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Revisiting old problems with old tools in a new light
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Data-driven pipelines

* indirect (model-based) approach
data > model + uncertainty — Control

* direct (model-free) approach:
direct MRAC, RL, behavioral, ...

* episodic & batch algorithms:
collect batch of data — design policy well-documented trade-offs concerning

| « complexity: data, compute, & analysis
« goal: optimality vs (robust) stability
 online & adaptive algorithms: » practicality: modular vs end-to-end ...

measure — update policy — actuate — gold(?) standard: direct, adaptive,
S J optimal yet robust, cheap, & tractable




LQR d—> 4+ = Ax + Bu+d [—7

1/2 1/2
« cornerstone of z=Q"?z 4+ R?u
automatic control
u=Kzx T
K |«
» H, parameterization %inﬂ;ﬁ%{@_ trace (QP) + trace (K ' RK P)
~ 1,

(can be posed as convex SDP,

as differentiable program, as... ) subject to (A+ BK)P(A + BK)T — P+ 1=<0

» the benchmark for all data-driven
control approaches in last decades
but there is no direct & adaptive LQR




Contents

1. model-based pipeline with model-free elements
— data-driven parametrization & robustifying regularization

2. model-free pipeline with model-based elements
— adaptive method: policy gradient & sample covariance

3. case studies: academic & power systems/electronics
— LQR is academic example but can be made useful



Indirect & certainty-equivalence LQR

* collect I/0 data (X,, Uy, X;) with D, unknown & PE: rank [)(?0] =n4+m
0

Up := |[u(0) u(1) wT -1 —| . > Xo:= [z(0) (1) (T —1)]
Dy := [d(0) d(1) AT -1)] — X1 = AXo + BUo+ Dol , X, = [z(1) z(2) 2(T)]

Inimiz ! \ inty-

* indirect & certainty- P=1K race (QP) + trace (K RKF) }ZZLtie:/altgnt
equivalence LQR subject to (A + BK)P(A+BK)' —P+1=<0 HaR

(optimal in MLE setting)

R R U, ) least
B A| =argmin|X; — |[B A] [ O] . squares
B,A Xo|||p|) sysID
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Direct approach from subspace relations in data

 PE data: rank [g(’] =n+m = VYK G s.t. {K} — {UO} G
0

1 Xy
Up = [u(0) (1) Wl —1)] — o > Xo o5 [2(0) 2(1) ... @(T—1)]
Do = [d(0) d(1) d(T — 1) _>le _AX0+BUO+DOJ—> Xp=[e(1) z(2) ... z(T)]
* subspace

SUSSPaACe A+ BK=[B A] [K] =Y [U0] G[= (X, — Dy)G

I X,

- data-driven LQR LMIs by substituting A + BK = (X; — Dy)G
- certainty equivalence by neglecting noise Dy:|A 4+ BK = X



Equivalence: direct + xxx < indirect

* direct approach
— optimizer has
U

Xo

— orthogonality

nullspace ker [

minimize
P>1K G

subject to

constraint

trace (QP) + trace (K ' RK P)

X,GPG'X] —P+1=<0

1] = x|

(- [5] o]) e-

G =

] [

v

equivalent constraints:

(%]

U1 (K
Xo| |1

* indirect
approach

minimize
P>1 K

AN

[B A] = arg min

trace (QP) + trace (K ' RK P)

AN AN

subject to (A+ BK)P(A+BK)' —P+1=<0

guin | X, — 5 4[

])p(m)T

—P+1=0




Regularized, certainty-equivalent, & direct LQR

* Orthogona ity constraint minimize trace (QP) + trace (K ' RK P +
] P>1K G (@P) ( ) W

n—r- [U] [Uo
| Xo| [ Xo subject to X;GPG'X| —P+1<0

lifted to regularizer [ﬂ _ [%0] G
(equivalent for A large) ’

* )\ interpolates between control & SysID ... but may not be robust (?)

