x0, u0, . . . , xn, uN spanning all
directions of (xt, ut), using the equation

[

x0 . . . xt

u0 . . . ut

]⊤

(Q− I)

[

x0 . . . xt

u0 . . . ut

]

= [x1 . . . xt+1]
⊤ min

K

[

I
K

]⊤

Q

[

I
K

]

[x1 . . . xt+1]

This is essentially equation (3) in [3] and (14) in [15].
However, rather than iterating over Q as in most reinforcement
learning algorithms, we multiply from the left by

[

λtx0 λt−1x1 . . . xt−1

λtu0 λt−1u1 . . . ut−1

]

,

its transpose from the right. This gives a data driven Riccati
equation

Σt (Q − I)Σt = Σ̂⊤
t min

K

(

[

I
K

]⊤

Q

[

I
K

]

)

Σ̂t (3)

where λ is a forgetting factor and

Σt =
t−1
∑

k=0

λt−1−k

[

xk

uk

] [

xk

uk

]⊤

Σ̂t =
t−1
∑

k=0

λt−1−kxk+1

[

xk

uk

]⊤

are defined by past data. When Σt has full rank, this cor-
responds to weighted least squares estimation of A and B
according to

[

Ât B̂t

]

:= Σ̂tΣ
−1
t , followed by solution of a

standard Riccati equation. However, the analysis of the next
sections becomes more straightforward by avoiding the detour
over A and B, especially when Σt is singular.
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Formulas for Data-driven Control: Stabilization,
Optimality and Robustness

C. De Persis and P. Tesi

Abstract—In a paper by Willems and coauthors it was shown
that persistently exciting data can be used to represent the input-
output behavior of a linear system. Based on this fundamental
result, we derive a parametrization of linear feedback systems
that paves the way to solve important control problems using
data-dependent Linear Matrix Inequalities only. The result is
remarkable in that no explicit system’s matrices identification is
required. The examples of control problems we solve include the
state and output feedback stabilization, and the linear quadratic
regulation problem. We also discuss robustness to noise-corrupted
measurements and show how the approach can be used to
stabilize unstable equilibria of nonlinear systems.

I. INTRODUCTION

LEARNING from data is essential to every area of science.
It is the core of statistics and artificial intelligence, and is

becoming ever more prevalent also in the engineering domain.
Control engineering is one of the domains where learning from
data is now considered as a prime issue.

Learning from data is actually not novel in control theory.
System identification [1] is one of the major developments
of this paradigm, where modeling based on first principles is
replaced by data-driven learning algorithms. Prediction error,
maximum likelihood as well as subspace methods [2] are
all data-driven techniques which can be now regarded as
standard for what concerns modeling. The learning-from-data
paradigm has been widely pursued also for control design
purposes. A main question is how to design control sys-
tems directly from process data with no intermediate system
identification step. Besides their theoretical value, answers to
this question could have a major practical impact especially
in those situations where identifying a process model can
be difficult and time consuming, for instance when data are
affected by noise or in the presence of nonlinear dynamics.
Despite many developments in this area, data-driven control
is not yet well understood even if we restrict the attention to
linear dynamics, which contrasts the achievements obtained in
system identification. A major challenge is how to incorporate
data-dependent stability and performance requirements in the
control design procedure.

Literature review

Contributions to data-driven control can be traced back
to the pioneering work by Ziegler and Nichols [3], direct
adaptive control [4] and neural networks [5] theories. Since
then, many techniques have been developed under the heading
data-driven and model-free control. We mention unfalsified

C. De Persis is with ENTEG and the J.C. Willems Center for Systems
and Control, University of Groningen, 9747 AG Groningen, The Netherlands.
Email: c.de.persis@rug.nl. P. Tesi is with DINFO, University of
Florence, 50139 Firenze, Italy E-mail: pietro.tesi@unifi.it.

control theory [6], iterative feedback tuning [7], and virtual
reference feedback tuning [8]. This topic is now attracting
more and more researchers, with problems ranging from PID-
like control [9] to model reference control and output tracking
[10], [11], [12], [13], [14], predictive [15], [16], robust [17]
and optimal control [18], [19], [20], [21], [22], [23], [24], the
latter being one of the most frequently considered problems.
The corresponding techniques are also quite varied, ranging
from dynamics programming to optimization techniques and
algebraic methods. These contributions also differ with respect
to how learning is approached. Some methods only use a batch
of process data meaning that learning is performed off-line,
while other methods are iterative and require multiple on-
line experiments. We refer the reader to [25], [26] for more
references on data-driven control methods.

Willems et al.’s fundamental lemma and paper contribution

A central question in data-driven control is how to replace
process models with data. For linear systems, there is actually
a fundamental result which answers this question, proposed
by Willems et al. [27]. Roughly, this result stipulates that the
whole set of trajectories that a linear system can generate can
be represented by a finite set of system trajectories provided
that such trajectories come from sufficiently excited dynamics.
While this result has been (more or less explicitly) used for
data-driven control design [16], [18], [28], [29], [30], certain
implications of the so-called Willems et al.’s fundamental

lemma seems not fully exploited.

In this paper, we first revisit Willems et al.’s fundamental
lemma, originally cast in the behavioral framework, through
classic state-space descriptions (Lemma 2). Next, we show that
this result can be used to get a data-dependent representation
of the open-loop and closed-loop dynamics under a feedback
interconnection. The first result (Theorem 1) indicates that
the parametrization that emerges from the fundamental lemma
is in fact the solution to a classic least-squares problem,
and has clear connections with the so-called Dynamic Mode
Decomposition [31]. The second result (Theorem 2) is even
more interesting as it provides a data-based representation of
the closed-loop system transition matrix, where the controller
is itself parametrized through data.

Theorem 2 turns out to have surprisingly straightforward,
yet profound, implications for control design. We discuss this
fact in Section IV. The main point is that the parametriza-
tion provided in Theorem 2 can be naturally related to the
classic Lyapunov stability inequalities. This makes it possible
to cast the problem of designing state-feedback controllers
in terms of a simple Linear Matrix Inequality (LMI) [32]
(Theorem 3). In Theorem 4, the same arguments are used to
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Harnessing theFinalControlError for

OptimalData-DrivenPredictiveControl ⋆

Alessandro Chiuso a, Marco Fabris a, Valentina Breschi b, Simone Formentin c

aDepartment of Information Engineering, University of Padova, Via Gradenigo 6/b, 35131 Padova, Italy.

bDepartment of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

cDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.za L. Da Vinci, 32, 20133 Milano, Italy.

Abstract

Model Predictive Control (MPC) is a powerful method for complex system regulation, but its reliance on accurate models
poses many limitations in real-world applications. Data-driven predictive control (DDPC) offers a valid alternative, eliminating
the need for model identification. However, it may falter in the presence of noisy data. In response, in this work, we present
a unified stochastic framework for direct DDPC where control actions are obtained by optimizing the Final Control Error,
directly computed from available data only, that automatically weighs the impact of uncertainty on the control objective. Our
approach generalizes existing DDPC methods, like regularized Data-enabled Predictive Control (DeePC) and γ-DDPC, and
thus provides a path toward noise-tolerant data-based control, with rigorous optimality guarantees. The theoretical investigation
is complemented by a series of numerical case studies, revealing that the proposed method consistently outperforms or, at
worst, matches existing techniques without requiring tuning regularization parameters as methods do.

Key words: data-driven control, control of constrained systems, regularization, identification for control

1 Introduction

Model Predictive Control (MPC) has earned recognition
as a powerful technology for optimizing the regulation of
complex systems, owing to its flexible formulation and
constraint-handling capabilities [24]. However, its effec-
tiveness is contingent on the accuracy of the predictor
based on which control actions are optimized [6]. This
limitation has led to the exploration of robust, stochas-
tic, and tube-based MPC solutions [26]. Unfortunately,
these extensions often come with trade-offs, such as con-
servatism in control and substantial computational bur-
dens, rendering them less suitable for real-time applica-
tions like mechatronics or automotive systems [27].

In response to these challenges, data-driven predictive
control (DDPC), sometimes referred to as Data-enabled
Predictive Control (DeePC), has emerged as an alter-
native to traditional MPC, see [8,13,5]. DDPC directly

⋆ This project was partially supported by the Italian Min-
istry of University and Research under the PRIN’17 project
“Data-driven learning of constrained control systems”, con-
tract no. 2017J89ARP. Corresponding author: Alessandro
Chiuso (e-mail: alessandro.chiuso@unipd.it).

maps data collected offline onto the control sequence
starting from the current measurements, without the
need for an intermediate identification phase. In the lin-
ear time-invariant setting, mathematical tools such as
the “fundamental lemma” [30] and linear algebra-based
subspace and projection methods [29] represent the en-
abling technology for data-driven control [15,8] also pro-
viding the link between DDPC and Subspace Predic-
tive Control [17] and, more in general, between “in-
direct” and “direct”, “model-based” and “model-free”
data-driven predictive control schemes [16]. In turn, un-
veiling this link has led to quite a bit of debate in the
recent literature regarding the pros and cons of exploit-
ing models (explicitly or implicitly) for control design,
see e.g., the recent works [16,19,15], a topic that closely
relates to past work on experiment design [18].

Adding to this debate, when referring to data-driven
predictive approaches, we still keep the dichotomy be-
tween model-free/model-based and direct/indirect ap-
proaches, nonetheless giving a new perspective on the
former based on our theoretical results. Meanwhile, in-
direct/direct methods are juxtaposed according to the
following (more mainstream) terminology.

Preprint submitted to Automatica 25 December 2023
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Keywords
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Abstract
Gradient-based methods have been widely used for system design and opti-
mization in diverse application domains. Recently, there has been a renewed
interest in studying theoretical properties of these methods in the context of
control and reinforcement learning. This article surveys some of the recent
developments on policy optimization, a gradient-based iterative approach
for feedback control synthesis that has been popularized by successes of re-
inforcement learning.We take an interdisciplinary perspective in our expo-
sition that connects control theory, reinforcement learning, and large-scale
optimization.We review a number of recently developed theoretical results
on the optimization landscape, global convergence, and sample complexity

123

ar
X

iv
:1

90
8.

00
46

8v
3 

 [m
at

h.
O

C
]  

10
 Ja

n 
20

20

1

Data informativity: a new perspective on
data-driven analysis and control

Henk J. van Waarde, Jaap Eising, Harry L. Trentelman, and M. Kanat Camlibel

Abstract—The use of persistently exciting data has recently
been popularized in the context of data-driven analysis and
control. Such data have been used to assess system theoretic
properties and to construct control laws, without using a system
model. Persistency of excitation is a strong condition that also
allows unique identification of the underlying dynamical system
from the data within a given model class. In this paper, we
develop a new framework in order to work with data that are
not necessarily persistently exciting. Within this framework, we
investigate necessary and sufficient conditions on the informati-
vity of data for several data-driven analysis and control problems.
For certain analysis and design problems, our results reveal that
persistency of excitation is not necessary. In fact, in these cases
data-driven analysis/control is possible while the combination of
(unique) system identification and model-based control is not.
For certain other control problems, our results justify the use of
persistently exciting data as data-driven control is possible only
with data that are informative for system identification.

I. INTRODUCTION

ONE of the main paradigms in the field of systems and
control is that of model-based control. Indeed, many

control design techniques rely on a system model, represented
by e.g. a state-space system or transfer function. In practice,
system models are rarely known a priori and have to be iden-
tified from measured data using system identification methods
such as prediction error [1] or subspace identification [2].
As a consequence, the use of model-based control techniques
inherently leads to a two-step control procedure consisting of
system identification followed by control design.

In contrast, data-driven control aims to bypass this two-
step procedure by constructing controllers directly from data,
without (explicitly) identifying a system model. This direct
approach is not only attractive from a conceptual point of view
but can also be useful in situations where system identification
is difficult or even impossible because the data do not give
sufficient information.

The first contribution to data-driven control is often at-
tributed to Ziegler and Nichols for their work on tuning PID
controllers [3]. Adaptive control [4], iterative feedback tuning
[5], [6] and unfalsified control [7] can also be regarded as
classical data-driven control techniques. More recently, the
problem of finding optimal controllers from data has received
considerable attention [8]–[19]. The proposed solutions to this

The authors are with the Bernoulli Institute for Mathematics, Com-
puter Science, and Artificial Intelligence, University of Groningen, Nij-
enborgh 9, 9747 AG, Groningen, The Netherlands. Henk van Waarde
is also with the Engineering and Technology Institute Groningen,
University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands. (email: h.j.van.waarde@rug.nl;j.eising@rug.nl;
h.l.trentelman@rug.nl;m.k.camlibel@rug.nl).

problem are quite varied, ranging from the use of batch-form
Riccati equations [9] to approaches that apply reinforcement
learning [8]. Additional noteworthy data-driven control pro-
blems include predictive control [20]–[22], model reference
control [23], [24] and (intelligent) PID control [25], [26].
For more references and classifications of data-driven control
techniques, we refer to the survey [27].

In addition to control problems, also analysis problems have
been studied within a data-based framework. The authors of
[28] analyze the stability of an input/output system using time
series data. The papers [29]–[32] deal with data-based con-
trollability and observability analysis. Moreover, the problem
of verifying dissipativity on the basis of measured system
trajectories has been studied in [33]–[36].

A result that is becoming increasingly popular in the study
of data-driven problems is the so-called fundamental lemma by
Willems and coworkers [37]. This result roughly states that all
possible trajectories of a linear time-invariant system can be
obtained from any given trajectory whose input component
is persistently exciting. The fundamental lemma has clear
implications for system identification. Indeed, it provides
criteria under which the data are sufficiently informative to
uniquely identify the system model within a given model class.
In addition, the result has also been applied to data-driven
control problems. The idea is that control laws can be obtained
directly from data, with the underlying mechanism that the
system is represented implicitly by the so-called Hankel matrix
of a measured trajectory. This framework has led to several
interesting control strategies, first in a behavioral setting [14],
[38], [39], and more recently in the context of state-space
systems [22], [35], [36], [40]–[42].

The above approaches all use persistently exciting data in
the control design, meaning that one could (hypothetically)
identify the system model from the same data. An intriguing
question is therefore the following: is it possible to obtain
a controller from data that are not informative enough to
uniquely identify the system? An affirmative answer would
be remarkable, since it would highlight situations in which
data-driven control is more powerful than the combination of
system identification and model-based control. On the other
hand, a negative answer would also be significant, as it would
give a theoretic justification for the use of persistently exciting
data for data-driven analysis and control.

