Virtual Inertia Emulation and Placement in Power Grids

Optimization & Control for Tomorrow's Power Systems (ECC'16)

Florian Dörfler

Acknowledgements

B.K. Poolla

C. Arghir

T. Jouini

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

D. Gross

S. Bolognani

T. Borsche

2/33

At the beginning of power systems was . . .

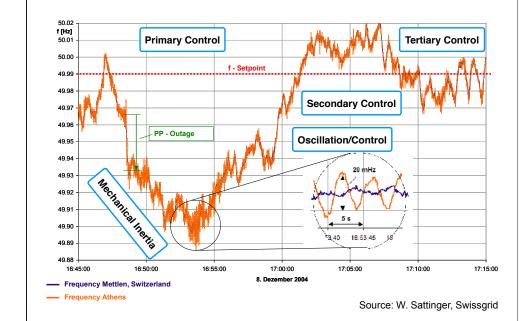
At the beginning was the synchronous machine:

$$M \frac{d}{dt} \omega(t) = P_{\text{generation}}(t) - P_{\text{demand}}(t)$$

change of kinetic energy = instantaneous power balance

 $P_{\text{generation}}$

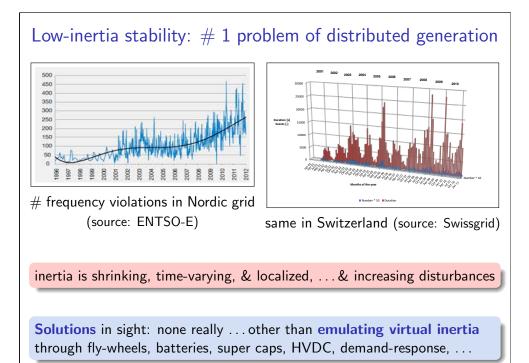
Fact: the AC grid & all of power system operation has been designed around synchronous machines.



Operation centered around bulk synchronous generation



Fundamental challenge: operation of low-inertia systems We slowly loose our giant electromechanical low-pass filter: $\mathbf{M} \frac{d}{dt} \, \omega(t) = P_{\mathrm{generation}}(t) - P_{\mathrm{demand}}(t)$ change of kinetic energy = instantaneous power balance P_{demand}

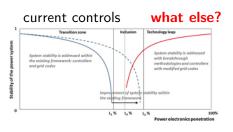


Low inertia issues have been broadly recognized

by TSOs, device manufacturers, academia, funding managers, etc.

Massive InteGRATion of power Electronic devices

"The question that has to be examined is: how much power electronics can the grid cope with?" (European Commission)



all options are on the table and keep us busy ...

9/33

Virtual inertia emulation

devices commercially available, required by grid-codes, or incentivized through markets

 $\mathsf{M}\, rac{d}{dt}\, \omega(t) = P_{\mathsf{generation}}(t) - P_{\mathsf{demand}}(t) \, pprox \, \mathsf{derivative} \, \mathsf{control} \, \mathsf{on} \, \, \omega(t)$

M.P.N van Wesenbeeck¹, S.W.H. de Haan¹, Senior member, IEEE, P. Varela² and K. Visscher

- ⇒ open Q's: which devices? when to do it? who pays?
- ⇒ focus today: where to do it? how to do it properly?

10 / 33

Outline

Introduction

Novel Virtual Inertia Emulation Strategy

Optimal Placement of Virtual Inertia

Three-Area Case Study

Conclusions

inertia emulation

Challenges in power converter implementations

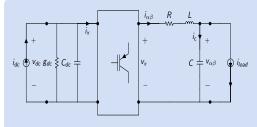
Real Time Simulation of a Power System with VSG Hardware in the Loop

