## Virtual Inertia Emulation and Placement in Power Grids

Optimization & Control for Tomorrow's Power Systems (ECC'16)

Florian Dörfler



#### Acknowledgements









B.K. Poolla

C. Arghir

T. Jouini

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich







D. Gross

S. Bolognani

T. Borsche

2/33

#### At the beginning of power systems was . . .



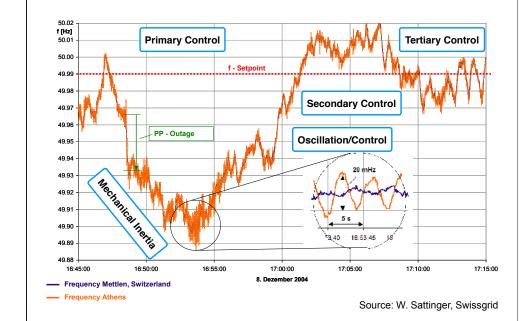
At the beginning was the synchronous machine:

$$M \frac{d}{dt} \omega(t) = P_{\text{generation}}(t) - P_{\text{demand}}(t)$$

change of kinetic energy = instantaneous power balance

 $P_{\text{generation}}$ 

Fact: the AC grid & all of power system operation has been designed around synchronous machines.

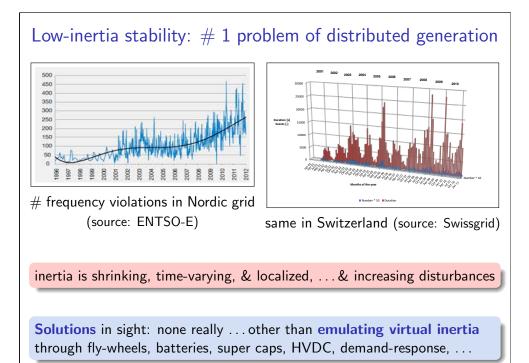


Operation centered around bulk synchronous generation





# Fundamental challenge: operation of low-inertia systems We slowly loose our giant electromechanical low-pass filter: $\mathbf{M} \frac{d}{dt} \, \omega(t) = P_{\mathrm{generation}}(t) - P_{\mathrm{demand}}(t)$ change of kinetic energy = instantaneous power balance $P_{\mathrm{demand}}$



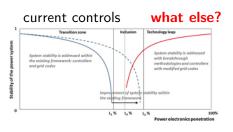
#### Low inertia issues have been broadly recognized

by TSOs, device manufacturers, academia, funding managers, etc.

Massive InteGRATion of power Electronic devices



"The question that has to be examined is: how much power electronics can the grid cope with?" (European Commission)



all options are on the table and keep us busy ...

9/33

#### Virtual inertia emulation

devices commercially available, required by grid-codes, or incentivized through markets



 $\mathsf{M}\, rac{d}{dt}\, \omega(t) = P_{\mathsf{generation}}(t) - P_{\mathsf{demand}}(t) \, pprox \, \mathsf{derivative} \, \mathsf{control} \, \mathsf{on} \, \, \omega(t)$ 

M.P.N van Wesenbeeck<sup>1</sup>, S.W.H. de Haan<sup>1</sup>, Senior member, IEEE, P. Varela<sup>2</sup> and K. Visscher

- ⇒ open Q's: which devices? when to do it? who pays?
- ⇒ focus today: where to do it? how to do it properly?

10 / 33

#### Outline

Introduction

**Novel Virtual Inertia Emulation Strategy** 

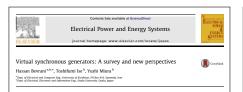
**Optimal Placement of Virtual Inertia** 

Three-Area Case Study

**Conclusions** 

### inertia emulation

#### Challenges in power converter implementations



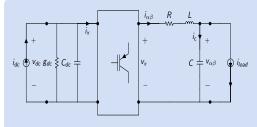
#### Real Time Simulation of a Power System with VSG Hardware in the Loop