To address the above question, this paper introduces a
general framework to study data informativity problems for
data-driven analysis and control. Specifically, our contributions
are the following:

1

Convergence and sample complexity of gradient methods
for the model-free linear quadratic regulator problem

Hesameddin Mohammadi, Armin Zare, Mahdi Soltanolkotabi, and Mihailo R. Jovanović

Abstract

Model-free reinforcement learning attempts to find an optimal control action for an unknown dynamical system by
directly searching over the parameter space of controllers. The convergence behavior and statistical properties of these
approaches are often poorly understood because of the nonconvex nature of the underlying optimization problems
and the lack of exact gradient computation. In this paper, we take a step towards demystifying the performance
and efficiency of such methods by focusing on the standard infinite-horizon linear quadratic regulator problem for
continuous-time systems with unknown state-space parameters. We establish exponential stability for the ordinary
differential equation (ODE) that governs the gradient-flow dynamics over the set of stabilizing feedback gains and
show that a similar result holds for the gradient descent method that arises from the forward Euler discretization of
the corresponding ODE. We also provide theoretical bounds on the convergence rate and sample complexity of the
random search method with two-point gradient estimates. We prove that the required simulation time for achieving
✏-accuracy in the model-free setup and the total number of function evaluations both scale as log (1/✏).

Index Terms

Data-driven control, gradient descent, gradient-flow dynamics, linear quadratic regulator, model-free control,
nonconvex optimization, Polyak-Lojasiewicz inequality, random search method, reinforcement learning, sample
complexity.

I. INTRODUCTION

In many emerging applications, control-oriented models are not readily available and classical approaches from

optimal control may not be directly applicable. This challenge has led to the emergence of Reinforcement Learning

(RL) approaches that often perform well in practice. Examples include learning complex locomotion tasks via neural

network dynamics [1] and playing Atari games based on images using deep-RL [2].

RL approaches can be broadly divided into model-based [3], [4] and model-free [5], [6]. While model-based RL

uses data to obtain approximations of the underlying dynamics, its model-free counterpart prescribes control actions

based on estimated values of a cost function without attempting to form a model. In spite of the empirical success

of RL in a variety of domains, our mathematical understanding of it is still in its infancy and there are many open

questions surrounding convergence and sample complexity. In this paper, we take a step towards answering such

questions with a focus on the infinite-horizon Linear Quadratic Regulator (LQR) for continuous-time systems.

The work of H. Mohammadi, A. Zare, and M. R. Jovanović is supported in part by the National Science Foundation (NSF) under Awards
ECCS-1708906 and ECCS-1809833 and the Air Force Office of Scientific Research (AFOSR) under Award FA9550-16-1-0009. The work of
M. Soltanolkotabi is supported in part by the Packard Fellowship in Science and Engineering, a Sloan Research Fellowship in Mathematics, a
Google Faculty Research Award, as well as Awards from NSF, Darpa LwLL program, and AFOSR Young Investigator Program.

H. Mohammadi, M. Soltanolkotabi, and M. R. Jovanović are with the Ming Hsieh Department of Electrical and Computer Engineering,
University of Southern California, Los Angeles, CA 90089. A. Zare is with the Department of Mechanical Engineering, University of Texas at
Dallas, Richardson, TX 75080. Emails: {hesamedm, soltanol, mihailo}@usc.edu, armin.zare@utdallas.edu.
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Gradient Methods for Large-Scale and
Distributed Linear Quadratic Control

Karl Mårtensson

Department of Automatic Control
Lund University

Lund, April 2012
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Low-Rank and Low-Order Decompositions for Local System Identification

Nikolai Matni and Anders Rantzer

Abstract— As distributed systems increase in size, the need
for scalable algorithms becomes more and more important.
We argue that in the context of system identification, an
essential building block of any scalable algorithm is the ability
to estimate local dynamics within a large interconnected system.
We show that in what we term the “full interconnection
measurement” setting, this task is easily solved using existing
system identification methods. We also propose a promising
heuristic for the “hidden interconnection measurement” case, in
which contributions to local measurements from both local and
global dynamics need to be separated. Inspired by the machine
learning literature, and in particular by convex approaches to
rank minimization and matrix decomposition, we exploit the
fact that the transfer function of the local dynamics is low-order,
but full-rank, while the transfer function of the global dynamics
is high-order, but low-rank, to formulate this separation task
as a nuclear norm minimization.

I. INTRODUCTION

The new smart grid, the internet, and automated highway
systems: all of these systems are characterized by their large
scale, their distributed nature, and the sparse structure of
their physical interconnections. As these systems scale to
larger and larger size, so too must the algorithms used to
analyze and design them: thus local algorithms yielding
global results become essential. In general, such algorithms
are not guaranteed to exist – however, when additional
structure is imposed on the system, it has been shown that
there is indeed hope.

In the area of linear controller synthesis, for example, dis-
tributed systems systems with chordal structure [1], systems
with favorable communication structures [2] and positive
systems [3] have all been shown to admit localized, and
hence scalable, synthesis algorithms, with guaranteed global
performance or stability guarantees. Of course, none of these
algorithms can be applied without first identifying the state-
space parameters of the underlying large-scale distributed
system. Traditional system identification techniques such as
subspace identification or prediction error are not computa-
tionally scalable – furthermore, the former technique also
destroys, rather than leverages, any a priori information
about the system’s interconnection structure.

N. Matni is with the Department of Control and Dynamical
Systems, California Institute of Technology, Pasadena, CA.
nmatni@caltech.edu.

A. Rantzer with Automatic Control LTH, Lund University, Box 118, SE-
221 00 Lund, Sweden. rantzer@control.lth.se.

A. Rantzer gratefully acknowledges support of the LCCC Linnaeus
Center and the eLLIIT Excellence Center at Lund University.

N. Matni was in part supported by NSF, AFOSR, ARPA-E, and the
Institute for Collaborative Biotechnologies through grant W911NF-09-0001
from the U.S. Army Research Office. The content does not necessarily
reflect the position or the policy of the Government, and no official
endorsement should be inferred.

We are not the first to make this observation, and indeed
[4] presents a local, structure preserving subspace identifica-
tion algorithm for large scale (multi) banded systems (such
as those that arise from the linearization of 2D and 3D partial
differential equations), based on identifying local sub-system
dynamics. Their approach is to approximate neighboring
sub-systems’ states with linear combinations of inputs and
outputs collected from a local neighborhood of sub-systems,
and they show that the size of this neighborhood is dependent
on the conditioning of the so-called structured observability
matrix of the global system.

In this paper, we focus on the local identification problem,
and leave the task of identifying the proper interconnection of
these subsystems to future work, although we are also able to
solve this problem in what we term the “full interconnection
measurement” setting (to be formally defined in Section II).
Our method is different from the approach suggested in [4] in
three respects: (1) we focus on identifying impulse response
elements, rather than reconstructing state sequences, and (2)
our methods are purely local, in that we do not require the
exchange of information with any neighboring subsystems,
and finally, (3) we do not need to assume a (multi) banded
structure. In light of this, we view our contribution as
complementary to those presented in [4], and it will be
interesting to to see if the two approaches can be combined
in future work.

Our approach is based on two simple observations. First,
if all of the signals connecting the local sub-system to the
global system, or interconnection signals, can be measured,
then under mild technical assumptions, the local observations
are sufficient to identify both the local dynamics, and the
coupling with the global system. In effect, measuring the
interconnection signals isolates the local sub-system, reduc-
ing the problem to a classical system identification problem.
Second, if an interconnection signal is not measured, then we
have that the transfer function from local inputs and observed
interconnection signals to local measurements naturally de-
composes as the sum of two elements: one corresponding to
local dynamics, which in general we expect to have full-rank,
but low order, and one corresponding to global dynamics,
which will be of low-rank, but high order (see Figure 1 for
a pictorial representation of both settings).

Inspired by convex approaches to rank [5] and atomic
norm minimization [6] in system identification, and to matrix
decomposition in latent variable identification in graphical
models [7], we conjecture that this difference in structure
provides sufficient incoherence (c.f. [8] and [9] for examples
of incoherence conditions) to allow the two signals to be
separated through convex methods, in particular using nu-
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Data-driven pipelines

• indirect (model-based) approach:
data → model + uncertainty → control

• direct (model-free) approach:
direct MRAC, RL, behavioral, …

ID

?
x+ = f(x, u)

y = h(x, u)
y

u

• episodic & batch algorithms:
collect batch of data → design policy 

• online & adaptive algorithms:
measure → update policy → actuate

well-documented trade-offs concerning
• complexity: data, compute, & analysis
• goal: optimality vs (robust) stability 
• practicality: modular vs end-to-end …

→ gold(?) standard: direct, adaptive,  
    optimal yet robust, cheap, & tractable



4

LQR
• cornerstone of 

automatic control

•       parameterization
(can be posed as convex SDP,
as differentiable program, as… )

• the benchmark for all data-driven 
control approaches in last decades
but there is no direct & adaptive LQR

II. INDIRECT & DIRECT DATA-DRIVEN LQR

We now review indirect LQR design (formalized as a bi-
level program: least-square SysID followed by model-based
optimal control) as well as a recent direct approach [14]
parameterizing the design by data matrices. The foundation
of both approaches are subspace relations in state-space data.

A. Model-based linear quadratic optimal control

Consider a linear time-invariant (LTI) system
8
>><

>>:

x(k + 1) = Ax(k) +Bu(k) + d(k)

z(k) =

"
Q1/2 0

0 R1/2

#"
x(k)

u(k)

#
, (1)

where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d is a disturbance term, and z is the performance signal
of interest. We assume that (A,B) is stabilizable. Finally,
Q � 0 and R � 0 are weighting matrices. Here, � (⌫) and
� (�) denote positive and negative (semi)definiteness.

The problem of interest is linear quadratic regulation

phrased as designing a state-feedback gain K that renders
A+ BK Schur and minimizes the H2-norm of the transfer
function T (K) := d ! z of the closed-loop system1


x(k + 1)
z(k)

�
=

2

4
A+BK I
Q1/2

R1/2K

�
0

3

5


x(k)
d(k)

�
, (2)

where our notation T (K) emphasizes the dependence of the
transfer function on K. When A+BK is Schur, it holds that

kT (K)k22 = trace (QP ) + trace
�
K>RKP

�
, (3)

where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A+BK)P (A+BK)> � P + I = 0.

We refer to [34] for properties and interpretations of the
H2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d is a white process with unit covariance.
Here, we view the LQR problem as a H2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H2-norm of T (K) (henceforth, optimal) is unique
and can be computed by solving a discrete-time Riccati equa-
tion [1]. Alternatively, following [35], this optimal controller
can be determined by solving the following program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (A+BK)P (A+BK)> � P + I � 0 ,
(4)

1Given a stable p ⇥ m transfer function T (�) in the indeterminate �,
the squared H2-norm of T (�) is defined as [34, Section 4.4]:

kT k
2
2 :=

1

2⇡

Z 2⇡

0
trace(T (ej✓)0T (ej✓)) d✓

The LQR problem indeed admits many parameterizations,
and the one in (4) can be turned into a convex semi-definite
program after a change of variables; see [33, Section III.C].

We aim to compute the optimal control in a data-driven
setting when (A,B) are unknown, but we have access to a
T -long stream of noisy data. Here noisy means that the data
collected from (1) are generated with a non-zero disturbance
d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-

square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
series of inputs, disturbances, states, and successor states

U0 :=
⇥
u(0) u(1) . . . u(T � 1)

⇤
2 Rm⇥T ,

D0 :=
⇥
d(0) d(1) . . . d(T � 1)

⇤
2 Rn⇥T ,

X0 :=
⇥
x(0) x(1) . . . x(T � 1)

⇤
2 Rn⇥T ,

X1 :=
⇥
x(1) x(2) . . . x(T )

⇤
2 Rn⇥T

satisfying the dynamics (1), that is,

X1 �D0 =
⇥
B A

⇤ U0

X0

�
. (5)

It is convenient to record the data as consecutive time series,
i.e., column i of X1 coincides with column i+1 of X0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity

W0 :=


U0

X0

�
.

We assume that the data is sufficiently rich, that is,

rankW0 = n+m. (6)

The rank condition (6) is an identifiability condition ensuring
that (B,A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B,A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X0, X1) and under the rank condition (6),
an estimate (B̂, Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem
⇥
B̂ Â

⇤
= argmin

B,A

��X1 �
⇥
B A

⇤
W0

��
F
= X1W

†
0 , (7)

where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),

<latexit sha1_base64="I1Bd00v/sUeUqbovcB7narElkvo="></latexit>

x+ = Ax+Bu+ d

z = Q1/2x+R1/2u
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K
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d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-

square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
series of inputs, disturbances, states, and successor states

U0 :=
⇥
u(0) u(1) . . . u(T � 1)

⇤
2 Rm⇥T ,

D0 :=
⇥
d(0) d(1) . . . d(T � 1)
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X1 :=
⇥
x(1) x(2) . . . x(T )

⇤
2 Rn⇥T

satisfying the dynamics (1), that is,

X1 �D0 =
⇥
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X0

�
. (5)

It is convenient to record the data as consecutive time series,
i.e., column i of X1 coincides with column i+1 of X0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity

W0 :=


U0

X0

�
.

We assume that the data is sufficiently rich, that is,

rankW0 = n+m. (6)

The rank condition (6) is an identifiability condition ensuring
that (B,A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B,A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X0, X1) and under the rank condition (6),
an estimate (B̂, Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem
⇥
B̂ Â

⇤
= argmin

B,A

��X1 �
⇥
B A

⇤
W0

��
F
= X1W

†
0 , (7)

where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),
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where our notation T (K) emphasizes the dependence of the
transfer function on K. When A+BK is Schur, it holds that
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where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A+BK)P (A+BK)> � P + I = 0.

We refer to [34] for properties and interpretations of the
H2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d is a white process with unit covariance.
Here, we view the LQR problem as a H2-optimization
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the matrices (B,A) are replaced by their estimates (7). This
approach can be formalized as a bi-level program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (Â+ B̂K)P (Â+ B̂K)> � P + I � 0
⇥
B̂ Â

⇤
= argmin

B,A

��X1 �
⇥
B A

⇤
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��
F
.

(8)

minimize
P ⌫ I,K

trace (QP ) + trace
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K>RKP
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subject to (Â+ B̂K)P (Â+ B̂K)> � P + I � 0

⇥
B̂ Â

⇤
= argmin

B,A

����X1 �
⇥
B A

⇤ U0

X0

�����
F

Following classic terminology [2], we term problem (8)
a certainty-equivalence and indirect data-driven control ap-
proach and its solution K a certainty-equivalence controller.