- **1** delays in measurement acquisition, signal processing, & actuation
- 2 accuracy in AC measurements (need averaging)
- **3** constraints on currents, voltages, power, etc.
- **o** certificates on stability, robustness, & performance

today: use DC measurement, exploit analog storage, & passive control

11/33

Averaged inverter model



DC cap & AC filter equations:

$$C_{dc}\dot{v}_{dc} = -G_{dc}v_{dc} + i_{dc} - \frac{1}{2}m^{\top}i_{\alpha\beta}$$

$$C\dot{v}_{\alpha\beta} = -i_{load} + i_{\alpha\beta}$$

$$C\dot{v}_{\alpha\beta} = -Ri_{\alpha\beta} + \frac{1}{2}mv_{dc} - v_{\alpha\beta}$$

modulation: $i_x = \frac{1}{2}m^{\top}i_{\alpha\beta}$, $v_x = \frac{1}{2}mv_{dc}$

passive: $(i_{dc}, i_{load}) \rightarrow (v_{dc}, v_{\alpha\beta})$

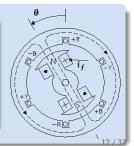
model of a synchronous generator

$$\dot{ heta} = \omega$$

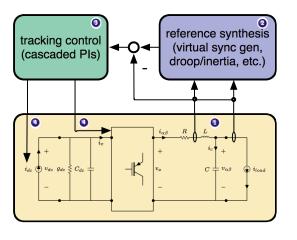
$$M\dot{\omega} = -D\omega + \tau_m + i_{\alpha\beta}^{\top} L_m i_f \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

$$C\dot{v}_{\alpha\beta} = -G_{load} v_{\alpha\beta} + i_{\alpha\beta}$$

$$L_s i_{\alpha\beta} = -Ri_{\alpha\beta} - v_{\alpha\beta} - \omega L_m i_f \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$



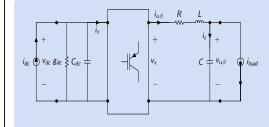
Standard power electronics control would continue by



- acquiring & processing of AC measurements
- 2 synthesis of references (voltage/current/power)
- **1** track references at converter terminals
- actuation via emulation (inner loop) and/or via DC source (outer loop)

let's do **something different** (smarter?) today . . .

See the similarities & the differences?



DC cap & AC filter equations:

$$C_{dc}\dot{v}_{dc} = -G_{dc}v_{dc} + i_{dc} - \frac{1}{2}m^{\top}i_{\alpha\beta}$$

$$C\dot{v}_{\alpha\beta} = -i_{load} + i_{\alpha\beta}$$

$$C\dot{v}_{\alpha\beta} = -Ri_{\alpha\beta} + \frac{1}{2}mv_{dc} - v_{\alpha\beta}$$

modulation: $i_x = \frac{1}{2} m^{\top} i_{\alpha\beta}$, $v_x = \frac{1}{2} m v_{dc}$

passive: $(i_{dc}, i_{load}) \rightarrow (v_{dc}, v_{\alpha\beta})$

model of a synchronous generator

$$\theta = \omega$$

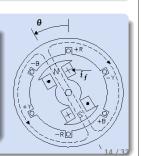
$$M\dot{\omega} = -D\omega + \tau_m + i_{\alpha\beta}^{\top} L_m i_f \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

$$C\dot{v}_{\alpha\beta} = -G_{load} v_{\alpha\beta} + i_{\alpha\beta}$$

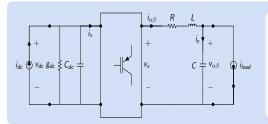
$$L_s i_{\alpha\beta}^{\cdot} = -Ri_{\alpha\beta} - v_{\alpha\beta} - \omega L_m i_f \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

$$C v_{\alpha\beta} = -G_{load} v_{\alpha\beta} + I_{\alpha\beta}$$

$$L_s i_{\alpha\beta} = -R i_{\alpha\beta} - v_{\alpha\beta} - \omega L_m i_f \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$



Model matching (\neq emulation) as inner control loop



DC cap & AC filter equations:

$$C_{dc}\dot{v}_{dc} = -G_{dc}v_{dc} + i_{dc} - \frac{1}{2}m^{\top}i_{\alpha\beta}$$

$$C\dot{v}_{\alpha\beta} = -i_{load} + i_{\alpha\beta}$$

$$C\dot{v}_{\alpha\beta} = -Ri_{\alpha\beta} + \frac{1}{2}mv_{dc} - v_{\alpha\beta}$$

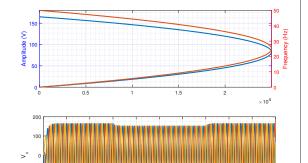
matching control:
$$\dot{\theta} = \eta \cdot v_{dc}$$
, $m = \mu \cdot \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$ with $\eta, \mu > 0$