- **1** delays in measurement acquisition, signal processing, & actuation
- 2 accuracy in AC measurements (need averaging)
- **3** constraints on currents, voltages, power, etc.
- **o** certificates on stability, robustness, & performance

today: use DC measurement, exploit analog storage, & passive control

11/33

#### Averaged inverter model



#### DC cap & AC filter equations:

$$C_{dc}\dot{v}_{dc} = -G_{dc}v_{dc} + i_{dc} - \frac{1}{2}m^{\top}i_{\alpha\beta}$$

$$C\dot{v}_{\alpha\beta} = -i_{load} + i_{\alpha\beta}$$

$$C\dot{v}_{\alpha\beta} = -Ri_{\alpha\beta} + \frac{1}{2}mv_{dc} - v_{\alpha\beta}$$

modulation:  $i_x = \frac{1}{2}m^{\top}i_{\alpha\beta}$ ,  $v_x = \frac{1}{2}mv_{dc}$ 

passive:  $(i_{dc}, i_{load}) \rightarrow (v_{dc}, v_{\alpha\beta})$ 

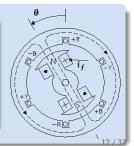
model of a synchronous generator

$$\dot{ heta} = \omega$$

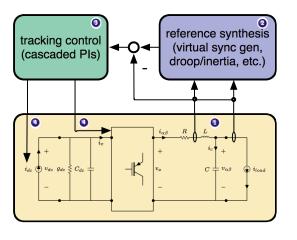
$$M\dot{\omega} = -D\omega + \tau_m + i_{\alpha\beta}^{\top} L_m i_f \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

$$C\dot{v}_{\alpha\beta} = -G_{load} v_{\alpha\beta} + i_{\alpha\beta}$$

$$L_s i_{\alpha\beta} = -Ri_{\alpha\beta} - v_{\alpha\beta} - \omega L_m i_f \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$



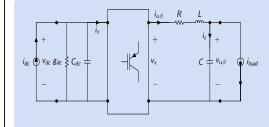
#### Standard power electronics control would continue by



- acquiring & processing of AC measurements
- 2 synthesis of references (voltage/current/power)
- **1** track references at converter terminals
- actuation via emulation (inner loop) and/or via DC source (outer loop)

let's do **something different** (smarter?) today . . .

#### See the similarities & the differences?



#### DC cap & AC filter equations:

$$C_{dc}\dot{v}_{dc} = -G_{dc}v_{dc} + i_{dc} - \frac{1}{2}m^{\top}i_{\alpha\beta}$$

$$C\dot{v}_{\alpha\beta} = -i_{load} + i_{\alpha\beta}$$

$$C\dot{v}_{\alpha\beta} = -Ri_{\alpha\beta} + \frac{1}{2}mv_{dc} - v_{\alpha\beta}$$

modulation:  $i_x = \frac{1}{2} m^{\top} i_{\alpha\beta}$ ,  $v_x = \frac{1}{2} m v_{dc}$ 

passive:  $(i_{dc}, i_{load}) \rightarrow (v_{dc}, v_{\alpha\beta})$ 

model of a synchronous generator

$$\theta = \omega$$

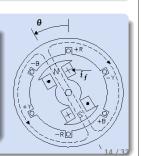
$$M\dot{\omega} = -D\omega + \tau_m + i_{\alpha\beta}^{\top} L_m i_f \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

$$C\dot{v}_{\alpha\beta} = -G_{load} v_{\alpha\beta} + i_{\alpha\beta}$$

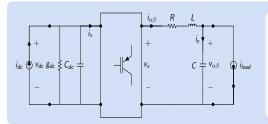
$$L_s i_{\alpha\beta}^{\cdot} = -Ri_{\alpha\beta} - v_{\alpha\beta} - \omega L_m i_f \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

$$C v_{\alpha\beta} = -G_{load} v_{\alpha\beta} + I_{\alpha\beta}$$

$$L_s i_{\alpha\beta} = -R i_{\alpha\beta} - v_{\alpha\beta} - \omega L_m i_f \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$



#### Model matching ( $\neq$ emulation) as inner control loop



#### DC cap & AC filter equations:

$$C_{dc}\dot{v}_{dc} = -G_{dc}v_{dc} + i_{dc} - \frac{1}{2}m^{\top}i_{\alpha\beta}$$

$$C\dot{v}_{\alpha\beta} = -i_{load} + i_{\alpha\beta}$$

$$C\dot{v}_{\alpha\beta} = -Ri_{\alpha\beta} + \frac{1}{2}mv_{dc} - v_{\alpha\beta}$$

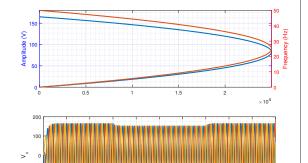
**matching control**: 
$$\dot{\theta} = \eta \cdot v_{dc}$$
,  $m = \mu \cdot \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$  with  $\eta, \mu > 0$ 

