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At the beginning of power systems was . ..

At the beginning was the synchronous machine: Pgeneration
/_\
d
M aw(t) - Pgeneration(t) - Pdemand(t) w
change of kinetic energy = instantaneous power balance -
Pdernand

Fact: the AC grid & all of power system operation
has been designed around synchronous machines. J
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Operation centered around bulk synchronous generation
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Distributed /non-rotational /renewable generation on the rise

Germany
17 August 2014 wind
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Installed renewable generation
Germany 2013

solar 24 GW

wind 156W
hydro + biomass

Transmission grid Distribution grid

Source: Renewables 2014 Global Status Report 55

A few (of many) game changers ...

synchronous generator

new workhorse scaling

location & distributed implementation

oo

Mo, it lowsd (sl 1y S

P

Generation Transmission

tag i
distribution distribution

Almost all operational problems can principally be resolved ... but one (7)J

Fundamental challenge: operation of low-inertia systems

We slowly loose our giant electromechanical low-pass filter:

Pgeneration

N

d w
M a W(t) = Pgeneration(t) - 'Ddemand(t)
change of kinetic energy = instantaneous power balance P‘\/
demand
4‘30 EIS 1IO 1‘5 2‘0 2‘5 3‘0 35
Time ¢ [s
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# frequency violations in Nordic grid
(source: ENTSO-E)

same in Switzerland (source: Swissgrid)

inertia is shrinking, time-varying, & localized, ... & increasing disturbancesJ

Solutions in sight: none really ...other than emulating virtual inertia
through fly-wheels, batteries, super caps, HVDC, demand-response, ... J
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Low inertia issues have been broadly recognized

by TSOs, device manufacturers, academia, funding managers, etc.

Massive InteGRAT ion of power Electronic devices J

with?”

“The question that has to be
examined is: how much power
electronics can the grid cope

current controls

all options are on the table and keep us busy ...

what else?
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Virtual inertia emulation

devices commercially available, required by grid-codes, or incentivized through markets

[ TIONS ON | VOL 26, N0, 2, MAY 2013
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YIproY . . : Por Implementing Virtual Inertia in DFIG-Based
in Microgrids Using Virtual Inertia : .
- . Wind Power Generation
Nimish Soni, Student Member, IEEE, Suryanarayana Doolla, Member, IEEE, and
Mukul C. Chandorkar, Member, IEEE jmmadreza Fakhari Arani, Student Member, IEEE, and Ehab F. El-Saadany, Senior Member, IEEE |
Virtual synchronous generators: A survey and new perspectives| Dynamic Frequency Control Support; a Virtual
Hassan Bevrani ="', Toshifumi Ise", Yushi Miura” Inertia Provided by Distributed Energy Storage
o e et to Isolated Power Systems
) : i i authier Delille, Member, IEEE, Bruno Frangois, Senior Member, IEEE, and Gilles Malarange
[nertia Emulation Control Strategy for [ Grid Tied Converter with Virtual Kinetic
VSC-HVDC Transmission Systems Storage
Jiebei Zhu, Campbell D. Booth, Grain P. Adam, Andrew J. Roscoe, and Chris G. Bright
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d
M Ew(t) = Pgeneration(t)—Pdemand(t) =~ derivative control on w(t) J

= open Q’s: which devices? when to do it? who pays?

= focus today: where to do it? how to do it properly?
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Outline

inertia emulation




Challenges in power converter implementations

[ Real Time Simulation of a Power System with

Virtual synchronous generators: A survey and new perspectives W

" Toshifumi Yushi Miura”

@ delays in measurement acquisition, signal processing, & actuation
@ accuracy in AC measurements (need averaging)
© constraints on currents, voltages, power, etc.