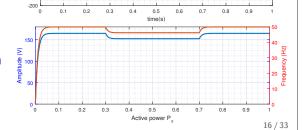
- ⇒ pros: is balanced, uses natural storage, & based on DC measurement
- \Rightarrow virtual machine with $M=rac{C_{dc}}{\eta^2}$, $D=rac{G_{dc}}{\eta^2}$, $au_m=rac{i_{dc}}{\eta}$, $i_f=rac{\mu}{\eta L_m}$

15 / 33

Properties of machine matching control

- quadratic **nose curves**: stationary P vs. $(|V|, \omega)$
- $\Rightarrow P \le P_{\text{max}} = i_{dc}^2/4G_{dc}$
- \Rightarrow (P, ω) -droop $\approx 1/\eta$
- \Rightarrow (P, |V|)-droop $\approx 1/\mu$
- 2 remains **passive**: $(i_{dc}, i_{load}) \rightarrow (v_{dc}, v_{\alpha\beta})$
- same stability condition as for generators: supply < transmission + losses</p>

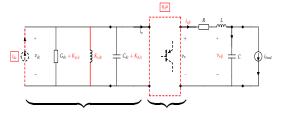




Machine matching control is only the inner loop

• solid plug-and-play base for outer control loops via i_{dc} , η , & μ inputs

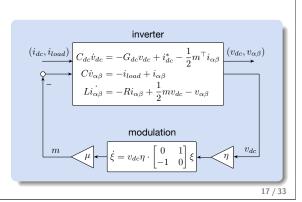
(e.g., virtual governor, PSS, AVR, synthetic inertia, etc.)



PID on $\emph{i}_{\emph{dc}}$ (droop/inertia) or PSS/AVR via μ

reformulation as virtualadaptive oscillator

(c.f., proportional-resonant control or virtual oscillator control strategies)



optimal inertia placement

Network swing equation model

$$m_i \ddot{\theta}_i + d_i \dot{\theta}_i = p_{in,i} - p_{e,i}$$

generator swing equations

$$p_{e,i} pprox \sum_{j \in \mathcal{N}} b_{ij} (\theta_i - \theta_j)$$
linearized power flows

 $P_{ ext{generation}} + \eta$ $P_{ ext{demand}}$

likelihood of **disturbance** at #i: $t_i \ge 0$

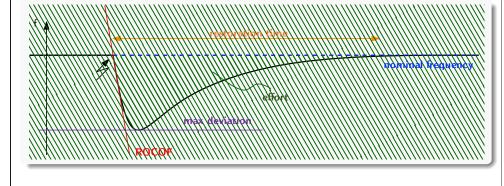
state space representation:

$$\begin{bmatrix} \dot{\theta} \\ \dot{\omega} \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & I \\ -M^{-1}L - M^{-1}D \end{bmatrix}}_{A} \begin{bmatrix} \theta \\ \omega \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ M^{-1} \end{bmatrix}}_{B} \mathbf{T}^{1/2} \boldsymbol{\eta}$$

where M, D, & T are diagonal & $L = L^T$ (Laplacian)

18 / 33

Performance metric for emulation of rotational inertia



System norm quantifying signal amplifications

disturbances: impulse (fault), step (loss of unit), white noise (renewables)

system pe

performance outputs: integral, peak, ROCOF, restoration time, ...

19 / 33

Coherency performance metric & \mathcal{H}_2 norm

Energy expended by the system to return to synchronous operation:

$$\int_0^\infty \sum\nolimits_{\{i,j\}\in\mathcal{E}} a_{ij} (\theta_i(t) - \theta_j(t))^2 + \sum\nolimits_{i=1}^n s_i \, \omega_i^2(t) \, dt$$

 \mathcal{H}_2 system norm interpretation: $\eta \longrightarrow system \longrightarrow y$

- ② impulsive η (faults) \longrightarrow output energy $\int_0^\infty \mathbf{y}(t)^\mathsf{T} \mathbf{y}(t) dt$
- ullet white noise $oldsymbol{\eta}$ (renewables) \longrightarrow output variance $\lim_{t \to \infty} \mathbb{E}\left(\mathbf{y}(t)^\mathsf{T}\,\mathbf{y}(t)\right)$