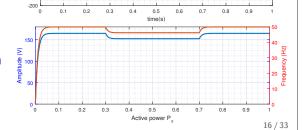
- ⇒ pros: is balanced, uses natural storage, & based on DC measurement
- $\Rightarrow$  virtual machine with  $M=rac{C_{dc}}{\eta^2}$ ,  $D=rac{G_{dc}}{\eta^2}$ ,  $au_m=rac{i_{dc}}{\eta}$ ,  $i_f=rac{\mu}{\eta L_m}$

15 / 33

#### Properties of machine matching control

- quadratic **nose curves**: stationary P vs.  $(|V|, \omega)$
- $\Rightarrow P \le P_{\text{max}} = i_{dc}^2/4G_{dc}$
- $\Rightarrow$   $(P, \omega)$ -droop  $\approx 1/\eta$
- $\Rightarrow$  (P, |V|)-droop  $\approx 1/\mu$
- 2 remains **passive**:  $(i_{dc}, i_{load}) \rightarrow (v_{dc}, v_{\alpha\beta})$
- same stability condition as for generators: supply < transmission + losses</p>

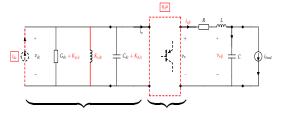




#### Machine matching control is only the inner loop

• solid plug-and-play base for outer control loops via  $i_{dc}$ ,  $\eta$ , &  $\mu$  inputs

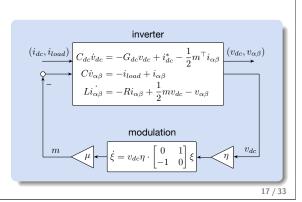
(e.g., virtual governor, PSS, AVR, synthetic inertia, etc.)



PID on  $\emph{i}_{\emph{dc}}$  (droop/inertia) or PSS/AVR via  $\mu$ 

reformulation as virtualadaptive oscillator

(c.f., proportional-resonant control or virtual oscillator control strategies)



optimal inertia placement

#### Network swing equation model

$$m_i \ddot{\theta}_i + d_i \dot{\theta}_i = p_{in,i} - p_{e,i}$$
  
generator swing equations

$$p_{e,i} pprox \sum_{j \in \mathcal{N}} b_{ij} (\theta_i - \theta_j)$$
linearized power flows

 $P_{ ext{generation}} + \eta$   $P_{ ext{demand}}$ 

likelihood of **disturbance** at #i:  $t_i \ge 0$ 

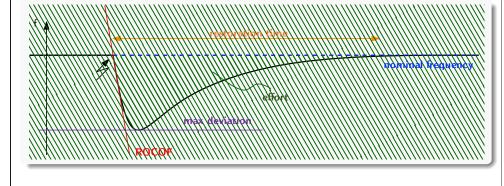
**state space** representation:

$$\begin{bmatrix} \dot{\theta} \\ \dot{\omega} \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & I \\ -M^{-1}L - M^{-1}D \end{bmatrix}}_{A} \begin{bmatrix} \theta \\ \omega \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ M^{-1} \end{bmatrix}}_{B} \mathbf{T}^{1/2} \boldsymbol{\eta}$$

where M, D, & T are diagonal &  $L = L^T$  (Laplacian)

18 / 33

# Performance metric for emulation of rotational inertia



System norm quantifying signal amplifications

disturbances: impulse (fault), step (loss of unit), white noise (renewables)

system pe

performance outputs: integral, peak, ROCOF, restoration time, ...

19 / 33

#### Coherency performance metric & $\mathcal{H}_2$ norm

**Energy** expended by the system to return to synchronous operation:

$$\int_0^\infty \sum\nolimits_{\{i,j\}\in\mathcal{E}} a_{ij} (\theta_i(t) - \theta_j(t))^2 + \sum\nolimits_{i=1}^n s_i \, \omega_i^2(t) \, dt$$

 $\mathcal{H}_2$  system norm interpretation:  $\eta \longrightarrow system \longrightarrow y$ 

- ② impulsive  $\eta$  (faults)  $\longrightarrow$  output energy  $\int_0^\infty \mathbf{y}(t)^\mathsf{T} \mathbf{y}(t) dt$
- ullet white noise  $oldsymbol{\eta}$  (renewables)  $\longrightarrow$  output variance  $\lim_{t \to \infty} \mathbb{E}\left(\mathbf{y}(t)^\mathsf{T}\,\mathbf{y}(t)\right)$