Note that under the identifiability condition (6) and with
noise-free data, (8) is feasible and returns the optimal control.
This is because, under these circumstances, B̂ = B and Â =
A so that (8) coincides with the model-based program (4).

It can be argued that the sequential identification-followed-
by-control approach (8) is optimal in a maximum-likelihood
sense; see [19, Section 4.2]. However, it is also known that
noisy data should not be taken at face value (especially in the
low-data and low SNR limit), and the certainty-equivalence
approach has to be additionally robustified; see [6], [8],

C. Direct design & LQR parameterization by data matrices

Now we review a direct data-driven LQR approach laid
out in [14]. It uses the subspace relations (5) and (6) to
parametrize problem (4) by data matrices. Namely, due to
the rank condition (6), for any K, there is a matrix G so that


K
I

�
= W0G , (9)

and due to the relation (5) the closed-loop matrix A+ BK
can be parametrized directly by data matrices as

A+BK =
⇥
B A

⇤ K
I

�
(9)
=

⇥
B A

⇤
W0G

(5)
= (X1�D0)G .

(10)
This data-based parameterization allows us to replace the
closed-loop matrix A+BK in (4) by (X1 �D0)G subject
to the additional constraint (9). As a result, the LQR problem
(4) can be parametrized by means of data matrices as

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to (X1 �D0)GPG>(X1 �D0)
> � P + I � 0


K
I

�
= W0G

(11)
with optimal control gain K = U0G. This parametrization
is indeed a direct formulation of the LQR problem since no
explicit identification of the system matrices is involved.

With noise-free data (11) can be efficiently implemented
(after a convexification) and returns the optimal controller
[14]. With noisy data, as D0 is unknown, a natural approach
is to disregard D0 which leads to the formulation

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G ,

(12)

which can be posed as convex program; see [14], [16], [33].
In the noiseless case and under condition (6), all problem

formulations (4), (8), and (12) coincide. Further, there is a
considerable nullspace in the direct formulation (12).

Lemma 2.1: (Nullspace in direct data-driven control)
Consider the data-driven LQR problem (12). Assume noise-
less data, i.e., D0 = 0, and that the identifiability condition
(6) holds. Then the set of optimal solutions G? to (12)
coincides with the set of solutions to equation (9), i.e.,

{G? : (P ?,K?, G?) 2 argmin(12)} = W †
0 [KI ]+Ghom , (13)

where Ghom is any matrix in the nullspace of W0.
Proof: Clearly, any optimal solution is feasible and thus

satisfies the constraint equation (9). To prove the converse
inclusion, consider any two solutions G1 and G2 to the
constraint equation (9). Both solutions are of the form (13)
and by (10) lead to the same closed-loop matrix X1G1 =
A + BK = X1G2 and to the same K = U0G1 = U0G2.
Hence, neither the Lyapunov constraint nor the objective are
altered, and thus both solutions achieve an identical cost.

Hence, in case of exact data, the direct data-driven LQR
problem (12) contains a large nullspace, and its solutions are
non-unique. However, in case of noisy data, it will turn out
to be advantageous to bias (or regularize) problem (12) to
single out a solution with favorable noise rejection properties.
Similarly to (8), (12) also enforces some sort of certainty
equivalence since the design does not take noise into account.
In the next section, we show, among others, that a particular
regularized version of (12) is indeed equivalent to (8).

III. REGULARIZED & DIRECT DATA-DRIVEN LQR
This section derives different regularized formulations of

direct data-driven LQR (12) promoting certainty-equivalence
(in a least square or low-rank sense) and robust stability.

A. A direct version of the certainty-equivalence LQR

We first consider a regularized version of direct data-
driven LQR promoting certainty-equivalence, i.e., a least-
square fitting of the data (7). The results rest on [24], [33].

To relate (8) and (12), consider the following program

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

⇣
I �W †

0W0

⌘
G = 0 .

(14)

least
squares 
SysID

certainty-
equivalent
LQR
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II. INDIRECT & DIRECT DATA-DRIVEN LQR

We now review indirect LQR design (formalized as a bi-
level program: least-square SysID followed by model-based
optimal control) as well as a recent direct approach [14]
parameterizing the design by data matrices. The foundation
of both approaches are subspace relations in state-space data.

A. Model-based linear quadratic optimal control

Consider a linear time-invariant (LTI) system
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where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d is a disturbance term, and z is the performance signal
of interest. We assume that (A,B) is stabilizable. Finally,
Q � 0 and R � 0 are weighting matrices. Here, � (⌫) and
� (�) denote positive and negative (semi)definiteness.

The problem of interest is linear quadratic regulation

phrased as designing a state-feedback gain K that renders
A+ BK Schur and minimizes the H2-norm of the transfer
function T (K) := d ! z of the closed-loop system1
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where our notation T (K) emphasizes the dependence of the
transfer function on K. When A+BK is Schur, it holds that

kT (K)k22 = trace (QP ) + trace
�
K>RKP

�
, (3)

where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A+BK)P (A+BK)> � P + I = 0.

We refer to [34] for properties and interpretations of the
H2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d is a white process with unit covariance.
Here, we view the LQR problem as a H2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H2-norm of T (K) (henceforth, optimal) is unique
and can be computed by solving a discrete-time Riccati equa-
tion [1]. Alternatively, following [35], this optimal controller
can be determined by solving the following program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (A+BK)P (A+BK)> � P + I � 0 ,
(4)

1Given a stable p ⇥ m transfer function T (�) in the indeterminate �,
the squared H2-norm of T (�) is defined as [34, Section 4.4]:
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The LQR problem indeed admits many parameterizations,
and the one in (4) can be turned into a convex semi-definite
program after a change of variables; see [33, Section III.C].

We aim to compute the optimal control in a data-driven
setting when (A,B) are unknown, but we have access to a
T -long stream of noisy data. Here noisy means that the data
collected from (1) are generated with a non-zero disturbance
d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-

square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
series of inputs, disturbances, states, and successor states

U0 :=
⇥
u(0) u(1) . . . u(T � 1)

⇤
2 Rm⇥T ,

D0 :=
⇥
d(0) d(1) . . . d(T � 1)

⇤
2 Rn⇥T ,

X0 :=
⇥
x(0) x(1) . . . x(T � 1)

⇤
2 Rn⇥T ,

X1 :=
⇥
x(1) x(2) . . . x(T )

⇤
2 Rn⇥T

satisfying the dynamics (1), that is,
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It is convenient to record the data as consecutive time series,
i.e., column i of X1 coincides with column i+1 of X0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity

W0 :=


U0

X0
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.

We assume that the data is sufficiently rich, that is,

rankW0 = n+m. (6)

The rank condition (6) is an identifiability condition ensuring
that (B,A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B,A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X0, X1) and under the rank condition (6),
an estimate (B̂, Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem
⇥
B̂ Â

⇤
= argmin

B,A
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⇤
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0 , (7)

where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),
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where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d is a disturbance term, and z is the performance signal
of interest. We assume that (A,B) is stabilizable. Finally,
Q � 0 and R � 0 are weighting matrices. Here, � (⌫) and
� (�) denote positive and negative (semi)definiteness.

The problem of interest is linear quadratic regulation

phrased as designing a state-feedback gain K that renders
A+ BK Schur and minimizes the H2-norm of the transfer
function T (K) := d ! z of the closed-loop system1
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where our notation T (K) emphasizes the dependence of the
transfer function on K. When A+BK is Schur, it holds that

kT (K)k22 = trace (QP ) + trace
�
K>RKP

�
, (3)

where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A+BK)P (A+BK)> � P + I = 0.

We refer to [34] for properties and interpretations of the
H2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d is a white process with unit covariance.
Here, we view the LQR problem as a H2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H2-norm of T (K) (henceforth, optimal) is unique
and can be computed by solving a discrete-time Riccati equa-
tion [1]. Alternatively, following [35], this optimal controller
can be determined by solving the following program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (A+BK)P (A+BK)> � P + I � 0 ,
(4)

1Given a stable p ⇥ m transfer function T (�) in the indeterminate �,
the squared H2-norm of T (�) is defined as [34, Section 4.4]:
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The LQR problem indeed admits many parameterizations,
and the one in (4) can be turned into a convex semi-definite
program after a change of variables; see [33, Section III.C].

We aim to compute the optimal control in a data-driven
setting when (A,B) are unknown, but we have access to a
T -long stream of noisy data. Here noisy means that the data
collected from (1) are generated with a non-zero disturbance
d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-

square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
series of inputs, disturbances, states, and successor states

U0 :=
⇥
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�
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It is convenient to record the data as consecutive time series,
i.e., column i of X1 coincides with column i+1 of X0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity

W0 :=
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�
.

We assume that the data is sufficiently rich, that is,

rankW0 = n+m. (6)

The rank condition (6) is an identifiability condition ensuring
that (B,A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B,A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X0, X1) and under the rank condition (6),
an estimate (B̂, Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem
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B̂ Â
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†
0 , (7)

where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),
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the matrices (B,A) are replaced by their estimates (7). This
approach can be formalized as a bi-level program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (Â+ B̂K)P (Â+ B̂K)> � P + I � 0
⇥
B̂ Â

⇤
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⇥
B A

⇤
W0
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F
.

(8)

minimize
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⇥
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Following classic terminology [2], we term problem (8)
a certainty-equivalence and indirect data-driven control ap-
proach and its solution K a certainty-equivalence controller.

Note that under the identifiability condition (6) and with
noise-free data, (8) is feasible and returns the optimal control.
This is because, under these circumstances, B̂ = B and Â =
A so that (8) coincides with the model-based program (4).

It can be argued that the sequential identification-followed-
by-control approach (8) is optimal in a maximum-likelihood
sense; see [19, Section 4.2]. However, it is also known that
noisy data should not be taken at face value (especially in the
low-data and low SNR limit), and the certainty-equivalence
approach has to be additionally robustified; see [6], [8],

C. Direct design & LQR parameterization by data matrices

Now we review a direct data-driven LQR approach laid
out in [14]. It uses the subspace relations (5) and (6) to
parametrize problem (4) by data matrices. Namely, due to
the rank condition (6), for any K, there is a matrix G so that


K
I

�
= W0G , (9)

and due to the relation (5) the closed-loop matrix A+ BK
can be parametrized directly by data matrices as

A+BK =
⇥
B A

⇤ K
I

�
(9)
=

⇥
B A

⇤
W0G

(5)
= (X1�D0)G .

(10)
This data-based parameterization allows us to replace the
closed-loop matrix A+BK in (4) by (X1 �D0)G subject
to the additional constraint (9). As a result, the LQR problem
(4) can be parametrized by means of data matrices as

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to (X1 �D0)GPG>(X1 �D0)
> � P + I � 0


K
I

�
= W0G

(11)
with optimal control gain K = U0G. This parametrization
is indeed a direct formulation of the LQR problem since no
explicit identification of the system matrices is involved.

With noise-free data (11) can be efficiently implemented
(after a convexification) and returns the optimal controller
[14]. With noisy data, as D0 is unknown, a natural approach
is to disregard D0 which leads to the formulation

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G ,

(12)

which can be posed as convex program; see [14], [16], [33].
In the noiseless case and under condition (6), all problem

formulations (4), (8), and (12) coincide. Further, there is a
considerable nullspace in the direct formulation (12).

Lemma 2.1: (Nullspace in direct data-driven control)
Consider the data-driven LQR problem (12). Assume noise-
less data, i.e., D0 = 0, and that the identifiability condition
(6) holds. Then the set of optimal solutions G? to (12)
coincides with the set of solutions to equation (9), i.e.,

{G? : (P ?,K?, G?) 2 argmin(12)} = W †
0 [KI ]+Ghom , (13)

where Ghom is any matrix in the nullspace of W0.
Proof: Clearly, any optimal solution is feasible and thus

satisfies the constraint equation (9). To prove the converse
inclusion, consider any two solutions G1 and G2 to the
constraint equation (9). Both solutions are of the form (13)
and by (10) lead to the same closed-loop matrix X1G1 =
A + BK = X1G2 and to the same K = U0G1 = U0G2.
Hence, neither the Lyapunov constraint nor the objective are
altered, and thus both solutions achieve an identical cost.

Hence, in case of exact data, the direct data-driven LQR
problem (12) contains a large nullspace, and its solutions are
non-unique. However, in case of noisy data, it will turn out
to be advantageous to bias (or regularize) problem (12) to
single out a solution with favorable noise rejection properties.
Similarly to (8), (12) also enforces some sort of certainty
equivalence since the design does not take noise into account.
In the next section, we show, among others, that a particular
regularized version of (12) is indeed equivalent to (8).

III. REGULARIZED & DIRECT DATA-DRIVEN LQR
This section derives different regularized formulations of

direct data-driven LQR (12) promoting certainty-equivalence
(in a least square or low-rank sense) and robust stability.

A. A direct version of the certainty-equivalence LQR

We first consider a regularized version of direct data-
driven LQR promoting certainty-equivalence, i.e., a least-
square fitting of the data (7). The results rest on [24], [33].

To relate (8) and (12), consider the following program
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A so that (8) coincides with the model-based program (4).

It can be argued that the sequential identification-followed-
by-control approach (8) is optimal in a maximum-likelihood
sense; see [19, Section 4.2]. However, it is also known that
noisy data should not be taken at face value (especially in the
low-data and low SNR limit), and the certainty-equivalence
approach has to be additionally robustified; see [6], [8],

C. Direct design & LQR parameterization by data matrices

Now we review a direct data-driven LQR approach laid
out in [14]. It uses the subspace relations (5) and (6) to
parametrize problem (4) by data matrices. Namely, due to
the rank condition (6), for any K, there is a matrix G so that


K
I

�
= W0G , (9)

and due to the relation (5) the closed-loop matrix A+ BK
can be parametrized directly by data matrices as

A+BK =
⇥
B A

⇤ K
I

�
(9)
=
⇥
B A

⇤
W0G

(5)
= (X1�D0)G .

(10)
This data-based parameterization allows us to replace the
closed-loop matrix A+BK in (4) by (X1 �D0)G subject
to the additional constraint (9). As a result, the LQR problem
(4) can be parametrized by means of data matrices as

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to (X1 �D0)GPG>(X1 �D0)
> � P + I � 0


K
I

�
= W0G

(11)
with optimal control gain K = U0G. This parametrization
is indeed a direct formulation of the LQR problem since no
explicit identification of the system matrices is involved.