Algebraic characterization of the \mathcal{H}_2 norm

Lemma: \mathcal{H}_2 norm via observability Gramian

$$||G||_2^2 = \operatorname{Trace}(B^{\mathsf{T}}PB)$$

where P is the observability Gramian $P=\int_0^\infty e^{A^\mathsf{T} t} Q e^{At} \ dt$

- ▶ P solves a Lyapunov equation: $PA + A^TP + Q = 0$
- ► A has a zero eigenvalue → restricts choice of Q

$$y = \left[egin{array}{cc} Q_1^{1/2} & 0 \ 0 & Q_2^{1/2} \end{array}
ight] \left[egin{array}{cc} heta \ \omega \end{array}
ight] \qquad Q_1^{1/2} \, \mathbb{1} = 0$$

▶ P is unique for $P[1 \ 0] = [0 \ 0]$

20 / 33

Problem formulation

```
\begin{array}{ll} \underset{P,\,m_i}{\text{minimize}} & \operatorname{Trace}(B^\mathsf{T}PB) & \to \operatorname{performance\ metric} \\ \text{subject\ to} & \sum_{i=1}^n m_i \leq m_{\operatorname{bdg}} & \to \operatorname{budget\ constraint} \\ & \underline{m_i} \leq m_i \leq \overline{m_i}\,, \ i \in \{1,\dots,n\} & \to \operatorname{capacity\ constraint} \\ & PA + A^\mathsf{T}P + Q = 0 & \to \operatorname{observability\ Gramian} \\ & P\left[\mathbb{1}\ \mathbb{0}\right] = \left[\mathbb{0}\ \mathbb{0}\right] & \to \operatorname{uniqueness} \end{array}
```

Insights

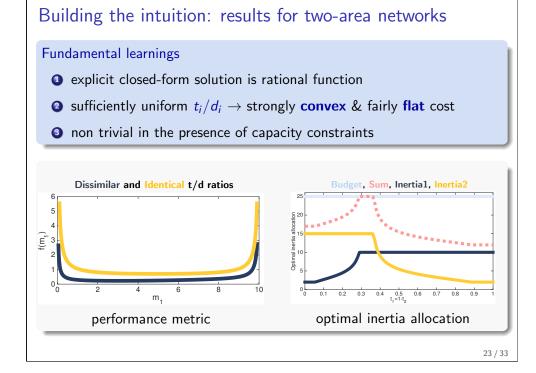
- m appears as m^{-1} in system matrices A, B
- 2 product of B(m) & P in the objective
- 3 product of A(m) & P in the constraint

⇒ large-scale & non-convex

22 / 33

optimal placement of virtual inertia

where would you place the inertia?
uniform, max capacity, near disturbance?
the more inertia the better?

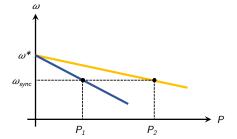


Closed-form results for cost of primary control

$P/\dot{\theta}$ primary droop control

$$(\omega_i - \omega^*) \propto (P_i^* - P_i(\theta))$$

$$\updownarrow$$
 $D_i \dot{\theta}_i = P_i^* - P_i(\theta)$



(can also model effect of PSS control)

Primary control effort \rightarrow accounted for by integral quadratic cost

$$\int_0^\infty \dot{\theta}(t)^\mathsf{T} D \, \dot{\theta}(t) \, dt$$

which is the \mathcal{H}_2 performance for the penalties $Q_1^{1/2}=0$ and $Q_2^{1/2}=D$

24 / 33

Primary control ... cont'd

Theorem: the primary control effort optimization reads equivalently as

minimize
$$\sum_{i=1}^{n} \frac{t_i}{m_i}$$
 subject to
$$\sum_{i=1}^{n} m_i \leq m_{\text{bdg}}$$

$$\underline{m_i} \leq m_i \leq \overline{m_i}, \quad i \in \{1, \dots, n\}$$

Key take-away is **disturbance matching**:

- ▶ optimal allocation $\propto \sqrt{t_i}$ or $m_i = \min\{m_{\text{bdg}}, \overline{m_i}\}$
- optimal allocation independent of network topology