Algebraic characterization of the  $\mathcal{H}_2$  norm

Lemma:  $\mathcal{H}_2$  norm via observability Gramian

$$||G||_2^2 = \operatorname{Trace}(B^{\mathsf{T}}PB)$$

where P is the observability Gramian  $P=\int_0^\infty e^{A^\mathsf{T} t} Q e^{At} \ dt$ 

- ▶ P solves a Lyapunov equation:  $PA + A^TP + Q = 0$
- ► A has a zero eigenvalue → restricts choice of Q

$$y = \left[egin{array}{cc} Q_1^{1/2} & 0 \ 0 & Q_2^{1/2} \end{array}
ight] \left[egin{array}{cc} heta \ \omega \end{array}
ight] \qquad Q_1^{1/2} \, \mathbb{1} = 0$$

▶ P is unique for  $P[1 \ 0] = [0 \ 0]$ 

20 / 33

#### Problem formulation

```
\begin{array}{ll} \underset{P,\,m_i}{\text{minimize}} & \operatorname{Trace}(B^\mathsf{T}PB) & \to \operatorname{performance\ metric} \\ \text{subject\ to} & \sum_{i=1}^n m_i \leq m_{\operatorname{bdg}} & \to \operatorname{budget\ constraint} \\ & \underline{m_i} \leq m_i \leq \overline{m_i}\,, \ i \in \{1,\dots,n\} & \to \operatorname{capacity\ constraint} \\ & PA + A^\mathsf{T}P + Q = 0 & \to \operatorname{observability\ Gramian} \\ & P\left[\mathbb{1}\ \mathbb{0}\right] = \left[\mathbb{0}\ \mathbb{0}\right] & \to \operatorname{uniqueness} \end{array}
```

#### Insights

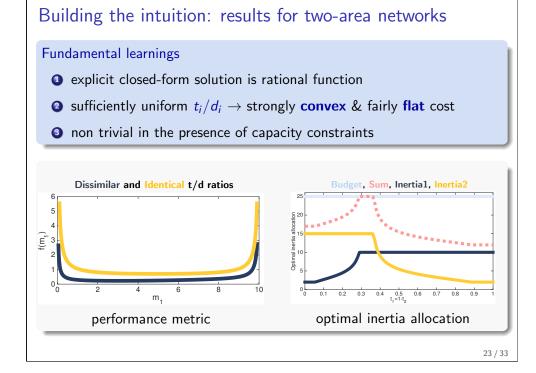
- m appears as  $m^{-1}$  in system matrices A, B
- 2 product of B(m) & P in the objective
- 3 product of A(m) & P in the constraint

⇒ large-scale & non-convex

22 / 33

# optimal placement of virtual inertia

where would you place the inertia?
uniform, max capacity, near disturbance?
the more inertia the better?

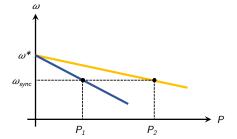


#### Closed-form results for cost of primary control

#### $P/\dot{\theta}$ primary droop control

$$(\omega_i - \omega^*) \propto (P_i^* - P_i(\theta))$$

$$\updownarrow$$
 $D_i \dot{\theta}_i = P_i^* - P_i(\theta)$ 



(can also model effect of PSS control)

Primary control effort  $\rightarrow$  accounted for by integral quadratic cost

$$\int_0^\infty \dot{\theta}(t)^\mathsf{T} D \, \dot{\theta}(t) \, dt$$

which is the  $\mathcal{H}_2$  performance for the penalties  $Q_1^{1/2}=0$  and  $Q_2^{1/2}=D$ 

24 / 33

#### Primary control ... cont'd

**Theorem:** the primary control effort optimization reads equivalently as

minimize 
$$\sum_{i=1}^{n} \frac{t_i}{m_i}$$
 subject to 
$$\sum_{i=1}^{n} m_i \leq m_{\text{bdg}}$$
 
$$\underline{m_i} \leq m_i \leq \overline{m_i}, \quad i \in \{1, \dots, n\}$$

Key take-away is **disturbance matching**:

- ▶ optimal allocation  $\propto \sqrt{t_i}$  or  $m_i = \min\{m_{\text{bdg}}, \overline{m_i}\}$
- optimal allocation independent of network topology