With noise-free data (11) can be efficiently implemented
(after a convexification) and returns the optimal controller
[14]. With noisy data, as D0 is unknown, a natural approach
is to disregard D0 which leads to the formulation

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G ,

(12)

which can be posed as convex program; see [14], [16], [33].
In the noiseless case and under condition (6), all problem

formulations (4), (8), and (12) coincide. Further, there is a
considerable nullspace in the direct formulation (12).

Lemma 2.1: (Nullspace in direct data-driven control)
Consider the data-driven LQR problem (12). Assume noise-
less data, i.e., D0 = 0, and that the identifiability condition
(6) holds. Then the set of optimal solutions G? to (12)
coincides with the set of solutions to equation (9), i.e.,

{G? : (P ?,K?, G?) 2 argmin(12)} = W †
0 [KI ]+Ghom , (13)

where Ghom is any matrix in the nullspace of W0.
Proof: Clearly, any optimal solution is feasible and thus

satisfies the constraint equation (9). To prove the converse
inclusion, consider any two solutions G1 and G2 to the
constraint equation (9). Both solutions are of the form (13)
and by (10) lead to the same closed-loop matrix X1G1 =
A + BK = X1G2 and to the same K = U0G1 = U0G2.
Hence, neither the Lyapunov constraint nor the objective are
altered, and thus both solutions achieve an identical cost.

Hence, in case of exact data, the direct data-driven LQR
problem (12) contains a large nullspace, and its solutions are
non-unique. However, in case of noisy data, it will turn out
to be advantageous to bias (or regularize) problem (12) to
single out a solution with favorable noise rejection properties.
Similarly to (8), (12) also enforces some sort of certainty
equivalence since the design does not take noise into account.
In the next section, we show, among others, that a particular
regularized version of (12) is indeed equivalent to (8).

III. REGULARIZED & DIRECT DATA-DRIVEN LQR
This section derives different regularized formulations of

direct data-driven LQR (12) promoting certainty-equivalence
(in a least square or low-rank sense) and robust stability.

A. A direct version of the certainty-equivalence LQR

We first consider a regularized version of direct data-
driven LQR promoting certainty-equivalence, i.e., a least-
square fitting of the data (7). The results rest on [24], [33].

To relate (8) and (12), consider the following program

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

⇣
I �W †

0W0

⌘
G = 0 .

(14)

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
=


U0

X0

�
G

 
I �


U0

X0

�† 
U0

X0

�!
G = 0

(15)

→ optimizer has  

nullspace

→ orthogonality
    constraint

equivalent constraints:

the matrices (B,A) are replaced by their estimates (7). This
approach can be formalized as a bi-level program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�
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K
I

�
= W0G

(11)
with optimal control gain K = U0G. This parametrization
is indeed a direct formulation of the LQR problem since no
explicit identification of the system matrices is involved.

With noise-free data (11) can be efficiently implemented
(after a convexification) and returns the optimal controller
[14]. With noisy data, as D0 is unknown, a natural approach
is to disregard D0 which leads to the formulation

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G ,

(12)

which can be posed as convex program; see [14], [16], [33].
In the noiseless case and under condition (6), all problem

formulations (4), (8), and (12) coincide. Further, there is a
considerable nullspace in the direct formulation (12).

Lemma 2.1: (Nullspace in direct data-driven control)
Consider the data-driven LQR problem (12). Assume noise-
less data, i.e., D0 = 0, and that the identifiability condition
(6) holds. Then the set of optimal solutions G? to (12)
coincides with the set of solutions to equation (9), i.e.,

{G? : (P ?,K?, G?) 2 argmin(12)} = W †
0 [KI ]+Ghom , (13)

where Ghom is any matrix in the nullspace of W0.
Proof: Clearly, any optimal solution is feasible and thus

satisfies the constraint equation (9). To prove the converse
inclusion, consider any two solutions G1 and G2 to the
constraint equation (9). Both solutions are of the form (13)
and by (10) lead to the same closed-loop matrix X1G1 =
A + BK = X1G2 and to the same K = U0G1 = U0G2.
Hence, neither the Lyapunov constraint nor the objective are
altered, and thus both solutions achieve an identical cost.

Hence, in case of exact data, the direct data-driven LQR
problem (12) contains a large nullspace, and its solutions are
non-unique. However, in case of noisy data, it will turn out
to be advantageous to bias (or regularize) problem (12) to
single out a solution with favorable noise rejection properties.
Similarly to (8), (12) also enforces some sort of certainty
equivalence since the design does not take noise into account.
In the next section, we show, among others, that a particular
regularized version of (12) is indeed equivalent to (8).

III. REGULARIZED & DIRECT DATA-DRIVEN LQR
This section derives different regularized formulations of

direct data-driven LQR (12) promoting certainty-equivalence
(in a least square or low-rank sense) and robust stability.

A. A direct version of the certainty-equivalence LQR

We first consider a regularized version of direct data-
driven LQR promoting certainty-equivalence, i.e., a least-
square fitting of the data (7). The results rest on [24], [33].

To relate (8) and (12), consider the following program

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

⇣
I �W †

0W0

⌘
G = 0 .

(14)

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
=


U0

X0

�
G

 
I �


U0

X0

�† 
U0

X0

�!
G = 0

(15)
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Regularized, certainty-equivalent, & direct LQR

• orthogonality constraint

lifted to regularizer
(equivalent for    large)

indirect data-driven LQR formulations (8) and (14), respec-

tively. The two formulations are equivalent in the sense that

the cost functions coincide and feasible sets coincide. ⌅
The orthogonal projector on the nullspace of W0 is termed

⇧ := I �W †
0W0 .

By lifting the orthogonality constraint ⇧G = 0 in (14) to
the objective, we get a regularized data-driven LQR problem

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�
+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(15)

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�
+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0


K
I

�
=


U0

X0

�
G

where k ·k is any matrix norm. We have the following result.
Theorem 3.2: (Regularized direct data-driven LQR [33,

Theorem 3.3]) Consider the direct data-driven LQR formu-

lation (14) and its regularized version (16) with parameter

� � 0. The two problems coincide for � sufficiently large.

Otherwise, for general � � 0, (16) lower-bounds (14).
For noise-free data it can also be shown that (14) and (16)

coincide for every � � 0. We do not further elaborate on this
point but rather discuss the implications of Theorem 3.2.

Remark 3.3 (Comparison of formulations): The standard
indirect certainty-equivalence LQR problem is formulated
as the bi-level problem (8) consisting of sequential identi-
fication and model-based LQR. Theorem 3.2 shows that (8)
is equivalent to the single-level and multi-criteria problem
(16) simultaneously accounting for identification and control
objectives. This formulation is interesting in its own right,
and we further elaborate on it in Sections V and VI. Given
the equivalence of the formulations (8), (14), or (16), the
latter for � sufficiently large, one may wonder which is the
preferred one. For now we remark that they can all be posed
as convex programs (see [33, Section III.C]) and display sim-
ilar computational performance. We defer a more in-depth
discussion to Sections V and VI after analyzing robustness
and performance properties of certainty-equivalence LQR.⇤
B. Robustness-inducing regularization

The certainty-equivalence LQR problem (8) can be cast
as direct (non-sequential) control design via the single-level
program (16). Further, one can show that the regularization
induced by the certainty-equivalence approach indeed gives a
certain level of robustness to noise. To see this, note that (16)
searches for a solution that satisfies the Lyapunov inequality

X1GPG>X>
1 � P + I � 0 (16)

which amounts to regarding X1G as the closed-loop system
matrix. In view of the relation A+BK = (X1 �D0)G, the
stability constraint that should be met is actually

(X1 �D0)GPG>(X1 �D0)
> � P + I � 0 . (17)

In order for (17) to imply (18) it is sufficient that G has
small norm. In fact, certainty-equivalence regularization � ·
k⇧Gk precisely achieves this: Theorem 3.2 shows that for �
sufficiently large the solution to (16) returns G = W †

0 [KI ],
which is the least Frobenius norm k·kF solution to (9):

minimize
G

kGkF

subject to


K
I

�
= W0G .

This suggests that the certainty-equivalence LQR (8) must
possess a certain degree of robustness to noise. We will give
a formal result on this aspect later in Section IV.

The question when feasibility of (17) implies feasibility
of (18) has been studied extensively in [16] which proposed
to regularize problem (12) with trace(GPG>), namely:

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ ⇢ · trace
�
GPG>�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(18)

where ⇢ > 0 is a design parameter (see [16] for a convex
formulation of (19)). This regularizer accounts for the whole
term GPG> multiplying (18), instead of G alone as done in
(8), making stability easier to achieve. We defer a detailed
comparison of the two regularizers to Sections IV-V.

C. Regularization as surrogate for low-rank approximation

Thus far we have motivated norm-based regularizers by
least-squares SysID or to assure that the stability constraint
(18) is met. In this subsection we motivate an `1-norm-based
regularizer by a prior data pre-processing (de-noising).

To motivate the pre-processing, note that for clean data
the subspace relations (5)-(6) imply a low-rank property:

rank

2

4
U0

X0

X1

3

5 = rank

U0

X0

�
= n+m. (19)

The converse statement holds as well as formalized below:
Lemma 3.4: (Rank condition) Consider the data (U0, X0,

X1), and let condition (6) hold. The following are equivalent:
(i) There exists a unique pair of matrices A 2 Rn⇥n and

B 2 Rn⇥m so that X1 = AX0 +BU0.
(ii) The low-rank condition (20) holds.

Proof: The implication (i) ) (ii) follows since
X1 = [B A]W0, and thus n rows of the stacked matrices
(U0, X0, X1) are linearly dependent. To prove the converse
(ii) ) (i) note that condition (20) implies that n rows of
the stacked matrices (U0, X0, X1) are linearly dependent.
Since (U0, X0) are linearly independent by condition (6),

indirect data-driven LQR formulations (8) and (14), respec-

tively. The two formulations are equivalent in the sense that

the cost functions coincide and feasible sets coincide. ⌅
The orthogonal projector on the nullspace of W0 is termed

⇧ := I �W †
0W0 .

⇧ = I �

U0

X0

�† 
U0

X0

�

By lifting the orthogonality constraint ⇧G = 0 in (14) to
the objective, we get a regularized data-driven LQR problem

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�
+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(15)
where k ·k is any matrix norm. We have the following result.

Theorem 3.2: (Regularized direct data-driven LQR [33,
Theorem 3.3]) Consider the direct data-driven LQR formu-

lation (14) and its regularized version (15) with parameter

� � 0. The two problems coincide for � sufficiently large.

Otherwise, for general � � 0, (15) lower-bounds (14).
For noise-free data it can also be shown that (14) and (15)

coincide for every � � 0. We do not further elaborate on this
point but rather discuss the implications of Theorem 3.2.

Remark 3.3 (Comparison of formulations): The standard
indirect certainty-equivalence LQR problem is formulated
as the bi-level problem (8) consisting of sequential identi-
fication and model-based LQR. Theorem 3.2 shows that (8)
is equivalent to the single-level and multi-criteria problem
(15) simultaneously accounting for identification and control
objectives. This formulation is interesting in its own right,
and we further elaborate on it in Sections V and VI. Given
the equivalence of the formulations (8), (14), or (15), the
latter for � sufficiently large, one may wonder which is the
preferred one. For now we remark that they can all be posed
as convex programs (see [33, Section III.C]) and display sim-
ilar computational performance. We defer a more in-depth
discussion to Sections V and VI after analyzing robustness
and performance properties of certainty-equivalence LQR.⇤
B. Robustness-inducing regularization

The certainty-equivalence LQR problem (8) can be cast
as direct (non-sequential) control design via the single-level
program (15). Further, one can show that the regularization
induced by the certainty-equivalence approach indeed gives a
certain level of robustness to noise. To see this, note that (15)
searches for a solution that satisfies the Lyapunov inequality

X1GPG>X>
1 � P + I � 0 (16)

which amounts to regarding X1G as the closed-loop system
matrix. In view of the relation A+BK = (X1 �D0)G, the
stability constraint that should be met is actually

(X1 �D0)GPG>(X1 �D0)
> � P + I � 0 . (17)

In order for (16) to imply (17) it is sufficient that G has
small norm. In fact, certainty-equivalence regularization � ·
k⇧Gk precisely achieves this: Theorem 3.2 shows that for �
sufficiently large the solution to (15) returns G = W †

0 [KI ],
which is the least Frobenius norm k·kF solution to (9):

minimize
G

kGkF

subject to


K
I

�
= W0G .

This suggests that the certainty-equivalence LQR (8) must
possess a certain degree of robustness to noise. We will give
a formal result on this aspect later in Section IV.

The question when feasibility of (16) implies feasibility
of (17) has been studied extensively in [16] which proposed
to regularize problem (12) with trace(GPG>), namely:

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ ⇢ · trace
�
GPG>�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(18)

where ⇢ > 0 is a design parameter (see [16] for a convex
formulation of (18)). This regularizer accounts for the whole
term GPG> multiplying (17), instead of G alone as done in
(8), making stability easier to achieve. We defer a detailed
comparison of the two regularizers to Sections IV-V.

C. Regularization as surrogate for low-rank approximation

Thus far we have motivated norm-based regularizers by
least-squares SysID or to assure that the stability constraint
(17) is met. In this subsection we motivate an `1-norm-based
regularizer by a prior data pre-processing (de-noising).

To motivate the pre-processing, note that for clean data
the subspace relations (5)-(6) imply a low-rank property:

rank

2

4
U0

X0

X1

3

5 = rank

U0

X0

�
= n+m. (19)

The converse statement holds as well as formalized below:
Lemma 3.4: (Rank condition) Consider the data (U0, X0,

X1), and let condition (6) hold. The following are equivalent:
(i) There exists a unique pair of matrices A 2 Rn⇥n and

B 2 Rn⇥m so that X1 = AX0 +BU0.
(ii) The low-rank condition (19) holds.

Proof: The implication (i) ) (ii) follows since
X1 = [B A]W0, and thus n rows of the stacked matrices
(U0, X0, X1) are linearly dependent. To prove the converse
(ii) ) (i) note that condition (19) implies that n rows of
the stacked matrices (U0, X0, X1) are linearly dependent.
Since (U0, X0) are linearly independent by condition (6),
there exist matrices A and B so that X1 = [B A]

⇥
U0
X0

⇤
.

Uniqueness follows since
⇥
U0
X0

⇤
has full row rank.

… but may not be robust (?)•    interpolates between control & SysID
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indirect data-driven LQR formulations (8) and (14), respec-

tively. The two formulations are equivalent in the sense that

the cost functions coincide and feasible sets coincide. ⌅
The orthogonal projector on the nullspace of W0 is termed

⇧ := I �W †
0W0 .