Location & strength of disturbance are crucial solution ingredients

25 / 33

Robust inertia allocation

empirical disturbance distributions available but we want to prepare for "rare events"

minimize maximize P, m_i Trace $(B(\mathbf{t}_i^{1/2})^\mathsf{T} P B(\mathbf{t}_i^{1/2}))$ \rightarrow robust performance subject to $T \in \mathbb{T}$ \rightarrow disturbance family $t_i \geq 0 \ \forall i \ \& \ \sum_{i=1}^n t_i = 1 \ \rightarrow$ normalization inertia budget, capacities, & Lyapunov equation

Key insights:

- ▶ inner maximization problem is **linear** in *T*
- ⇒ min-max can be converted to minimization by duality
- valley filling solution for primary control metric:

$$t_i^{\star}/m_i^{\star} = const.$$
 (up to constraints)

numerical method for the general case

Taylor & power series expansions

Key idea: scalar series expansion at m_i in direction μ_i :

$$rac{1}{m_i + oldsymbol{\delta}\mu_i} = rac{1}{m_i} - rac{oldsymbol{\delta}\mu_i}{m_i^2} + \mathcal{O}(oldsymbol{\delta}^2)$$

 \Rightarrow expand system matrices via **Taylor series** in direction μ :

$$\mathsf{A}(m+\delta\mu) = \mathsf{A}^{(0)}_{(m,\mu)} + \mathsf{A}^{(1)}_{(m,\mu)}\delta + \mathcal{O}(\delta^2) \quad , \quad \mathsf{B}(m+\delta\mu) = \dots$$

 \Rightarrow expand observability Gramian via **power series** in direction μ :

$$P(m + \delta \mu) = P_{(m,\mu)}^{(0)} + P_{(m,\mu)}^{(1)} \delta + \mathcal{O}(\delta^2)$$

Magic happens: the Lyapunov equation decouples

$$0 = \delta^{0} \left(P^{(0)} A^{(0)} + A^{(0)\top} P^{(0)} + Q \right) +$$

$$\delta^{1} \left(P^{(1)} A^{(0)} + A^{(0)\top} P^{(1)} + \left(P^{(0)} A^{(1)} + A^{(1)\top} P^{(0)} \right) \right) + \mathcal{O}(\delta^{2})$$

results for a three-area case study

Explicit gradient computation

1 nominal Lyapunov equation for $\mathcal{O}(\delta^0)$:

$$\mathbf{P^{(0)}} = \mathsf{Lyap}(\mathbf{A^{(0)}}, \mathbf{Q})$$

2 perturbed Lyapunov equation for $\mathcal{O}(\delta^1)$ terms:

$$P^{(1)} = Lyap(A^{(0)}, P^{(0)}A^{(1)} + A^{(1)}^TP^{(0)})$$

3 expand objective at m in direction μ :

$$\mathsf{Trace}(B(m)^{\mathsf{T}} \mathsf{P}(m) B(m)) = \mathsf{Trace}((\ldots) + \delta(\ldots)) + \mathcal{O}(\delta^2)$$

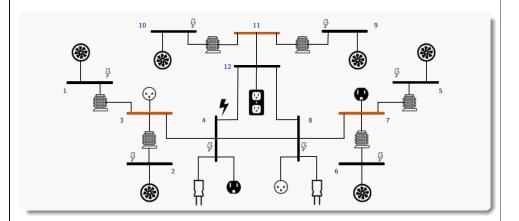
• gradient: Trace $(2 * B^{(1)^T} P^{(0)} B^{(0)} + B^{(0)^T} P^{(1)} B^{(0)})$

 \Rightarrow use favorite method for reduced optimization problem with explicit gradient & without Lyapunov constraint

28 / 33

Modified Kundur case study: 3 areas & 12 buses

transformer reactance 0.15 p.u., line impedance (0.0001+0.001i) p.u./km

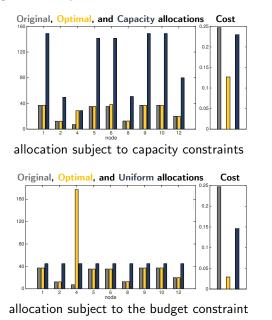


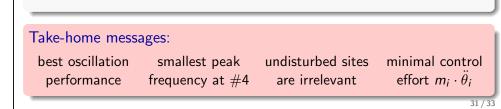
uniform deviation from sync as **performance metric**: $Q = \begin{bmatrix} I_n - \frac{1}{n} \mathbb{1} \mathbb{1}^T \\ I_n \end{bmatrix}$

Heuristics outperformed by \mathcal{H}_2 - optimal allocation

Scenario: disturbance at #4

- locally optimal solution outperforms heuristic max/uniform allocation
- ▶ optimal allocation ≈ matches disturbance
- inertia emulation at all undisturbed nodes is actually detrimental
- ⇒ location of disturbance & inertia emulation matters





Eye candy: time-domain plots of post fault behavior

Freq #4

Angle Diff.