. . . _ _ B \
effect of noise entering data: A + BK = (X; — Dy)G b apaT

Lyapunov constraint X;GPG' X, — P+1=0 > should be small
becomes (X; — Dy)GPG' (X1 — D) —P+1=<0 — forced by small||IIG |
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Performance & robustness certificates

* SNR (signal-to-noise-ratio) Tmin([Xo Uo))
Umax(DO)

* relative performance metric

realized cost from regularized design with large A if exact system matrices A & B were known

-l ——
_______—_——————————— __—__-——————_-——-___ o o e e
- L] L]
—____— —-_-~~ —____— —-~---
- ~~~~ - ~

{regularized data-driven LQR performance} <{ground-truth performance}>

-

—————
—————————————————

Certificate for sufficiently large SNR: the optimal control problem is
feasible (robustly stabilizing) with relative performance ~ 0 (1/SNR).
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Numerical case study

» case study [Dean et al. ‘“19]: discrete-time
system with noise variance ¢2=0.01 &

100

(]
o
@

Do G PP PO —

variable regularization coefficient A 00! % of stabilizing
controllers
'1.01 0.01 0O | 80r (100 trials)
A=1001 101 0.01|, B=1I 701
0 0.01 1.01 60 | |
) ] S0 6..... o. .:"5
 take-home message: regularization is  “|breaks :
30 rwithout
needed for robustness & performance ,, reguiarizgr:
ol EE median relative |
““““ ¢ S performance error

— works... but lame: learning is offline ° 1 5 & & 5 ¢ 7 e Y T w0 w0 m

regularization coefficient 1 Te-4



Online & adaptive solutions

» shortcoming of separating offline learning & online control
— cannot improve policy online & cheaply / rapidly adapt to changes

Adaptive Control:
Towards a Complexity-Based General Theory*

G. ZAMESTY

“adaptive = improve over best control with a priori info”

* (elitist) desired adaptive solution: direct, online (non-episodic/non-batch)
algorithms, with closed-loop data, & recursive algorithmic implementation

* "best” way to improve policy with new data — go down the gradient !

* disclaimer: a large part of the adaptive control community focuses on stability & not optimality 12



Annual Review of Control, Robotics, and
Autonomous Systems

Ingredient 1: policy gradient methods

* LQR viewed as smooth program (many formulations)

Bin Hu,! Kaiging Zhang,>* Na Li,* Mehran Mesbahi,’

) Maryam Fazel$ and Tamer Basar'
minimize trace (QP) + trace (K ' RK P) aftor aliminating
P=IK > (unique) P,
subject to (A+ BK)P(A+BK)' —P+1=<0 ::'}‘(’g this

y

* J(K) is not convex ...

but on the set of stabilizing gains X, it's
* coercive with compact sublevel sets,
* smooth with bounded Hessian, &
» degree-2 gradient dominated

Fact: policy gradient descent
KT"=K—-nVJ](K)

initialized from a stabilizing

policy converges linearly to K*.

J(K) =]* < const.- |V/(K)||%

13



Model-free policy gradient methods

» policy gradient: K™ = K —n VJ(K) converges linearly to K*

 model-based setting: explicit Anderson-Moore formula for VJ(K)
based on closed-loop controllability + observability Gramians

« model-free 0t order methods constructing two-point gradient estimate
from numerous & very long trajectories — extremely sample inefficient

relative performance gap e=1 e =0.1 e = 0.01
# trajectories (100 samples) 1414 43850 142865 |~ 107 samples

* IMO: policy gradient is a potentially great candidate for direct adaptive
control but sadly useless in practice: sample-inefficient, episodic, ...

14



Ingredient 2: sample covariance parameterization

Xo=|z(0) «(1) --- z(t-—1)
Uy = [u<0) u(l) - u(t— 1)} —| X, = AXy+ BUj Y [ ]
— X; = |z(1) x(2) --- z(t)]
prior parameterization covariance parameterization
 PE condition: full row rank [UO] o Samp|e covariance A = 1 UO] [UO]T = 0
Xo t [ Xol 1 X0

A+ BK = [B A]m=[3 A gg](,‘:)(lc

U T
: A+BK=[BA][II(]=[BA]AV=%X1 X(’] %
0

robustness: G = [U‘)]T (1) < regularization
u X, > Teg * robustness for free without regularization

dimension of all matrices grows with t  dimension of all matrices is constant