By lifting the orthogonality constraint ⇧G = 0 in (14) to
the objective, we get a regularized data-driven LQR problem

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�
+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(15)
where k ·k is any matrix norm. We have the following result.

Theorem 3.2: (Regularized direct data-driven LQR [33,
Theorem 3.3]) Consider the direct data-driven LQR formu-

lation (14) and its regularized version (15) with parameter

� � 0. The two problems coincide for � sufficiently large.

Otherwise, for general � � 0, (15) lower-bounds (14).
For noise-free data it can also be shown that (14) and (15)

coincide for every � � 0. We do not further elaborate on this
point but rather discuss the implications of Theorem 3.2.

Remark 3.3 (Comparison of formulations): The standard
indirect certainty-equivalence LQR problem is formulated
as the bi-level problem (8) consisting of sequential identi-
fication and model-based LQR. Theorem 3.2 shows that (8)
is equivalent to the single-level and multi-criteria problem
(15) simultaneously accounting for identification and control
objectives. This formulation is interesting in its own right,
and we further elaborate on it in Sections V and VI. Given
the equivalence of the formulations (8), (14), or (15), the
latter for � sufficiently large, one may wonder which is the
preferred one. For now we remark that they can all be posed
as convex programs (see [33, Section III.C]) and display sim-
ilar computational performance. We defer a more in-depth
discussion to Sections V and VI after analyzing robustness
and performance properties of certainty-equivalence LQR.⇤

B. Robustness-inducing regularization

The certainty-equivalence LQR problem (8) can be cast
as direct (non-sequential) control design via the single-level
program (15). Further, one can show that the regularization
induced by the certainty-equivalence approach indeed gives a
certain level of robustness to noise. To see this, note that (15)
searches for a solution that satisfies the Lyapunov inequality

X1GPG>X>
1 � P + I � 0 (16)

which amounts to regarding X1G as the closed-loop system
matrix. In view of the relation A+BK = (X1 �D0)G, the
stability constraint that should be met is actually

(X1 �D0)GPG>(X1 �D0)
> � P + I � 0 . (17)

In order for (16) to imply (17) it is sufficient that G has
small norm. In fact, certainty-equivalence regularization � ·
k⇧Gk precisely achieves this: Theorem 3.2 shows that for �
sufficiently large the solution to (15) returns G = W †

0 [KI ],
which is the least Frobenius norm k·kF solution to (9):

minimize
G

kGkF

subject to


K
I

�
= W0G .

This suggests that the certainty-equivalence LQR (8) must
possess a certain degree of robustness to noise. We will give
a formal result on this aspect later in Section IV.

The question when feasibility of (16) implies feasibility
of (17) has been studied extensively in [16] which proposed
to regularize problem (12) with trace(GPG>), namely:

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ ⇢ · trace
�
GPG>�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(18)

where ⇢ > 0 is a design parameter (see [16] for a convex
formulation of (18)). This regularizer accounts for the whole
term GPG> multiplying (17), instead of G alone as done in
(8), making stability easier to achieve. We defer a detailed
comparison of the two regularizers to Sections IV-V.

C. Regularization as surrogate for low-rank approximation

Thus far we have motivated norm-based regularizers by
least-squares SysID or to assure that the stability constraint
(17) is met. In this subsection we motivate an `1-norm-based
regularizer by a prior data pre-processing (de-noising).

To motivate the pre-processing, note that for clean data
the subspace relations (5)-(6) imply a low-rank property:

rank

2

4
U0

X0

X1

3

5 = rank

U0

X0

�
= n+m. (19)

The converse statement holds as well as formalized below:
Lemma 3.4: (Rank condition) Consider the data (U0, X0,

X1), and let condition (6) hold. The following are equivalent:
(i) There exists a unique pair of matrices A 2 Rn⇥n and

B 2 Rn⇥m so that X1 = AX0 +BU0.
(ii) The low-rank condition (19) holds.

Proof: The implication (i) ) (ii) follows since
X1 = [B A]W0, and thus n rows of the stacked matrices
(U0, X0, X1) are linearly dependent. To prove the converse
(ii) ) (i) note that condition (19) implies that n rows of
the stacked matrices (U0, X0, X1) are linearly dependent.
Since (U0, X0) are linearly independent by condition (6),
there exist matrices A and B so that X1 = [B A]

⇥
U0
X0

⇤
.

Uniqueness follows since
⇥
U0
X0

⇤
has full row rank.

indirect data-driven LQR formulations (8) and (14), respec-

tively. The two formulations are equivalent in the sense that

the cost functions coincide and feasible sets coincide. ⌅
The orthogonal projector on the nullspace of W0 is termed

⇧ := I �W †
0W0 .

By lifting the orthogonality constraint ⇧G = 0 in (14) to
the objective, we get a regularized data-driven LQR problem

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�
+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(15)
where k ·k is any matrix norm. We have the following result.

Theorem 3.2: (Regularized direct data-driven LQR [33,
Theorem 3.3]) Consider the direct data-driven LQR formu-

lation (14) and its regularized version (15) with parameter

� � 0. The two problems coincide for � sufficiently large.

Otherwise, for general � � 0, (15) lower-bounds (14).
For noise-free data it can also be shown that (14) and (15)

coincide for every � � 0. We do not further elaborate on this
point but rather discuss the implications of Theorem 3.2.

Remark 3.3 (Comparison of formulations): The standard
indirect certainty-equivalence LQR problem is formulated
as the bi-level problem (8) consisting of sequential identi-
fication and model-based LQR. Theorem 3.2 shows that (8)
is equivalent to the single-level and multi-criteria problem
(15) simultaneously accounting for identification and control
objectives. This formulation is interesting in its own right,
and we further elaborate on it in Sections V and VI. Given
the equivalence of the formulations (8), (14), or (15), the
latter for � sufficiently large, one may wonder which is the
preferred one. For now we remark that they can all be posed
as convex programs (see [33, Section III.C]) and display sim-
ilar computational performance. We defer a more in-depth
discussion to Sections V and VI after analyzing robustness
and performance properties of certainty-equivalence LQR.⇤

B. Robustness-inducing regularization

The certainty-equivalence LQR problem (8) can be cast
as direct (non-sequential) control design via the single-level
program (15). Further, one can show that the regularization
induced by the certainty-equivalence approach indeed gives a
certain level of robustness to noise. To see this, note that (15)
searches for a solution that satisfies the Lyapunov inequality

X1GPG>X>
1 � P + I � 0 (16)

which amounts to regarding X1G as the closed-loop system
matrix. In view of the relation A+BK = (X1 �D0)G, the
stability constraint that should be met is actually

(X1 �D0)GPG>(X1 �D0)
> � P + I � 0 . (17)

In order for (16) to imply (17) it is sufficient that G has
small norm. In fact, certainty-equivalence regularization � ·
k⇧Gk precisely achieves this: Theorem 3.2 shows that for �
sufficiently large the solution to (15) returns G = W †

0 [KI ],
which is the least Frobenius norm k·kF solution to (9):

minimize
G

kGkF

subject to


K
I

�
= W0G .

This suggests that the certainty-equivalence LQR (8) must
possess a certain degree of robustness to noise. We will give
a formal result on this aspect later in Section IV.

The question when feasibility of (16) implies feasibility
of (17) has been studied extensively in [16] which proposed
to regularize problem (12) with trace(GPG>), namely:

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ ⇢ · trace
�
GPG>�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(18)

where ⇢ > 0 is a design parameter (see [16] for a convex
formulation of (18)). This regularizer accounts for the whole
term GPG> multiplying (17), instead of G alone as done in
(8), making stability easier to achieve. We defer a detailed
comparison of the two regularizers to Sections IV-V.

C. Regularization as surrogate for low-rank approximation

Thus far we have motivated norm-based regularizers by
least-squares SysID or to assure that the stability constraint
(17) is met. In this subsection we motivate an `1-norm-based
regularizer by a prior data pre-processing (de-noising).

To motivate the pre-processing, note that for clean data
the subspace relations (5)-(6) imply a low-rank property:

rank

2

4
U0

X0

X1

3

5 = rank

U0

X0

�
= n+m. (19)

The converse statement holds as well as formalized below:
Lemma 3.4: (Rank condition) Consider the data (U0, X0,

X1), and let condition (6) hold. The following are equivalent:
(i) There exists a unique pair of matrices A 2 Rn⇥n and

B 2 Rn⇥m so that X1 = AX0 +BU0.
(ii) The low-rank condition (19) holds.

Proof: The implication (i) ) (ii) follows since
X1 = [B A]W0, and thus n rows of the stacked matrices
(U0, X0, X1) are linearly dependent. To prove the converse
(ii) ) (i) note that condition (19) implies that n rows of
the stacked matrices (U0, X0, X1) are linearly dependent.
Since (U0, X0) are linearly independent by condition (6),
there exist matrices A and B so that X1 = [B A]

⇥
U0
X0

⇤
.

Uniqueness follows since
⇥
U0
X0

⇤
has full row rank.

for robustness
 should be small
→ forced by small 

<latexit sha1_base64="Rmq2qLBwKqk3uLDZcUTkjEg1a+A="></latexit>

} <latexit sha1_base64="drQELzFlSBVfyso0W3TgQWYkj5w="></latexit>
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�
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A+BK =
�
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�
G
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Performance & robustness certificates
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{regularized data-driven LQR performance}� {ground-truth performance}

{ground-truth performance}

2 O

✓
�max(D0)

�min([X0 U0]

◆
+ const. · ⇢

realized cost from regularized design with large  
<latexit sha1_base64="5RCCL3hJgnjbvO0xhNvjzP8Y6X4="></latexit>

� if exact system matrices A & B were known

• SNR (signal-to-noise-ratio)
<latexit sha1_base64="sSbjDww+/3GQL+G0vtupxOJLdMQ="></latexit>

�min([X0 U0])

�max(D0)

• relative performance metric

Certificate for sufficiently large SNR: the optimal control problem is 
feasible (robustly stabilizing) with relative performance ~	𝒪 ⁄(1 𝑆𝑁𝑅). 
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Numerical case study

• case study [Dean et al. ‘19]: discrete-time
system with noise variance 𝜎2 = 0.01 &
variable regularization coefficient 𝜆 

sub-optimality gap. Regarding the assumptions, Theorem 4.2
requires kD0k to be sufficiently small, instead of a SNR
sufficiently large. This more restrictive condition is due to the
presence of ⇢. As shown in [16], (25) indeed holds provided
that the SNR is sufficiently large (just like Theorem 4.1) and

kD0k2/⇢ is sufficiently small. As discussed in Section III-
B, the trace regularization favours robustness, and kD0k2/⇢
quantitatively captures this fact: as kD0k increases (data are
more noisy) we need larger values of ⇢ (larger regulariza-
tion), and this is precisely what Theorem 4.2 entails. This
requirement is not present in Theorem 4.1 because certainty
equivalence directly gives a regularizer with large enough
weight (Theorem 3.2). The robust formulation nonetheless
has some advantages. As we previously discussed, for both
(8) and (18) stability follows if the solution satisfies (17).
For certainty-equivalence LQR we have G = W †

0 [KI ], so
the fulfilment of inequality (17) essentially depends on the
product D0W

†
0 , hence on the SNR. In contrast, for the robust

formulation the stability condition can be satisfied even if
the SNR is low as long as GPG> has small norm, and this
condition can be obtained if ⇢ is sufficiently large. Hence, as
far as stabilization is concerned, the robust formulation gives
some advantages, the price paid being a potentially worse
sub-optimality gap. These considerations are fully supported
by numerical evidence, see Section V below.

Regarding the novel norm-based regularizer presented
in Section III-C: as of today, there is no robust stability
certificate, though the authors are confident that the methods
leading up to Theorems 4.1 and 4.2 can be used as well.

V. NUMERICAL CASE STUDY

We exemplify our theoretical findings via a simulation case
study. We consider the system proposed in [7, Section 6]:

A =

2

4
1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

3

5 , B = I .

These dynamics correspond to a discrete-time marginally
unstable Laplacian system. As weight matrices, we select
Q = I and R = 10�3I . Taking the input weight R small
relatively to the state weight Q favours stabilizing solutions
[16, Section 5]. In particular, this choice makes it possible
to find stabilizing controllers even from a single experiment.

A. Need for regularization

First, we discuss the need for regularization. Figure 1
shows the performance of the approach (15) as we vary the
regularization coefficient �. In particular, � = 0 corresponds
to no regularization, while increasing values of � eventually
give certainty equivalence; see Theorem 3.2. For each value
of � we run 100 trials with input u ⇠ N (0, I) and distur-
bance d ⇠ N (0, 0.01I), which corresponds approximately
to SNR 2 [0, 5]dB. For each trial we collect T = 20 state
and input samples. We let K(k) be the controller obtained in
k-th trial and define the relative performance error

Ek :=
kT (K(k))k22 � kT (K?)k22

kT (K?)k22
(26)

Fig. 1. Performance of (15) as we vary �. For each value of � we run 100
trials with Gaussian input u ⇠ N (0, I) and disturbance d ⇠ N (0, 0.01I).
The blue curve displays the percentage S of stabilizing controllers, along
with red curve showing the median percentage error (26). In agreement with
Theorem 3.2, the approach (15) coincides with (8) (equivalently (14)) for
� sufficiently large, which is � � 0.0028 for this particular setting.

whenever K(k) is stabilizing. We denote by S the percentage
of times that we find a stabilizing controller and by M the
median of Ek through all the trials. We consider the median
because it is more robust to outliers (large or small values
of Ek that are due to the a particular instance of the noise).

Figure 1 confirms that regularization is needed and that the
certainty-equivalence approach, is robust to noisy data and
achieves good performance (S = 100% and M = 0.0026)
when the SNR is not too small like in the present setting.

B. Certainty-equivalence approach, robust approach, mixed

regularization, and low-rank approximation / surrogate

Now we compare certainty equivalence approach (15) with
the robust one (18). Specifically, consider the program

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ � · k⇧Gk+ ⇢ · trace(GPG>)

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(27)

with hyperparameters �, ⇢ � 0. For ⇢ = 0 and � sufficiently
large we recover the certainty-equivalence approach, whereas
� = 0 and ⇢ > 0 gives the robust approach (additionally
requiring ⇢ sufficiently large). We carry out simulations with
different values of the noise variance �2, thus different values
of the SNR. For each value of � we run 100 trials with input
u ⇠ N (0, I) and disturbance d ⇠ N (0,�2I). For each trial
we take T = 20 state and input samples.