Location & strength of disturbance are crucial solution ingredients

25 / 33

#### Robust inertia allocation

empirical disturbance distributions available but we want to prepare for "rare events"

minimize maximize  $P, m_i$  Trace $(B(\mathbf{t}_i^{1/2})^\mathsf{T} P B(\mathbf{t}_i^{1/2}))$   $\rightarrow$  robust performance subject to  $T \in \mathbb{T}$   $\rightarrow$  disturbance family  $t_i \geq 0 \ \forall i \ \& \ \sum_{i=1}^n t_i = 1 \ \rightarrow$  normalization inertia budget, capacities, & Lyapunov equation

#### Key insights:

- ▶ inner maximization problem is **linear** in *T*
- ⇒ min-max can be converted to minimization by duality
- valley filling solution for primary control metric:

$$t_i^{\star}/m_i^{\star} = const.$$
 (up to constraints)

# numerical method for the general case

#### Taylor & power series expansions

**Key idea**: scalar series expansion at  $m_i$  in direction  $\mu_i$ :

$$rac{1}{m_i + oldsymbol{\delta}\mu_i} = rac{1}{m_i} - rac{oldsymbol{\delta}\mu_i}{m_i^2} + \mathcal{O}(oldsymbol{\delta}^2)$$

 $\Rightarrow$  expand system matrices via **Taylor series** in direction  $\mu$ :

$$\mathsf{A}(m+\delta\mu) = \mathsf{A}^{(0)}_{(m,\mu)} + \mathsf{A}^{(1)}_{(m,\mu)}\delta + \mathcal{O}(\delta^2) \quad , \quad \mathsf{B}(m+\delta\mu) = \dots$$

 $\Rightarrow$  expand observability Gramian via **power series** in direction  $\mu$ :

$$P(m + \delta \mu) = P_{(m,\mu)}^{(0)} + P_{(m,\mu)}^{(1)} \delta + \mathcal{O}(\delta^2)$$

Magic happens: the Lyapunov equation decouples

$$0 = \delta^{0} \left( P^{(0)} A^{(0)} + A^{(0)\top} P^{(0)} + Q \right) +$$

$$\delta^{1} \left( P^{(1)} A^{(0)} + A^{(0)\top} P^{(1)} + \left( P^{(0)} A^{(1)} + A^{(1)\top} P^{(0)} \right) \right) + \mathcal{O}(\delta^{2})$$

# results for a three-area case study

#### Explicit gradient computation

**1** nominal Lyapunov equation for  $\mathcal{O}(\delta^0)$ :

$$\mathbf{P^{(0)}} = \mathsf{Lyap}(\mathbf{A^{(0)}}, \mathbf{Q})$$

2 perturbed Lyapunov equation for  $\mathcal{O}(\delta^1)$  terms:

$$P^{(1)} = Lyap(A^{(0)}, P^{(0)}A^{(1)} + A^{(1)}^TP^{(0)})$$

**3** expand objective at m in direction  $\mu$ :

$$\mathsf{Trace}(B(m)^{\mathsf{T}} \mathsf{P}(m) B(m)) = \mathsf{Trace}((\ldots) + \delta(\ldots)) + \mathcal{O}(\delta^2)$$

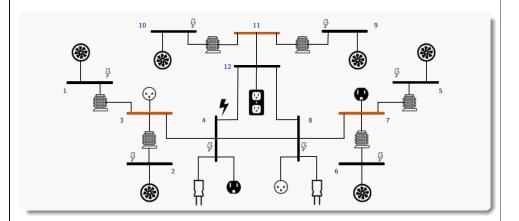
• gradient: Trace $(2 * B^{(1)^T} P^{(0)} B^{(0)} + B^{(0)^T} P^{(1)} B^{(0)})$ 

 $\Rightarrow$  use favorite method for reduced optimization problem with explicit gradient & without Lyapunov constraint

28 / 33

#### Modified Kundur case study: 3 areas & 12 buses

transformer reactance 0.15 p.u., line impedance (0.0001+0.001i) p.u./km

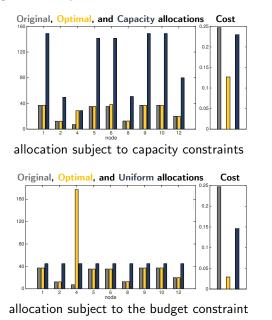


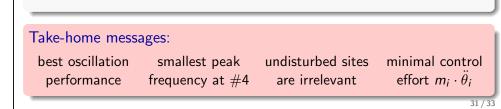
uniform deviation from sync as **performance metric**:  $Q = \begin{bmatrix} I_n - \frac{1}{n} \mathbb{1} \mathbb{1}^T \\ I_n \end{bmatrix}$ 