+ cheap rank-1 updates for online data
15



Covariance parameterization of the LQR

. : : _1 Uo Uo]T v 1 UO]T
state / input sample covariance A = - Xo] [Xo & X, = - X X,

Qey-..
+ closed-loop mea€§/14/$8%v with

 LQR covariance parameterization

after eliminating K with variable 1/, ["/F>V
Lyapunov eqgn (explicitly solvable),

= AV = |-——-

smooth cost J(I/) (after removing P),
& linear parameterization constraint

16



Projected policy gradient with sample covariances

- data-enabled policy optimization (DeePO)

V=V =l (V1)

[T, projects on parameterization constraint I = X,V & gradient VJ(V)
Is computed from two Lyapunov equations with sample covariances

« optimization landscape: smooth, 10°
degree-1 proj. grad dominance |

JW) =J* < const.- ||z (W),

« warm-up: offline data & no disturbance

(AR
]*

note: empirically |
faster linear rate

5L
- : 10 case: 4t order system
Sublinear convergence for feasible " with 8 data samples
initialization ](Vk)—]* < 0(1/k) . 0 100 200 300 400 500

k



Online, adaptive, & closed-loop DeePO

S »| DeePO policy update

— x* = Ax+ Bu+d —+-----» Input: (Xo+1, Uot+1, X1,t41)5 Ke

(1) update sample covariances: A,,; & Xo,t+1

u X .. : K
(2) update decision variable: V,,; = A7}, Irf]

(3 gradient descent: Vi q = Viyq — Nz, s (Ver1(Ver1))

(4) update control gain: K;1 = Uy 11Vit1

Output: K;, 4

U=Kiqx[e—— Kiq

where Xy ¢+1 = [x(0),x(1), ... x(¢), x(t + 1)] & similar for other matrices

* cheap & recursive implementation: rank-1 update of (inverse) sample
covariances, cheap computation, & no memory needed to store old data



Underlying assumptions for theoretic certificates

* initially stabilizing controller: the LQR problem parameterized by
offline data (X, Uo,, X1.t,) IS feasible with stabilizing gain K, .

 persistency of excitation due to process noise or probing:
g(}[nH(UO,t)) >y -/t with Hankel matrix #,,,1(Uq;)

* bounded noise: ||d(t)|| <6 VYt — signal-to-noise ratio SNR :=y/§

 BIBO: there are ti, x such that [[u(®)|| <u & |x@®)| <x

19



Bounded regret of DeePO in adaptive setting

 average regret performance metric Regret; = %Zigz_l (J(Ke) =)

Sublinear regret: Under the assumptions, there are v{,v,,v3, v, > 0
such that forn € (0,v;] & SNR = v,, it holds that {K;} is stabilizing &

Regret. < —> + —2
egre S — .
ST = T T SNR

 comments on the qualitatively expected result:
 analysis is independent of the noise statistics & consistent Regret;_,,, — 0
- favorable sample complexity: sublinear decrease term matches best
rate O(1/+/T) of first-order methods in online convex optimization

- empirically observe smaller bias term: O(1/SNR?%) & not O(1/VSNR) 20



Comparison case studies

e SAme case study [Dean et al. ’19] 10'2 " : ](th) =P ;

_ l. ]* ——DeePO

- case 1: offline LQR T N Indirect |
vs direct adaptive DeePO 103+F & Offline

vs indirect adaptive: rls + dliqr

— adaptive outperforms offline

— direct/indirect rates matching 1074 ;
but direct is much(!) cheaper

50 100 150 200

e case 2: adaptive DeePO relative performance gap e=1 e=0.1 e =0.01
# long trajectories (100
vs 0t order methods samples) for 0" order LQR 1414 43830 [CA202
— significantly less data DeePO (# 1/0O samples) 10 24 48

21



Power systems / electronics case study

inputs

l ’#ﬁ (data-driven
¥+

- = | controller
1(11( &[l(

q

QE

synchronous generator & full-scale converter

outputs

grid

wind turbine becomes
unstable in weak grids
with nonlinear oscillations

converter, turbine, & grid
are a black box for the
commissioning engineer

construct state from time
shifts (5ms sampling) of
(y(t),u(t)) & use DeePO

22



Power systems / electronics case study

oscillation probe &
observed collect data lactivate DeePO
N N
4 Y I
0.965 : I I
. | | |
| I I with DeePO (100 iterations)
—~0.94 ' ' '
5 : : ! / with DeePO |terat|on) A ﬁ
o 1 | |
£ 0.92 , , L
% 0.9 : : :/ A A /(\
2 : : /S VY ‘(/ W\T