The simulation results are reported in Table I. In line with
the discussion of Section IV and with the results of [6], [7],
the simulations show that certainty-equivalence controllers
are less robust in general but, when stabilizing, outperform

sub-optimality gap. Regarding the assumptions, Theorem 4.2
requires kD0k to be sufficiently small, instead of a SNR
sufficiently large. This more restrictive condition is due to the
presence of ⇢. As shown in [16], (25) indeed holds provided
that the SNR is sufficiently large (just like Theorem 4.1) and

kD0k2/⇢ is sufficiently small. As discussed in Section III-
B, the trace regularization favours robustness, and kD0k2/⇢
quantitatively captures this fact: as kD0k increases (data are
more noisy) we need larger values of ⇢ (larger regulariza-
tion), and this is precisely what Theorem 4.2 entails. This
requirement is not present in Theorem 4.1 because certainty
equivalence directly gives a regularizer with large enough
weight (Theorem 3.2). The robust formulation nonetheless
has some advantages. As we previously discussed, for both
(8) and (18) stability follows if the solution satisfies (17).
For certainty-equivalence LQR we have G = W †

0 [KI ], so
the fulfilment of inequality (17) essentially depends on the
product D0W

†
0 , hence on the SNR. In contrast, for the robust

formulation the stability condition can be satisfied even if
the SNR is low as long as GPG> has small norm, and this
condition can be obtained if ⇢ is sufficiently large. Hence, as
far as stabilization is concerned, the robust formulation gives
some advantages, the price paid being a potentially worse
sub-optimality gap. These considerations are fully supported
by numerical evidence, see Section V below.

Regarding the novel norm-based regularizer presented
in Section III-C: as of today, there is no robust stability
certificate, though the authors are confident that the methods
leading up to Theorems 4.1 and 4.2 can be used as well.

V. NUMERICAL CASE STUDY

We exemplify our theoretical findings via a simulation case
study. We consider the system proposed in [7, Section 6]:

A =

2

4
1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

3

5 , B = I .

These dynamics correspond to a discrete-time marginally
unstable Laplacian system. As weight matrices, we select
Q = I and R = 10�3I . Taking the input weight R small
relatively to the state weight Q favours stabilizing solutions
[16, Section 5]. In particular, this choice makes it possible
to find stabilizing controllers even from a single experiment.

A. Need for regularization

First, we discuss the need for regularization. Figure 1
shows the performance of the approach (15) as we vary the
regularization coefficient �. In particular, � = 0 corresponds
to no regularization, while increasing values of � eventually
give certainty equivalence; see Theorem 3.2. For each value
of � we run 100 trials with input u ⇠ N (0, I) and distur-
bance d ⇠ N (0, 0.01I), which corresponds approximately
to SNR 2 [0, 5]dB. For each trial we collect T = 20 state
and input samples. We let K(k) be the controller obtained in
k-th trial and define the relative performance error

Ek :=
kT (K(k))k22 � kT (K?)k22

kT (K?)k22
(26)

Fig. 1. Performance of (15) as we vary �. For each value of � we run 100
trials with Gaussian input u ⇠ N (0, I) and disturbance d ⇠ N (0, 0.01I).
The blue curve displays the percentage S of stabilizing controllers, along
with red curve showing the median percentage error (26). In agreement with
Theorem 3.2, the approach (15) coincides with (8) (equivalently (14)) for
� sufficiently large, which is � � 0.0028 for this particular setting.

whenever K(k) is stabilizing. We denote by S the percentage
of times that we find a stabilizing controller and by M the
median of Ek through all the trials. We consider the median
because it is more robust to outliers (large or small values
of Ek that are due to the a particular instance of the noise).

Figure 1 confirms that regularization is needed and that the
certainty-equivalence approach, is robust to noisy data and
achieves good performance (S = 100% and M = 0.0026)
when the SNR is not too small like in the present setting.

B. Certainty-equivalence approach, robust approach, mixed

regularization, and low-rank approximation / surrogate

Now we compare certainty equivalence approach (15) with
the robust one (18). Specifically, consider the program

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ � · k⇧Gk+ ⇢ · trace(GPG>)

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(27)

with hyperparameters �, ⇢ � 0. For ⇢ = 0 and � sufficiently
large we recover the certainty-equivalence approach, whereas
� = 0 and ⇢ > 0 gives the robust approach (additionally
requiring ⇢ sufficiently large). We carry out simulations with
different values of the noise variance �2, thus different values
of the SNR. For each value of � we run 100 trials with input
u ⇠ N (0, I) and disturbance d ⇠ N (0,�2I). For each trial
we take T = 20 state and input samples.

The simulation results are reported in Table I. In line with
the discussion of Section IV and with the results of [6], [7],
the simulations show that certainty-equivalence controllers
are less robust in general but, when stabilizing, outperform

• take-home message: regularization is 
needed for robustness & performance

% of stabilizing 
controllers 
(100 trials)

median relative
performance error

breaks 
without
regularizer

→ works… but lame: learning is offline
regularization coefficient 𝜆 
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Online & adaptive solutions

• shortcoming of separating offline learning & online control
→ cannot improve policy online  &  cheaply / rapidly adapt to changes

• (elitist) desired adaptive solution: direct, online (non-episodic/non-batch) 
algorithms, with closed-loop data, & recursive algorithmic implementation
  

• “best” way to improve policy with new data → go down the gradient !
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Adaptive Control:
Towards a Complexity-Based General Theory*

G. ZAMES-

Key Words—H!control; adaptive control; learning control; performance analysis.

Abstract—Two recent developments are pointing the way to-
wards an input—output theory of H!!l" adaptive feedback:
The solution of problems involving: (1) feedback performance
exact optimization under large plant uncertainty on the one
hand (the two-disc problem of H!); and (2) optimally fast identi-
fication in H! on the other. Taken together, these are yielding
adaptive algorithms for slowly varying data in H!!l". At
a conceptual level, these results motivate a general input—output
theory linking identification, adaptation, and control learning.
In such a theory, the definition of adaptation is based on system
performance under uncertainty, and is independent of internal
structure, presence or absence of variable parameters, or even
feedback. ! 1998 IFAC. Published by Elsevier Science Ltd.
All rights reserved.

1. INTRODUCTION

What should the terms ‘‘adaptive’’ and ‘‘learning’’
mean in the context of control? Is it possible to tell
whether or not a black box is adaptive without
knowledge of its internal structure? In design, is it
possible to determine beforehand whether it is ne-
cessary for a controller to adapt and learn in order
to meet performance specifications, or is adapta-
tion a matter of choice? In this overview we shall
describe recent work in the H! framework which
provides a means of computing certain kinds of
adaptive controllers, but which also sheds some
light on these more conceptual questions.

Despite the long history of research on adaptive
control, and the considerable practical success of
adaptive strategies associated with the names of
As ström, Ljung, Goodwin, Caines, etc., a satisfac-
tory definition of adaptation has remained elusive.
One popular notion is that adaptation occurs when
parameters inside a controller vary in response to
changes in the environment. It has been observed,
at least since the 1950s, that this notion presents

*Received 19 August 1997; received in final form 19 August
1997. The original version of this paper appeared in the pre-
prints of the 2nd IFAC Symposium on Robust Control Design,
which was held in Budapest, Hungary, during 25—27 June 1997.
This paper was recommended for publication by Editor-in-Chief
Huibert Kwakernaak.

- Systems and Control Group, Department of Electrical
Engineering, McGill University, 3480 University Street,
Montreal, Que., Canada H3A 2A7. (The author passed away
on August 10, 1997.)

certain difficulties. Controllers with identical
external behavior can have an endless variety
of parametrizations; variable parameters in one
parametrization may be replaced by a fixed para-
meter nonlinearity in another. In most of the recent
control literature there is no clear separation be-
tween the concepts of adaptation and nonlinear
feedback, or between research on adaptive control
and nonlinear stability. This lack of clarity extends
to fields other than control; e.g. in debates as to
whether neural nets do or do not have a learning
capacity; or in the classical 1960s Chomsky vs Skin-
ner argument as to whether children’s language
skills are learned from the environment tabula rasa
style, or to a large extent are ‘‘built in’’. (How could
one tell the difference anyway?). It can be argued
that the lack of a conceptual framework for adap-
tive control has inhibited research in this area and
made it difficult to compare alternative designs.

We would like to re-examine these issues in the
light of recent developments linking the theories of
feedback, identification, complexity and time-vary-
ing optimization. The perspective here is actually
not new, having been outlined by the author on and
off since the 1970s (Zames, 1976, 1979, 1981, 1989).
However, the key mathematical details have been
worked out only recently, notably in joint work
with Lin et al. (Lin et al., 1992; Zames and Wang,
1991; Owen and Zames, 1993). Other results which
have a bearing on this overview have been obtained
by Dahleh (Tse et al., 1991; Helmicki et al., 1991;
Gu and Khargonekar, 1992; Mäkilä and Parting-
ton, 1991; Poolla and Tikku; Tse et al., 1991), to cite
a few representative papers.

The objective then is to re-examine the notions of
adaptation and learning, on two levels: on the con-
ceptual level to obtain a framework of some degree
of generality; on a more concrete level to get a de-
sign methodology for systems in the H!/l" ‘‘slowly
time-varying’’ category. The main ideas of the ap-
proach to be outlined here are that:

! Adaptation and learning involve the acquisi-
tion of information about the plant (i.e., object

1161

“adaptive = improve over best control with a priori info”

* disclaimer: a large part of the adaptive control community focuses on stability & not optimality
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Ingredient 1: policy gradient methods
• LQR viewed as smooth program (many formulations)

 

• 𝐽 𝐾 	is not convex … 

II. INDIRECT & DIRECT DATA-DRIVEN LQR

We now review indirect LQR design (formalized as a bi-
level program: least-square SysID followed by model-based
optimal control) as well as a recent direct approach [14]
parameterizing the design by data matrices. The foundation
of both approaches are subspace relations in state-space data.

A. Model-based linear quadratic optimal control

Consider a linear time-invariant (LTI) system
8
>><

>>:

x(k + 1) = Ax(k) +Bu(k) + d(k)

z(k) =

"
Q1/2 0

0 R1/2

#"
x(k)

u(k)

#
, (1)

where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d is a disturbance term, and z is the performance signal
of interest. We assume that (A,B) is stabilizable. Finally,
Q � 0 and R � 0 are weighting matrices. Here, � (⌫) and
� (�) denote positive and negative (semi)definiteness.

The problem of interest is linear quadratic regulation

phrased as designing a state-feedback gain K that renders
A+ BK Schur and minimizes the H2-norm of the transfer
function T (K) := d ! z of the closed-loop system1


x(k + 1)
z(k)

�
=

2

4
A+BK I
Q1/2

R1/2K

�
0

3

5


x(k)
d(k)

�
, (2)

where our notation T (K) emphasizes the dependence of the
transfer function on K. When A+BK is Schur, it holds that

kT (K)k22 = trace (QP ) + trace
�
K>RKP

�
, (3)

where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A+BK)P (A+BK)> � P + I = 0.

We refer to [34] for properties and interpretations of the
H2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d is a white process with unit covariance.
Here, we view the LQR problem as a H2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H2-norm of T (K) (henceforth, optimal) is unique
and can be computed by solving a discrete-time Riccati equa-
tion [1]. Alternatively, following [35], this optimal controller
can be determined by solving the following program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (A+BK)P (A+BK)> � P + I � 0 ,
(4)

1Given a stable p ⇥ m transfer function T (�) in the indeterminate �,
the squared H2-norm of T (�) is defined as [34, Section 4.4]:

kT k
2
2 :=

1

2⇡

Z 2⇡

0
trace(T (ej✓)0T (ej✓)) d✓

The LQR problem indeed admits many parameterizations,
and the one in (4) can be turned into a convex semi-definite
program after a change of variables; see [33, Section III.C].

We aim to compute the optimal control in a data-driven
setting when (A,B) are unknown, but we have access to a
T -long stream of noisy data. Here noisy means that the data
collected from (1) are generated with a non-zero disturbance
d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-

square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
series of inputs, disturbances, states, and successor states

U0 :=
⇥
u(0) u(1) . . . u(T � 1)

⇤
2 Rm⇥T ,

D0 :=
⇥
d(0) d(1) . . . d(T � 1)

⇤
2 Rn⇥T ,

X0 :=
⇥
x(0) x(1) . . . x(T � 1)

⇤
2 Rn⇥T ,

X1 :=
⇥
x(1) x(2) . . . x(T )

⇤
2 Rn⇥T

satisfying the dynamics (1), that is,

X1 �D0 =
⇥
B A

⇤ U0

X0

�
. (5)

It is convenient to record the data as consecutive time series,
i.e., column i of X1 coincides with column i+1 of X0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity

W0 :=


U0

X0

�
.

We assume that the data is sufficiently rich, that is,

rankW0 = n+m. (6)

The rank condition (6) is an identifiability condition ensuring
that (B,A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B,A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X0, X1) and under the rank condition (6),
an estimate (B̂, Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem
⇥
B̂ Â

⇤
= argmin

B,A

��X1 �
⇥
B A

⇤
W0

��
F
= X1W

†
0 , (7)

where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),

after eliminating 
(unique) P,
denote this
as 𝐽 𝐾

<latexit sha1_base64="Rmq2qLBwKqk3uLDZcUTkjEg1a+A="></latexit>

}
Fact: policy gradient descent 
	 𝐾# = 𝐾 − 𝜂	∇𝐽 𝐾  
initialized from a stabilizing 
policy converges linearly to 𝐾∗.
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Keywords
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Abstract
Gradient-based methods have been widely used for system design and opti-
mization in diverse application domains. Recently, there has been a renewed
interest in studying theoretical properties of these methods in the context of
control and reinforcement learning. This article surveys some of the recent
developments on policy optimization, a gradient-based iterative approach
for feedback control synthesis that has been popularized by successes of re-
inforcement learning.We take an interdisciplinary perspective in our expo-
sition that connects control theory, reinforcement learning, and large-scale
optimization.We review a number of recently developed theoretical results
on the optimization landscape, global convergence, and sample complexity

123

but on the set of stabilizing  gains K	,	it’s 
   • coercive with compact sublevel sets, 
   • smooth with bounded Hessian, & 
   • degree-2 gradient dominated                                  
							 𝐽 𝐾 − 𝐽∗ 	≤ 	𝑐𝑜𝑛𝑠𝑡.	A ∇𝐽 𝐾 %
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Model-free policy gradient methods
• policy gradient: 𝐾# = 𝐾 − 𝜂	∇𝐽 𝐾  converges linearly to 𝐾∗

• model-based setting: explicit Anderson-Moore formula for ∇𝐽 𝐾
based on closed-loop controllability + observability Gramians

• model-free 0th order methods constructing two-point gradient estimate 
from numerous & very long trajectories → extremely sample inefficient

• IMO: policy gradient is a potentially great candidate for direct adaptive 
control but sadly useless in practice: sample-inefficient, episodic, …

relative performance gap 𝜖 = 1 𝜖 = 0.1 𝜖 = 0.01
# trajectories (100 samples) 1414 43850 142865 ~ 𝟏𝟎𝟕 samples
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Ingredient 2: sample covariance parameterization

prior parameterization

• PE condition: full row rank 𝑈!
𝑋!