@ certificates on stability, robustness, & performance

Averaged inverter model

s R L . .
» Wy DC cap & AC filter equations:
+ : + kY 4 , . 1 +.
CacVde = —GdeVde + lde — EmT/aﬁ
e ® Ve 8de 3 Cge — { vy C T Vap lload . i i
CVaB = —ljoad + lap
- B - .- . 1
Ling = —Riag + Emvdc — Vag

v

modulation: i, = %mTiaﬁ, V = %mvch passive: (ige, fload) — (Vde, va/g)J

v

model of a 0 =w

synchronous . T, . |—sin(d)
Mo = —Dw + Tm + iqgLmif

generator cos(0)

today: use DC measurement, exploit analog storage, & passive control
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C‘./aﬁ = _G/oadVa,B + ioz/a’

Lsio;ﬁ = fRI.ag — VaBg — wLmif |: COS(@)

— sin(H)}

12
7

Standard power electronics control would continue by

Q)

()

. reference synthesis
tracking control O (virtual syr¥ c gen,
(cascaded Pls) droop/inertia, etc.)

\_
A A
(o o ] .o )
B — v
{' + + =y
ide ® Vde 9dc 2 Cue = —|# Vs C == Yap D iload
\_ J

acquiring & processing
of AC measurements

synthesis of references
(voltage/current/power)

track references at
converter terminals

actuation via emulation
(inner loop) and/or via
DC source (outer loop)

let's do something different (smarter?) today ... |
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See the similarities & the differences ?

ige ® Ve 8de S Cye =

{< v C=Vol @ iad

modulation: i, = %mTiaﬁ, V = %mvch passive: (ige, foad) — (Vde, vaﬂ)J

DC cap & AC filter equations:
. . 1 .
CacVde = —GdeVde + lde — EmT’aﬁ
C‘-/aﬂ - _i/oad + iaB

. 1
Ll'ag = —Rl'aﬁ aF Emvdc — Vagp

v

w

model of a 0=
synchronous . T,

Mw = —Dw + T + i, 5L mi
generator @ ey { cos(f)

C‘./a/a’ = 7G/oadVa,8 + ioz,B

Lsing = —Ring — Vap — wlnis {

. sin(e)}

g
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Model matching (# emulation) as inner control loop

o R L o .
» Y DC cap & AC filter equations:
+ : + )+ . . 1 .
CacVde = —GdeVde + lde — EmT g
ige ® Vde 8de S Cye = { Vx C = Yap iload ) ) i
CVaB = —ljoad + lap
B ) B - . 1
Llag = —Rlaﬁ + Emvdc — Vagp
v
- —sin(#)
matching control: 0 =7 - vg., m=p - with >0
g 1 Vdc 2 [ cos(h) } W
= pros: is balanced, uses natural storage, & based on DC measurement
= virtual machine with M = % D= %2& Tm = 1;7& ir = Fﬁ
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Properties of machine matching control

@ quadratic nose curves:
stationary P vs. (|V],w)

Amplitude (V)

= P < Pmax = i3./4Gyc

40

L
@
8

N
8
Frequency (Hz)

3

T L
0 0.5 1 15 2

= (P,w)-droop ~ 1/n

0

4

= (P,|V|)-droop =~ 1/

g

@ remains passive:

st

. . 200 )
(/dCa ’/oad) — (Vdm Vaﬂ) ° 4 fimats)
s —
150 ~ — 7
s

© same stability condition g«

as for generators: supply £,

< transmission + losses P |

0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1

Active power P

Machine matching control is only the inner loop

o iyg R L
@ solid plug-and-play base . * ;i -
for outer control loops Wi v [Jorne o o | G T¢ Qi
via ige, 1, & p inputs :
(e.g., virtual governor, PSS, - R

AVR, synthetic inertia, etc.) pjp op ige (droop/inertia) or PSS/AVR via p

inverter
reformulation as virtual e
(2] (4de» ftoad) Cactge = —Gaevae + il — lmTia@ (Vde, Vap)
. . — 2 —
& adaptive oscillator Ol iy = —itond + i
= . 1
(c.f., proportional-resonant Liap = —Riap + 5mvac — vag

control or virtual oscillator

modulation

m < & = vaen - LOI (1)} =< A

control strategies)
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optimal inertia placement