Qo088 | | |
-.(_'J 1 | |
© 0.86 - | |
: : : without DeePO
0.84 I I I
! | I | E | |
0 2 4 6 8 10 12
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... sSame In the adaptive setting with excitation

oscillation probe &

observed collect data lactivate DeePO
N N

E 7\ith adaptive DePO ‘ H
» AN AW |

Ak
(A

without DeePO

£0.02F

0]
00}
|

active power

© O

. N | | |
0 2 4 6 8 10 12



Conclusions

« Summary

» model-based pipeline with model-free block: data-driven LQR parametrization
— works well when regularized (note: further flexible regularizations available)

« model-free pipeline with model-based block: policy gradient & sample covariance
— DeePO is adaptive, online, with closed-loop data, & recursive implementation

« academic case studies & can be made useful in power systems/electronics

* Future work
* technicalities: weaken assumptions & improve rates
« control: based on output feedback & for other objectives
« further system classes: stochastic, time-varying, & nonlinear
« open questions: online vs episodic? “best” batch size? triggered?




Papers

model-based pipeline with
model-free elements

On the Role of Regularization in Direct Data-Driven LQR Control

Florian Dorfler, Pietro Tesi, and Claudio De Persis

Abstract— The linear quadratic regulator (LQR) problem is a
cornerstone of control theory and a widely studied benchmark
problem. When a system model is not available, the conven-
tional approach to LQR design is indirect, i.e., based on a
model identified from data. Recently a suite of direct data-
driven LQR design approaches has surfaced by-passing explicit
system identification (SysID) and based on ideas from subspace
methods and behavioral systems theory. In either approach, the

data underlying the design can be taken at face value (certainty-

problems when identifying models from data. They facilitate
finding solutions to optimization problems by rendering them
unique or speeding up algorithms. Aside from such numer-
ical advantages, a Bayesian interpretation of regularizations
is that they condition models on prior knowledge [26], and
they robustify problems to uncertainty [27], [28].

An emergent approach to data-driven control is borne
out of the intersection of behavioral svstems theorv_and

model-free pipeline with
model-based elements

On the Certainty-Equivalence Approach to Direct Data-Driven LQR
Design

Florian Dorfler @, Senior Member, IEEE, Pietro Tesi

, Member, IEEE,

and Claudio De Persis ®, Member, IEEE

Abstract—The linear quadratic regulator (LQR) problem is a
cornerstone of automatic control, and it has been widely studied
in the data-driven setting. The various data-driven approaches
can be classified as indirect (i.e., based on an identified model)
versus direct or as robust (i.e., taking uncertainty into account)
versus certainty-equivalence. Here, we show how to bridge these
different formulations and propose a novel, direct, and regularized
formulation. We start from indirect certainty-equivalence LQR, i.e.,
least-square identification of state-space matrices followed by a
nominal model-based design, formalized as a bilevel program. We
show how to transform this problem into a single-level, regularized,
and direct data-driven control formulation, where the regularizer
accounts for the least-square data fitting criterion. For this novel
formulation, we carry out a robustness and performance analysis
in presence of noisy data. In a numerical case study, we compare
regularizers promoting either robustness or certainty-equivalence,
and we demonstrate the remarkable performance when blending
both of them.

methods [10], [11], [12], reinforcement learning [13], behavioral meth-
ods [14], and Riccati-based methods [15] in the certainty-equivalence
setting as well as [16], [17], [18] in the robust setting. We remark
that the world is not black and white: a multitude of approaches have