• 𝐴 + 𝐵𝐾 = 𝐵	 𝐴 𝐾
𝐼 	= 𝐵	 𝐴 𝑈!

𝑋!
𝐺 = 𝑋"𝐺

• robustness: 𝐺 = 𝑈!
𝑋!

#
+  ↔ regularization

• dimension of all matrices grows with 𝑡

covariance parameterization

• sample covariance  Λ = "
$
𝑈!
𝑋!

𝑈!
𝑋!

#
≻ 	0	

• 𝐴 + 𝐵𝐾 = 𝐵	𝐴 𝐾
𝐼 = 𝐵	𝐴 Λ𝑉 = "

$
𝑋"

𝑈!
𝑋!

#
𝑉

• robustness for free without regularization

• dimension of all matrices is constant 

      + cheap rank-1 updates for online data

<latexit sha1_base64="Rubmbi2jBjstsCW57D8UViccO0c="></latexit>

X1 = AX0 +BU0

<latexit sha1_base64="B4wuEh0J7R8ieBaefLQf6RTWC/Y="></latexit>

U0 =
⇥
u(0) u(1) · · · u(t� 1)

⇤
<latexit sha1_base64="qN9xCJlsB8BdcO/5R9eepoFov/U="></latexit>

X1 =
⇥
x(1) x(2) · · · x(t)

⇤

<latexit sha1_base64="fuRdm8viNijCMCoLSf46fxQtuX4="></latexit>

X0 =
⇥
x(0) x(1) · · · x(t� 1)

⇤
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Covariance parameterization of the LQR

• state / input sample covariance Λ = "
&
𝑈!
𝑋!

𝑈!
𝑋!

'
   &    𝑋" =

"
&
𝑋"

𝑈!
𝑋!

'

• closed-loop matrix  𝐴 + 𝐵𝐾 = 𝑋"𝑉  with   
𝐾

−−−−
𝐼

= Λ	𝑉	 =
𝑈!

−−−−
𝑋!

𝑉

• LQR covariance parameterization
    after eliminating 𝐾	with variable 𝑉,
    Lyapunov eqn (explicitly solvable),
    smooth cost 𝐽(𝑉) (after removing 𝑃),
    & linear parameterization constraint

min
!,#≻%

	 trace 𝑄𝑃 + trace 𝑉&𝑈%
&
𝑅𝑈%𝑉𝑃

	 s. t. 𝑃 = 𝐼 + 𝑋'𝑉	𝑃𝑉&𝑋'
&
, 𝐼 = 𝑋%𝑉

details are not important
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Projected policy gradient with sample covariances

• data-enabled policy optimization (DeePO)

   Π(!  projects on parameterization constraint 𝐼 = 𝑋!𝑉 & gradient ∇𝐽 𝑉
   is computed from two Lyapunov equations with sample covariances
     

• optimization landscape: smooth, 
degree-1 proj. grad dominance 
 𝐽 𝑉 − 𝐽∗ ≤ 𝑐𝑜𝑛𝑠𝑡.	A Π(! ∇𝐽 𝑉

  
   

• warm-up: offline data & no disturbance

𝑉# = 𝑉 − 𝜂	Π(!(∇𝐽 𝑉 )

Sublinear convergence for feasible 
initialization  𝐽 𝑉) − 𝐽∗ 	≤ 	𝒪(1/𝑘) .

𝐽 𝑉" − 𝐽∗

𝐽∗

note: empirically
faster linear rate

case: 4th order system
with 8 data samples
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Online, adaptive, & closed-loop DeePO

    where 𝑋!,&#" = 𝑥 0 , 𝑥 1 , … 𝑥 𝑡 , 𝑥(𝑡 + 1)  & similar for other matrices
  

• cheap & recursive implementation: rank-1 update of (inverse) sample   
covariances, cheap computation, & no memory needed to store old data

𝑥! = 𝐴𝑥 + 𝐵𝑢 + 𝑑

𝑥𝑢

𝑢 = 𝐾"!#	𝑥

①  update sample covariances:  Λ"!#		&			 ‾𝑋$,"!#

②  update decision variable: 𝑉"!# = Λ"!#&# 𝐾"
𝐼'

③  gradient descent:  𝑉"!#( = 𝑉"!# − 𝜂Π ‾*!,#$%(∇𝐽"!# 𝑉"!# )

④  update control gain:	 𝐾"!# = F𝑈$,"!#𝑉"!#(

DeePO policy update
Input: (𝑋$,"!#, 𝑈$,"!#, 𝑋#,"!#), 𝐾"

Output: 𝐾"!#

𝑑

𝐾"!#
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Underlying assumptions for theoretic certificates

• initially stabilizing controller: the LQR problem parameterized by 
offline data 𝑋!,&! , 𝑈!,&! , 𝑋",&! is feasible with stabilizing gain 𝐾&!.

• persistency of excitation due to process noise or probing:       
𝜎 ℋH#" 𝑈!,& ≥ 𝛾	 A 𝑡	 with Hankel matrix ℋH#" 𝑈!,&

• bounded noise: 𝑑(𝑡) ≤ 𝛿	 ∀	𝑡	 →	 signal-to-noise ratio 𝑆𝑁𝑅 ≔ ⁄𝛾 𝛿

• BIBO: there are V𝑢, �̅� such that 𝑢(𝑡) ≤ V𝑢	 &	 𝑥 𝑡 ≤ �̅� 
(∃	common Lyapunov function ?)
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Bounded regret of DeePO in adaptive setting

• average regret performance metric  RegretJ 	≔ 	 "
J
∑&K&!
&!#JL" 	𝐽 𝐾& − 𝐽∗	

• comments on the qualitatively expected result:
• analysis is independent of the noise statistics & consistent Regret-→/ → 0
• favorable sample complexity: sublinear decrease term matches best

rate 𝒪(1/ 𝑇) of first-order methods in online convex optimization
• empirically observe smaller bias term: 𝒪( ⁄1 𝑆𝑁𝑅0) & not ⁄𝒪(1 𝑆𝑁𝑅)

Sublinear regret: Under the assumptions, there are 𝜈", 𝜈%, 𝜈M, 𝜈N > 0
such that for 𝜂 ∈ (0, 𝜈"] & 𝑆𝑁𝑅 ≥ 𝜈%, it holds that 𝐾& is stabilizing &

RegretJ 	≤
𝜈M
𝑇
	+

𝜈N
𝑆𝑁𝑅

	 .
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Comparison case studies
• same case study [Dean et al. ’19] 𝐽 𝐾1 − 𝐽∗

𝐽∗• case 1: offline LQR
vs direct adaptive DeePO 
vs indirect adaptive: rls + dlqr
→ adaptive outperforms offline
       

→ direct/indirect rates matching 
     but direct is much(!) cheaper

• case 2: adaptive DeePO
vs 0&O 	order methods 

relative performance gap 𝜖 = 1 𝜖 = 0.1 𝜖 = 0.01
# long trajectories (100 

samples) for 0$% order LQR 1414 43850 142865

DeePO (# I/O samples) 10 24 48→ significantly less data
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Power systems / electronics case study
• wind turbine becomes 

unstable in weak grids 
with nonlinear oscillations

• converter, turbine, & grid 
are a black box for the 
commissioning engineer

• construct state from time 
shifts (5ms sampling) of 
𝑦 𝑡 , 𝑢(𝑡)  & use DeePO

synchronous generator & full-scale converter 
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Power systems / electronics case study
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… same in the adaptive setting with excitation
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Conclusions
• Summary

• model-based pipeline with model-free block: data-driven LQR parametrization
→  works well when regularized (note: further flexible regularizations available)

• model-free pipeline with model-based block: policy gradient & sample covariance 
→  DeePO is adaptive, online, with closed-loop data, & recursive implementation 

• academic case studies & can be made useful in power systems/electronics

• Future work
• technicalities: weaken assumptions & improve rates
• control: based on output feedback & for other objectives
• further system classes: stochastic, time-varying, & nonlinear
• open questions: online vs episodic? “best” batch size? triggered?
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Papers

2. model-free pipeline with 
model-based elements

Data-enabled Policy Optimization for the Linear Quadratic Regulator

Feiran Zhao, Florian Dörfler, Keyou You

Abstract— Policy optimization (PO), an essential approach

of reinforcement learning for a broad range of system

classes, requires significantly more system data than indi-

rect (identification-followed-by-control) methods or behavioral-

based direct methods even in the simplest linear quadratic

regulator (LQR) problem. In this paper, we take an initial

step towards bridging this gap by proposing the data-enabled

policy optimization (DeePO) method, which requires only a

finite number of sufficiently exciting data to iteratively solve

the LQR problem via PO. Based on a data-driven closed-

loop parameterization, we are able to directly compute the

policy gradient from a batch of persistently exciting data.

Next, we show that the nonconvex PO problem satisfies a

projected gradient dominance property by relating it to an

equivalent convex program, leading to the global convergence

of DeePO. Moreover, we apply regularization methods to

enhance certainty-equivalence and robustness of the resulting

controller and show an implicit regularization property. Finally,

we perform simulations to validate our results.

I. INTRODUCTION

As a cornerstone of modern control theory, the linear
quadratic regulator (LQR) problem has been the benchmark
for data-driven control methods that seek to design a con-
troller from raw system data. The manifold approaches to
data-driven control can be broadly categorized as indirect

(when identifying a dynamical model followed by model-
based control design) versus direct (when bypassing the
identification step). The use of direct data-driven control
is usually motivated when the dynamical model is difficult
to establish, or is too complex for model-based control
design. As an end-to-end approach, the direct methods are
conceptually simple and easy to implement in practice.

A representative instance of direct data-driven control is
policy optimization (PO), an essential approach for applica-
tions of reinforcement learning (RL) [1]–[3]. As an iterative
method, PO directly searches over the policy space to opti-
mize a performance metric of interest. Based on zeroth-order
optimization techniques, it uses multiple system trajectories
to estimate the policy gradient. There has been a resurgent
interest in studying theoretical properties of PO on the LQR
problem such as convergence and sample complexity; see
e.g., [4]–[7] and the comprehensive survey [8]. Even though
global convergence has been shown for the nonconvex PO
problem by a gradient dominance property [4], there exists

Research of F. Zhao and K. You was supported by National Key
R&D Program of China (2022ZD0116700) and National Natural Science
Foundation of China (62033006, 62325305).

F. Zhao and K. You are with the Department of Automation
and BNRist, Tsinghua University, Beijing 100084, China. (e-mail:
zhaofr18@mails.tsinghua.edu.cn, youky@tsinghua.edu.cn.) F. Dörfler is
with the Department of Information Technology and Electrical Engineering,
ETH Zurich, 8092 Zurich, Switzerland. (e-mail: dorfler@control.ee.ethz.ch)

a considerable gap in the sample complexity between PO
and indirect methods, which have proved themselves to be
more sample-efficient [9], [10] for solving the LQR problem.
This gap is due to the exploration or trial-and-error nature
of RL, or more specifically, that the cost used for gradient
estimate can only be evaluated after a whole trajectory is
observed. Thus, the existing PO methods require numerous
system trajectories to find an optimal policy, even in the
simplest LQR setting.

Recent years have witnessed an emerging line of direct
methods inspired by the Fundamental Lemma [11], which
states that the behavior of a linear time-invariant (LTI)
system can be characterized by the range space of raw data
matrices. This result implies a non-parametric representation
of LTI systems, giving rise to a notable implicit design
called data-enabled predictive control (DeePC) [12], which
has seen many successful implementations in different prac-
tical scenarios [13]. The fundamental lemma has also been
utilized to solve various explicit control design and analysis
problems [14]–[16]. In particular, it has been shown in [14]
that using subspace relations, the closed-loop LTI system can
be parameterized by input-state data, leading to a data-based
convex reformulation of the LQR problem. Compared with
PO, this approach is significantly more sample-efficient as
it only requires a batch of persistently exciting (PE) data.
Indeed, the PE condition is equivalent to identifiability for
LTI systems and should be a minimal assumption for most
control design problems [15], [17], e.g., the LQR problem.
There have been many recent works leveraging regularization
methods to promote certainty-equivalence and robustness of
the LQR [18]–[20], and to bridge behavioral-based direct
and indirect methods [21]. All these methods use only a
small batch of PE data compared to data-hungry zeroth-order
PO methods [4]–[6]. This leads to a natural question: does
there exist a data-efficient PO method for solving the LQR
problem?

In this paper, we provide an affirmative answer to the
above question. By leveraging the data-driven closed-loop
parameterization [14], we propose an iterative method called
data-enabled policy optimization (DeePO) to solve the LQR
problem. Instead of estimating the policy gradient from the
cost of observed trajectories, we show that after a change of
optimization variables, the gradient can be directly charac-
terized from a batch of PE data. Even though the resulting
optimization problem is nonconvex, it can be parameterized
as a data-based convex program. By exploiting this relation
and using a recent PO result [22], we further show that the
LQR cost is projected gradient dominated, while it is only
gradient dominated in [4], [5]. By establishing that the cost
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Data-Enabled Policy Optimization for Direct
Adaptive Learning of the LQR

Feiran Zhao, Florian Dörfler, Alessandro Chiuso, Keyou You

Abstract—Direct data-driven design methods for the linear

quadratic regulator (LQR) mainly use offline or episodic data

batches, and their online adaptation has been acknowledged as an

open problem. In this paper, we propose a direct adaptive method

to learn the LQR from online closed-loop data. First, we propose

a new policy parameterization based on the sample covariance

to formulate a direct data-driven LQR problem, which is shown

to be equivalent to the certainty-equivalence LQR with optimal

non-asymptotic guarantees. Second, we design a novel data-

enabled policy optimization (DeePO) method to directly update

the policy, where the gradient is explicitly computed using only

a batch of persistently exciting (PE) data. Third, we establish its

global convergence via a projected gradient dominance property.