Network swing equation model

me L d9 — p'n,' _ pe7.
o o . o . I Pgeneration+77
generator swing equations —
w
Pe,i = X jen bij(0i — 0;)
linearized power flows
Pdemand

likelihood of disturbance at #i: t; > 0
state space representation:

9 0 / 0 0
o) = [ caamo )] (0] + (] 7

-~

A B

where M, D, & T are diagonal & L = LT (Laplacian)
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Performance metric for emulation of rotational inertia

fa \

restoration time

nominal frequency

effort

max deviation

\ ROCOF

System norm quantifying signal amplifications

performance outputs:
system integral, peak, ROCOF,
restoration time, . ..

(fault), step (loss of unit),
white noise (renewables)

disturbances: impulse
—>
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Coherency performance metric & H, norm

Energy expended by the system to return to synchronous operation:

/ 2 jyee08) = 0i(1))° X J

H, system norm interpretation: 1) _> Y

1/2
O performance output: y= [QO Q?/zl [z] J

@ impulsive 7 (faults) — output energy [;° y(t)Ty(t) dt

© white noise 7 (renewables) — output variance tlim E (y(t)"y(t))
—00
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Algebraic characterization of the > norm

Lemma: H, norm via observability Gramian
|G||3 = Trace(B' PB)
where P is the observability Gramian P = ["e ATt QeAt dit
» P solves a Lyapunov equation: PA+ATP+ Q=0

» A has a zero eigenvalue — restricts choice of Q

Q1/2 0 0 1/2 4
y:[ 0 Qé“] [w] %

» P is unique for P[10] = [00]

21/33




Problem formulation

minimize  Trace(B'PB) — performance metric

Pymi
. n .
subject to Zi:l m; < Mpdg — budget constraint
m; <m; <mj, i €{l,...,n} — capacity constraint
PA+ATP+Q=0
P[10] =[00]

— observability Gramian

— uniqueness

Insights

Lin system matrices A, B

© m appears as m—
large-scale &
= g

@ product of B(m) & P in the objective TR

@ product of A(m) & P in the constraint

22/33

optimal placement
of virtual inertia

where would you place the inertia?
uniform, max capacity, near disturbance?

the more inertia the better?

Building the intuition: results for two-area networks

Fundamental learnings
O explicit closed-form solution is rational function
Q sufficiently uniform t;/d; — strongly convex & fairly flat cost

© non trivial in the presence of capacity constraints

Dissimilar and , Inertial,

t/d ratios

o
&

N
S

o

>

Optimal inertia allocation

f(m,)
o - N w S~ 0 o

-

0 2 4 6 8 10 0

|

m,

performance metric optimal inertia allocation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t,=11,
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Closed-form results for cost of primary control

w
P /6 primary droop control
(wi —w™) o< (Pi™ = Pi(0)) o
-3 .
D:6; = Pj* — P;(0)

Primary control effort — accounted for by integral quadratic cost

/Oo 0(6)TD é(t) dt }
0

which is the H, performance for the penalties Q11/2 =0and Q21/2 =D

v
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Primary control ... cont'd

Theorem: the primary control effort optimization reads equivalently as
S no
minimize —
m;j Z[:l mj

n
Zi—l mj < Mpdg

ie{l,...,n}

subject to

m; < m; < mj,

Key take-away is disturbance matching:
» optimal allocation o< /t; or m; = min{myqe, m;}

» optimal allocation independent of network topology

Location & strength of disturbance are crucial solution ingredients J
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Robust inertia allocation

empirical disturbance distributions available but we want to prepare for “rare events”

-
minimize maximize Trace(B(til/z) PB(til/2

P$mi t

)) — robust performance

subject to TeT — disturbance family
- n - -
ti >0Vi & Zi:l t; = 1 — normalization
inertia budget, capacities, & Lyapunov equation
Key insights:

> inner maximization problem is linear in T
= min-max can be converted to minimization by duality
» valley filling solution for primary control metric:

t*/m* = const. (up to constraints)
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numerical method for
the general case




Taylor & power series expansions

Key idea: scalar series expansion at m; in direction p;:

1 1 oy 2
movan m w00

= expand system matrices via Taylor series in direction u:

A(m+ou) =AD) +AD 6+0(6%) |, B(m+dp)=...