#### Heuristics outperformed by $\mathcal{H}_2$ - optimal allocation

#### Scenario: disturbance at #4

- locally optimal solution outperforms heuristic max/uniform allocation
- ▶ optimal allocation ≈ matches disturbance
- inertia emulation at all undisturbed nodes is actually detrimental
- ⇒ location of disturbance & inertia emulation matters





Eye candy: time-domain plots of post fault behavior

Freq #4

Angle Diff.

Original, Optimal, and Uniform allocations

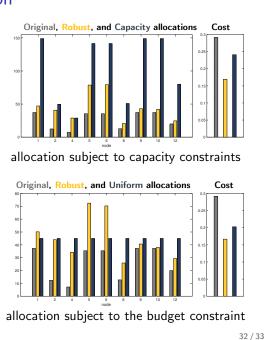
Freq #5

Control Effort

#### Robust min-max allocation

# **Scenario:** fault (impulse) can occur at any single node

- disturbance set  $T \in \mathbb{T} = \{e_1 \cup \cdots \cup e_{12}\}$
- ⇒ min / max over convex hull
- robust inertia allocation outperforms heuristics
- ▶ results become more intuitive: the more inertia (capacity & budget) the better & valley-filling property



# conclusions

#### **Conclusions**

Where to do it?

- $\bullet$   $\mathcal{H}_2$ -optimal (non-convex) allocation
- 2 closed-form results for cost of primary control
- numerical approach via gradient computation

**How** to do it?

- down-sides of naive inertia emulation
- 2 novel machine matching control

What else to do? Inertia emulation is ...

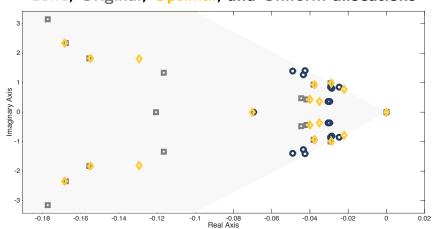
- decentralized, plug'n'play (passive), grid-friendly, user-friendly, . . .
- suboptimal, wasteful in control effort, & need for new actuators

33 / 33

## appendix

#### Spectral perspective on different inertia allocations

Cone, Original, Optimal, and Uniform allocations



- $\mathbf{m} = \mathbf{m} \rightarrow \text{best damping asymptote } \& \text{ best damping ratio}$
- spectrum holds only partial information !!

#### The planning problem

sparse allocation of limited resources

 $\ell_1\text{-regularized}$  inertia allocation (promoting a sparse solution):

minimize 
$$J_{\gamma}(\mathbf{m}, \mathbf{P}) = \|G\|_{2}^{2} + \gamma \|\mathbf{m} - \underline{\mathbf{m}}\|_{1}$$
 subject to 
$$\sum_{i=1}^{n} m_{i} \leq m_{\mathrm{bdg}}$$
 
$$\underline{m_{i}} \leq m_{i} \leq \overline{m_{i}} \quad i \in \{1, \dots, n\}$$
 
$$PA + A^{\mathsf{T}}P + Q = 0$$
 
$$P[\mathbb{1} \ \mathbb{0}] = [\mathbb{0} \ \mathbb{0}]$$

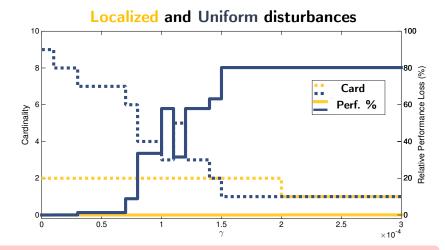
where  $\gamma \geq 0$  trades off sparsity penalty and the original objective

#### **Highlights:**

- regularization term is linear & differentiable
- 2 gradient computation algorithm can be used with some tweaking

#### Relative performance loss (%) as a function of $\gamma$

0% o optimal allocation, 100% o no additional allocation



- **1** uniform disturbance  $\Rightarrow \exists \gamma$ **1.3%** loss  $\equiv$ **(9**  $\rightarrow$  **7)**
- **2** localized disturbance  $\Rightarrow$  (2  $\rightarrow$  1) without affecting performance