Importantly, we efficiently use DeePO to adaptively learn the

LQR by performing only one-step projected gradient descent

per sample of the closed-loop system, which also leads to an

explicit recursive update of the policy. Under PE inputs and for

bounded noise, we show that the average regret of the LQR cost

is upper-bounded by two terms signifying a sublinear decrease

in time O(1/
p
T ) plus a bias scaling inversely with signal-to-

noise ratio (SNR), which are independent of the noise statistics.

Finally, we perform simulations to validate the theoretical results

and demonstrate the computational and sample efficiency of our

method.

Index Terms—Adaptive control, linear quadratic regulator,

policy optimization, direct data-driven control.

I. INTRODUCTION

As a cornerstone of modern control theory, the linear
quadratic regulator (LQR) design has been widely studied
in data-driven control, where no model but only raw data is
available [1]. The manifold approaches to data-driven LQR
design can be broadly categorized as indirect, i.e., based on
offline system identification (SysID) followed by model-based
control design, versus direct when bypassing the identification
step. Another classification is episodic when obtaining the
policy from single or multiple alternating episodes of data
collection and control (see Fig. 1), versus adaptive when
updating the policy from online closed-loop data (see Fig. 2).

The indirect data-driven LQR design has a rich history
and has developed well-understood tools for identification

Research of F. Zhao and K. You was supported by National Key R&D Pro-
gram of China (2022ZD0116700) and National Natural Science Foundation
of China (62033006, 62325305). (Corresponding author: Keyou You)

F. Zhao and K. You are with the Department of Automation and Beijing
National Research Center for Information Science and Technology, Tsinghua
University, Beijing 100084, China. (e-mail: zhaofr18@mails.tsinghua.edu.cn,
youky@tsinghua.edu.cn)

F. Dörfler is with the Department of Information Technology and Elec-
trical Engineering, ETH Zürich, 8092 Zürich, Switzerland. (e-mail: dor-
fler@control.ee.ethz.ch)

A. Chiuso is with the Department of Information Engineering, Univer-
sity of Padova, Via Gradenigo 6/b, 35131 Padova, Italy. (e-mail: alessan-
dro.chiuso@unipd.it)

System (𝐴𝐴,𝐵𝐵)
ℎ𝑖𝑖

𝑥𝑥𝑡𝑡

Controller
𝐾𝐾𝑖𝑖

𝑢𝑢𝑡𝑡

𝑖𝑖: iteration

Policy 
update

Fig. 1. An illustration of episodic approaches, where hi = (x0, u0, . . . , xT i )
denotes the trajectory of the i-th episode.

System (𝐴𝐴,𝐵𝐵)
𝑥𝑥𝑡𝑡

𝐾𝐾𝑡𝑡 = 𝑓𝑓𝑡𝑡(𝐾𝐾𝑡𝑡−1)

𝐾𝐾𝑡𝑡 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐴𝐴𝑡𝑡,𝐵𝐵𝑡𝑡)

SysID
(𝐴𝐴𝑡𝑡,𝐵𝐵𝑡𝑡)

𝑢𝑢𝑡𝑡

Direct

Indirect 𝑡𝑡: time step

Controller

Fig. 2. An illustration of indirect and direct adaptive approaches in closed-
loop, where ft is some explicit function.

and control. Representative approaches include [2] advocating
optimism-in-face-of-uncertainty, [3] in the robust setting, and
[4]–[8] based on certainty-equivalence control. Most of them
are episodic in that they either estimate the system dynamics
from a single episode of offline data, or update their estimate
only after an episode is completed [2]–[5]. This is due to
their requirement of statistically independent data and regret
analysis methods. Notable adaptive methods are [6]–[8] rooted
on certainty-equivalence LQR: a system is first identified
by ordinary least-squares from closed-loop data, and then
a certainty-equivalence LQR problem is solved by treating
the estimated system as the ground-truth [4]. By alternating
identification and certainty-equivalence LQR, they guarantee
convergence to the optimal LQR gain. In particular, the work
[6] takes the first step towards indirect adaptive control with
asymptotic convergence guarantees by regularizing the iden-
tification objective with the LQR cost. Recent works [7], [8]
have shown that certainty-equivalence control with explorative
input ensuring persistency of excitation meets optimal non-
asymptotic guarantees, i.e., the LQR gain converges at a
sublinear rate. However, the indirect adaptive approach re-
quires solving an algebraic Riccati equation per time, which
is computationally demanding and lacks a recursive policy
update.

Instead of solving an algebraic Riccati equation with the
identified model, an emerging line of direct methods obtains
the LQR directly from a single episode of persistently exciting
(PE) data [9]–[13]. It is inspired by subspace methods [14]
and the fundamental lemma [15] in behavioral system theory
[16]–[19]. Using subspace relations, the works [9]–[11] show
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On the Role of Regularization in Direct Data-Driven LQR Control

Florian Dörfler, Pietro Tesi, and Claudio De Persis

Abstract— The linear quadratic regulator (LQR) problem is a
cornerstone of control theory and a widely studied benchmark
problem. When a system model is not available, the conven-
tional approach to LQR design is indirect, i.e., based on a
model identified from data. Recently a suite of direct data-
driven LQR design approaches has surfaced by-passing explicit
system identification (SysID) and based on ideas from subspace
methods and behavioral systems theory. In either approach, the
data underlying the design can be taken at face value (certainty-
equivalence) or the design is robustified to account for noise. An
emerging topic in direct data-driven LQR design is to regularize
the optimal control objective to account for implicit SysID (in a
least-square or low-rank sense) or to promote robust stability.
These regularized formulations are flexible, computationally
attractive, and theoretically certifiable; they can interpolate
between direct vs. indirect and certainty-equivalent vs. robust
approaches; and they can be blended resulting in remarkable
empirical performance. This manuscript reviews and compares
different approaches to regularized direct data-driven LQR.

I. INTRODUCTION

Linear quadratic regulator (LQR) design for linear time-
invariant (LTI) subject to process noise is a cornerstone of
the field [1]. It is the benchmark to validate and compare
different methods, among others in the context of data-driven

control when no model but only raw data is available. In the
terminology of adaptive control [2], different approaches to
data-driven LQR design can be classified as indirect, i.e.,
based on system identification (SysID) followed by model-
based design, versus direct when by-passing models. Another
distinction is certainty-equivalence (CE) versus robust design
depending on whether uncertainty is taken into account.

A representative (though not exhaustive) list of indirect
LQR approaches are [3]–[6] advocating CE and [7]–[9] in
the robust setting. Exemplary direct approaches are gradient
methods [10]–[12], reinforcement learning [13], behavioral
methods [14], and Riccati-based methods [15] in the CE
setting and [16]–[18] in the robust case. These classifications
are not strict: many approaches have bridged the direct and
indirect paradigms such as identification for control [19],
[20], dual control [21], [22], control-oriented identification
[23], and regularized data-enabled predictive control [24],
[25]. All these approaches advocate that the control anf
SysID objectives should be blendend to regularize each other.

Regularization methods have a long history in regression

F. Dörfler is with Department of Information Technology and Elec-
trical Engineering, ETH Zurich, 8092 Zurich, Switzerland. Email:
dorfler@ethz.ch. P. Tesi is with Department of Information
Engineering, University of Florence, 50139 Florence, Italy. Email:
pietro.tesi@unifi.it. C. De Persis is with ENTEG and the
J. C. Willems Center for Systems and Control, University of Groningen,
8092 Groningen, The Netherlands. Email: c.de.persis@rug.nl.
This work was supported by ETH Zurich and the SNF NCCR Automation.

problems when identifying models from data. They facilitate
finding solutions to optimization problems by rendering them
unique or speeding up algorithms. Aside from such numer-
ical advantages, a Bayesian interpretation of regularizations
is that they condition models on prior knowledge [26], and
they robustify problems to uncertainty [27], [28].

An emergent approach to data-driven control is borne
out of the intersection of behavioral systems theory and
subspace methods [29]. In particular, the so-called Funda-

mental Lemma characterizes the behavior of an LTI system
by the range space of matrix time series data [30]. This
perspective gave rise to direct data-driven predictive and
explicit feedback control formulations [14]–[17], [24], [31],
[32]. Both lines of work emphasize robustness to noisy data.

This manuscript presents a tutorial review of regularized
direct data-driven LQR [16], [33], which touches upon all
of the above. As a baseline, indirect CE data-driven LQR
is formalized as a bi-level optimization problem: SysID
by means of ordinary least-squares followed by model-
based H2-optimal design. Further, we present the direct
certainty-equivalence approach [14] posing LQR design as
semidefinite program parameterized by data matrices.

Following [24], [33], we show that the indirect and direct
approaches are equivalent after augmenting the latter with a
regularizer accounting for the least-square fitting criterion.
We also review the regularizer proposed in [16] promoting
robust closed-loop stability in face of noise. Finally, we
present a novel `1-regularizer accounting for implicit low-
rank pre-processing conditioning noisy data on the set of
finite-dimensional LTI models. Hence, as in regression, reg-
ularizations not only ease the numerics but also condition the
control policy on prior knowledge and robustify the closed
loop. Further, following [16] we present theoretic certificates
for robust closed-loop stability and performance bounds as a
function of the signal-to-noise ratio (SNR) for finite sample
size. The sub-optimality gap scales linearly with the SNR.

Finally, we compare different approaches in a numerical
case study and show that regularized formulations can flexi-
bly interpolate between direct vs. indirect and CE vs. robust
approaches. We show that robustness-promoting regularizers
are superior for low SNR, whereas CE-promoting regulariz-
ers perform extremely well for larger SNR. As a remarkable
empirical result, blending different regularizers yields excel-
lent overall performance with constant hyperparameters.

The paper is organized as follows. Section III poses the
direct and indirect LQR problems. Section III discusses the
regularizations. Certificates are provided in Section IV. Sec-
tion V contains our numerical case study. Finally, Section VI
concludes the paper and presents directions for future work.
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Abstract—The linear quadratic regulator (LQR) problem is a
cornerstone of automatic control, and it has been widely studied
in the data-driven setting. The various data-driven approaches
can be classified as indirect (i.e., based on an identified model)
versus direct or as robust (i.e., taking uncertainty into account)
versus certainty-equivalence. Here, we show how to bridge these
different formulations and propose a novel, direct, and regularized
formulation. We start from indirect certainty-equivalence LQR, i.e.,
least-square identification of state-space matrices followed by a
nominal model-based design, formalized as a bilevel program. We
show how to transform this problem into a single-level, regularized,
and direct data-driven control formulation, where the regularizer
accounts for the least-square data fitting criterion. For this novel
formulation, we carry out a robustness and performance analysis
in presence of noisy data. In a numerical case study, we compare
regularizers promoting either robustness or certainty-equivalence,
and we demonstrate the remarkable performance when blending
both of them.
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I. INTRODUCTION

This article considers data-driven approaches to linear quadratic
regulator (LQR) control of linear time-invariant (LTI) systems subject
to process noise [1]. Data-driven control methods can be classified into
direct versus indirect methods (depending on whether the control policy
hinges upon an identified model) and certainty-equivalence versus
robust approaches (depending on whether they take uncertainty into
account) [2]. The relative merits of these paradigms are well known, and
we highlight the following tradeoffs: For indirect methods, on the one
hand, it is hard to propagate uncertainty estimates on the data through
the system identification step to the control design. On the other hand,
direct methods are often more sensitive to inexact data and need to be
robustified at the cost of diminishing performance.

For the LQR problem, a representative (though certainly not exhaus-
tive) list of classic and recent indirect approaches (i.e., identification of a
parametric model followed by model-based design) are [3], [4], [5], [6]
in the certainty-equivalence setting and [7], [8], [9] in the robust case.
For the direct approach, we list the adaptive/iterative gradient-based
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methods [10], [11], [12], reinforcement learning [13], behavioral meth-
ods [14], and Riccati-based methods [15] in the certainty-equivalence
setting as well as [16], [17], [18] in the robust setting. We remark
that the world is not black and white: a multitude of approaches have
successfully bridged the direct and indirect paradigms, such as identi-
fication for control [19], [20], dual control [21], [22], control-oriented
identification [23], and regularized data-enabled predictive control [24].
In essence, these approaches all advocate that the identification and
control objectives should be blended to regularize each other.

An emergent approach to data-driven control is borne out of the
intersection of behavioral systems theory and subspace methods; see
the recent survey [25]. In particular, a result termed the Fundamen-
tal Lemma [26] implies that the behavior of an LTI system can be
characterized by the range space of a matrix containing raw time
series data. This perspective gave rise to implicit formulations (notably
data-enabled predictive control [24], [27], [28]) as well as the design of
explicit feedback policies [14], [15], [16], [17]. Both of these are direct
data-driven control approaches and robustness plays a pivotal role.

In this article, we show how to transition between the direct and
indirect as well as the robust and certainty-equivalence paradigms for
the LQR problem. We begin our investigations with an indirect and
certainty-equivalence data-driven LQR formulation posing it as model-
based H2-optimal design, where the model is identified from noisy
data by means of an ordinary least-square approach. Following [24],
we formalize this indirect approach as a bilevel optimization problem
and show how to equivalently pose it as a single-level and regularized
data-driven control problem. Our final problem formulation equals the
one in [14]—posing the LQR problem as a semidefinite program param-
eterized by data matrices—plus an additional regularizer accounting for
the least-square fitting criterion.

The aforementioned regularizer arising from our analysis takes the
form of an extra penalty term in the LQR objective function, it promotes
a least-square fitting of the data akin to certainty equivalence, and it
can also be interpreted as a stability-promoting term. This explains
why certainty equivalence enjoys some degree of robustness to noise.
With this observation and following methods from [16], we carry out a
nonasymptotic analysis (i.e., involving a finite number of data points)
and give explicit conditions for robust closed-loop stability and perfor-
mance bounds as a function of the signal-to-noise ratio (SNR). Different
from the works in [6] and [7], our analysis is not restricted to Gaussian
noise. In fact, we show that the certainty-equivalence approach results
in stabilizing controllers whenever the SNR is sufficiently large,
irrespective of the noise statistics. Furthermore, for sufficiently large
SNR, we show that the suboptimality gap scales linearly with the SNR.
This latter result is in line with [6], [7], which observe that certainty
equivalence performs extremely well in regimes of small uncertainty.
Our direct and regularized formulation of certainty-equivalence LQR
has its own merits over hard-coding the least-squares objective as a
constraint. Namely, it is a flexible formulation that permits to modify
the LQR objective in a smooth manner. In particular, we can tradeoff
performance and robustness objectives by blending different
regularizers promoting either certainty equivalence or robust
closed-loop stability.

In a simulation case study, we validate the performance of our
certainty-equivalence LQR formulation as a function of the SNR, and
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