successfully bridged the direct and indirect paradigms, such as identi-
fication for control [19], [20], dual control [21], [22], control-oriented
identification [23], and regularized data-enabled predictive control [24].
In essence, these approaches all advocate that the identification and
control objectives should be blended to regularize each other.

An emergent approach to data-driven control is borne out of the
intersection of behavioral systems theory and subspace methods; see
the recent survey [25]. In particular, a result termed the Fundamen-
tal Lemma [26] implies that the behavior of an LTI system can be
characterized by the range space of a matrix containing raw time
series data. This perspective gave rise to implicit formulations (notably
data-enabled predictive control [24], [27], [28]) as well as the design of

sxplicitfeedback policies [141 T151 (161 [17] Both of these are direct

Data-enabled Policy Optimization for the Linear Quadratic Regulator

Feiran Zhao, Florian Dorfler, Keyou You

Abstract—Policy optimization (PO), an essential approach
of reinforcement learning for a broad range of system
classes, requires significantly more system data than indi-
rect (identification-followed-by-control) methods or behavioral-
based direct methods even in the simplest linear quadratic
regulator (LQR) problem. In this paper, we take an initial
step towards bridging this gap by proposing the data-enabled
policy optimization (DeePO) method, which requires only a
finite number of sufficiently exciting data to iteratively solve
the LQR problem via PO. Based on a data-driven closed-

loop parameterization, we are able_to_directly_compute_the

a considerable gap in the sample complexity between PO
and indirect methods, which have proved themselves to be
more sample-efficient [9], [10] for solving the LQR problem.
This gap is due to the exploration or trial-and-error nature
of RL, or more specifically, that the cost used for gradient
estimate can only be evaluated after a whole trajectory is
observed. Thus, the existing PO methods require numerous
system trajectories to find an optimal policy, even in the
simplest LQR setting.

Data-Enabled Policy Optimization for Direct
Adaptive Learning of the LQR

Feiran Zhao, Florian Dérfler, Alessandro Chiuso, Keyou You

Abstract—Direct data-driven design methods for the linear
quadratic regulator (LQR) mainly use offline or episodic data
batches, and their online adaptation has been acknowledged as an
open problem. In this paper, we propose a direct adaptive method
to learn the LQR from online closed-loop data. First, we propose
a new policy parameterization based on the sample covariance
to formulate a direct data-driven LQR problem, which is shown
to be equivalent to the certainty-equivalence LQR with optimal
non-asymptotic guarantees. Second, we design a novel data-
enabled policy optimization (DeePO) method to directly update
the policy, where the gradient is explicitly computed using only
a batch of persistently exciting (PE) data. Third, we establish its
global convergence via a projected gradient dominance property.
Importantly, we efficiently use DeePO to adaptively learn the
LQR by performing only one-step projected gradient descent
per sample of the closed-loop system, which also leads to an
explicit recursive update of the policy. Under PE inputs and for
bounded noise, we show that the average regret of the LQR cost
is upper-bounded by two terms signifying a sublinear decrease

to.

i

Policy
update

K! i iteration

H
Fig. 1. Anillustration of episodic approaches, where h* = (xo, uo, .. ., Zpi)
denotes the trajectory of the i-th episode.

System (4, B)

Direct
:
Controller
K=

7
(Ae, Br) )

Indirect t: time step

Fig. 2. An illustration of indirect and direct adaptive approaches in closed-
loop, where f; is some explicit function.
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