= expand observability Gramian via power series in direction p:

0
P(m+6p) = P((m{u) + P((;{ma +0(8?)

Magic happens: the Lyapunov equation decouples
0 =40 (p(O) A 1 AO)T p(0) 4 Q) X
5L (,D(l) A©) 4 AOT p(1) <P(0) AL L AMT P(0)>) +0(8?)

/33

Explicit gradient computation

@ nominal Lyapunov equation for O(5°):
PO = Lyap(A® Q)

@ perturbed Lyapunov equation for O(6!) terms:
PO = Lyap(A©  POAD 1 AD T p(0)

© expand objective at m in direction p:

Trace(B(m) P(m)B(m)) = Trace((...) + d(...)) + O(5?)

O gradient: Trace(2 x BWT PO BO) 4 gO)T p(1) g(0))

= use favorite method for reduced optimization problem
with explicit gradient & without Lyapunov constraint

results for a
three-area case study

28 /33
Modified Kundur case study: 3 areas & 12 buses
transformer reactance 0.15 p.u., line impedance (0.0001+0.001i) p.u./km
_ 1917
uniform deviation from sync as performance metric: Q = {" n / ]
n
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Heuristics outperformed by 7, - optimal allocation

Original, , and Capacity allocations Cost
Scenario: disturbance at #4
0.2
120
> locally optimal solution ors
. . 80
outperforms heuristic
max/uniform allocation wf | | .
: : I{ ol IH IH | I( I{ ] I
» optimal allocation =~ T2 e s e Te e 0w

node

matches disturbance allocation subject to capacity constraints

» inertia emulation at all Original, , and Uniform allocationos25 Cost
undisturbed nodes is o0 -
actually detrimental 20 .

= location of disturbance & ” ] e
inertia emulation matters 0 I I I I I I I I 1005
bl s

node

allocation subject to the budget constraint
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Eye candy: time-domain plots of post fault behavior

Original, , and Uniform allocations
Angle Diff. Freq #4 Freq #5 Control Effort
005 0.15 5x0” 2
0.04 15
0.03 0.1 Y
0.02 31 s
0.01 0.05
' ( N 2 0 4&!:::’ ''''''''''''''''''
ol | “ R K

1 -05

-0.01 0 Z=CT e s l‘,
-1
-0.02 ol 8o
AVESS
-0.03 -0.05 ‘ w" s
0.04 ! 2
005 50 100 w0 o 50 100 150 2 50 100 w0 2% 50 100 150
Time(s) Time(s) Time(s) Time(s)
v
Take-home messages:

best oscillation smallest peak  undisturbed sites minimal control

performance frequency at #4 are irrelevant effort m; - 0;

v
31/33

Robust min-max allocation

Original, , and Capacity allocations  Cost

Scenario: fault (impulse) can
occur at any single node

100

» disturbance set
TET:{elu-”Uelz}

Il -

10 12

Ll

od

= min / max over convex hull \
allocation subject to capacity constraints

6

> robust inertia allocation

outperforms heuristics Original, , and Uniform allocations . Cost
> results become more o
intuitive: the more |
inertia (capacity & o ‘ 1
budget) the better & ) ‘ ‘ H ‘ ‘ H | o
valley-filling property . ‘ I (1 Eial I 1B I |

allocation subject to the budget constraint
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conclusions




Conclusions

Where to do it?
© #-optimal (non-convex) allocation
@ closed-form results for cost of primary control

© numerical approach via gradient computation

How to do it?
@ down-sides of naive inertia emulation

© novel machine matching control

What else to do? Inertia emulation is . ..
@ decentralized, plug'n’play (passive), grid-friendly, user-friendly, ...