#### Uniform disturbance to damping ratio

power sharing o  $extbf{d} \propto P^*$ , assuming  $extbf{t} \propto$  source rating  $P^*$ 

Theorem: for  $t_i/d_i=t_j/d_j$  the allocation problem reads equivalently as

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^n \frac{s_i}{m_i} \\ \text{subject to} & \sum_{i=1}^n m_i \leq m_{\text{bdg}} \\ & \underline{m_i} \leq m_i \leq \overline{m_i}, \ i \in \{1,\dots,n\} \end{array}$$

#### Key takeaways:

- optimal solution independent of network topology
- allocation  $\propto \sqrt{s_i}$  or  $m_i = \min\{m_{\text{bdg}}, \overline{m_i}\}$

What if freq. penalty  $\propto$  inertia?  $\rightarrow$  norm independent of inertia

#### Taylor & power series expansions

Key idea: expand the performance metric as a power series in m

$$||G||_2^2 = \operatorname{Trace}(B(m)^{\mathsf{T}} \mathbf{P}(m) B(m))$$

**Motivation**: scalar series expansion at  $m_i$  in direction  $\mu_i$ :

$$rac{1}{\left(m_i+oldsymbol{\delta}\mu_i
ight)}=rac{1}{m_i}-rac{oldsymbol{\delta}\mu_i}{m_i^2}+\mathcal{O}(oldsymbol{\delta}^2)$$

**Expand** system matrices in direction  $\mu$ , where  $\Phi = \operatorname{diag}(\mu)$ :

$$\mathbf{A}_{(\mathbf{m},\mu)}^{(0)} = \begin{bmatrix} 0 & I \\ -M^{-1}L & -M^{-1}D \end{bmatrix}, \ \mathbf{A}_{(\mathbf{m},\mu)}^{(1)} = \begin{bmatrix} 0 & 0 \\ \Phi M^{-2}L & \Phi M^{-2}D \end{bmatrix}$$
$$\mathbf{B}_{(\mathbf{m},\mu)}^{(0)} = \begin{bmatrix} 0 \\ M^{-1}T^{1/2} \end{bmatrix}, \ \mathbf{B}_{(\mathbf{m},\mu)}^{(1)} = \begin{bmatrix} 0 \\ -\Phi M^{-2}T^{1/2} \end{bmatrix}$$

#### Taylor & power series expansions cont'd

**Expand** the observability Gramian as a power series in direction  $\mu$ 

$$\mathbf{P}(m) = \mathbf{P}(m + \delta\mu) = \mathbf{P}_{(m,\mu)}^{(0)} + \mathbf{P}_{(m,\mu)}^{(1)} \delta + \mathcal{O}(\delta^2)$$

#### Formula for gradient in direction $\mu$

- **1** nominal Lyapunov equation for  $\mathcal{O}(\delta^0)$ :  $\mathbf{P^{(0)}} = \mathbf{Lyap}(\mathbf{A^{(0)}}, \mathbf{Q})$
- 2 perturbed Lyapunov equation for  $\mathcal{O}(\delta^1)$  terms:

$$\mathbf{P^{(1)}} = \mathsf{Lyap}(\mathbf{A^{(0)}}, \mathbf{P^{(0)}}\mathbf{A^{(1)}} + \mathbf{A^{(1)}}^\mathsf{T}\mathbf{P^{(0)}})$$

**3** expand objective in direction  $\mu$ :

$$||G||_2^2 = \operatorname{Trace}(B(m)^{\mathsf{T}} \mathbf{P}(m)B(m)) = \operatorname{Trace}((\ldots) + \delta(\ldots)) + \mathcal{O}(\delta^2)$$

**4** gradient:  $Trace(2 * B^{(1)^T}P^{(0)}B^{(0)} + B^{(0)^T}P^{(1)}B^{(0)})$ 

## Heuristics outperformed also for uniform disturbance Original, Optimal, and Capacity allocations Cost Scenario: uniform disturbance **Heuristics** for placement: max allocation in case of capacity constraints uniform allocation in case allocation subject to capacity constraints of budget constraint Original, Optimal, and Uniform allocations Cost Results & insights: locally optimal solution **outperforms** heuristics 2 optimal solution $\neq$ max inertia at each bus allocation subject to the budget constraint