@ suboptimal, wasteful in control effort, & need for new actuators

appendix
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Spectral perspective on different inertia allocations
, Original, , and Uniform allocations
. - T T T T T j
2 . -
O
o °cg
. > Qo |
E L
§o a ) B
2 o) O
§-1 & f,‘O -
o o®
2 o -
B |
-0.18 -0.16 -0.14 -0.12 -0.1 -D.‘DB 0. ‘06 O.‘U4 -04‘02 (‘J 0.02
Real Axis

e m = m — best damping asymptote & best damping ratio J

e spectrum holds only partial information !!

The planning problem

sparse allocation of limited resources

{1-regularized inertia allocation (promoting a sparse solution):

minimize Jy(m, P) = [|G[3 +~[m —m|y
> Mj
. n
subject to 21:1 m; < Mpgg
ﬂgmlgﬁl ie{la'-'an}
PA+ATP+Q=0
P[10] =[00]

where v > 0 trades off sparsity penalty and the original objective

Highlights:
@ regularization term is linear & differentiable

@ gradient computation algorithm can be used with some tweaking

v




Relative performance loss (%) as a function of ~

0% — optimal allocation, 100% — no additional allocation

and Uniform disturbances

10 : : : 100
L]
.

8+ 80 9
12}
.. Card 8
> 6F _ Perf. % | 60 g
s - 5
S E
@ L
O 4r 440 ©
o
o
2
F
2 120 2

IIIIIIIIIIIIIIIIIIIIIIIIIIII L |

0 ; . ; ; ; 410

0 05 1 15 2 25 3

gl x10*

© uniform disturbance = 3 1.3% loss = (9 — 7)
@ localized disturbance = (2 — 1) without affecting performance

|

Uniform disturbance to damping ratio

power sharing — d oc P*, assuming t o source rating P*

Theorem: for t;/d; = t;/d; the allocation problem reads equivalently as

.. n 5
minimize E R
mj =1 mj
n
E iy Mi S Modg

m; < m; <, ie{l,...,n}

subject to

Key takeaways:

@ optimal solution independent of network topology

@ allocation o< /s; or m; = min{myqge, M;}

What if freq. penalty « inertia? — norm independent of inertia

J

Taylor & power series expansions

Key idea: expand the performance metric as a power series in m

IGII3 = Trace(B(m)"P(m)B(m))

Motivation: scalar series expansion at m; in direction pu;:

1 _ 1 oui 2
(mi+dpi) mj m? O )J

Expand system matrices in direction u, where ® = diag(pu):

A0 _ 0 / AL 0 0
(mu) = | =ML —M7ID| " Tma) T [oM2L OM—2D
B _| O B _ 0

(m,p) M-L1T1/2| * Z(m,p) —_dM2T1/2

Taylor & power series expansions cont'd

Expand the observability Gramian as a power series in direction p

P(m) = P(m+0ou) =Pl +PL)

5+ 0(8%)

Formula for gradient in direction p
@ nominal Lyapunov equation for O(8°): P(9) = Lyap(A(®) | Q)
@ perturbed Lyapunov equation for 0(61) terms:

PO = Lyap(A©  POAD 1 AD) T p(0))
© expand objective in direction p:
|G||3 = Trace(B(m)"P(m)B(m)) = Trace((...) +d(...)) + O(8°)

Q gradient: Trace(2 BL pOBO) 1 B(O)TP(I)B(O))




Heuristics outperformed also for uniform disturbance

Original, , and Capacity allocations  Cost
150

3
8

a
g

il d

node

allocation subject to capacity constraints

Original, , and Uniform allocations  Cost
90

o‘ﬂm”|dUWﬂ

allocation subject to the budget constraint

0.15

@
8
°

05

6
d

Scenario: uniform disturbance

Heuristics for placement:

@ max allocation in case of
capacity constraints

@ uniform allocation in case
of budget constraint

Results & insights:

@ locally optimal solution
outperforms heuristics

@ optimal solution # max
inertia at each bus
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