Original, Optimal, and Uniform allocations

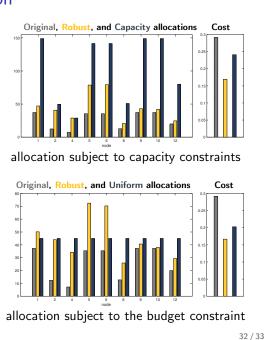
Freq #5

Control Effort

Robust min-max allocation

Scenario: fault (impulse) can occur at any single node

- disturbance set $T \in \mathbb{T} = \{e_1 \cup \cdots \cup e_{12}\}$
- ⇒ min / max over convex hull
- robust inertia allocation outperforms heuristics
- ▶ results become more intuitive: the more inertia (capacity & budget) the better & valley-filling property



conclusions

Conclusions

Where to do it?

- \bullet \mathcal{H}_2 -optimal (non-convex) allocation
- 2 closed-form results for cost of primary control
- numerical approach via gradient computation

How to do it?

- down-sides of naive inertia emulation
- 2 novel machine matching control

What else to do? Inertia emulation is ...

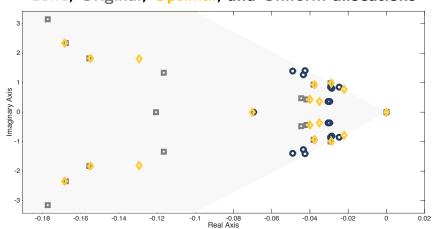
- decentralized, plug'n'play (passive), grid-friendly, user-friendly, . . .
- suboptimal, wasteful in control effort, & need for new actuators

33 / 33

appendix

Spectral perspective on different inertia allocations

Cone, Original, Optimal, and Uniform allocations



- $\mathbf{m} = \mathbf{m} \rightarrow \text{best damping asymptote } \& \text{ best damping ratio}$
- spectrum holds only partial information !!

The planning problem

sparse allocation of limited resources

 $\ell_1\text{-regularized}$ inertia allocation (promoting a sparse solution):

minimize
$$J_{\gamma}(\mathbf{m}, \mathbf{P}) = \|G\|_{2}^{2} + \gamma \|\mathbf{m} - \underline{\mathbf{m}}\|_{1}$$
 subject to
$$\sum_{i=1}^{n} m_{i} \leq m_{\mathrm{bdg}}$$

$$\underline{m_{i}} \leq m_{i} \leq \overline{m_{i}} \quad i \in \{1, \dots, n\}$$

$$PA + A^{\mathsf{T}}P + Q = 0$$

$$P[\mathbb{1} \ \mathbb{0}] = [\mathbb{0} \ \mathbb{0}]$$

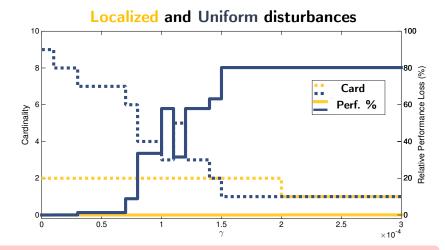
where $\gamma \geq 0$ trades off sparsity penalty and the original objective

Highlights:

- regularization term is linear & differentiable
- 2 gradient computation algorithm can be used with some tweaking

Relative performance loss (%) as a function of γ

0% o optimal allocation, 100% o no additional allocation



- **1** uniform disturbance $\Rightarrow \exists \gamma$ **1.3%** loss \equiv **(9** \rightarrow **7)**
- **2** localized disturbance \Rightarrow (2 \rightarrow 1) without affecting performance

Uniform disturbance to damping ratio

power sharing o $extbf{d} \propto P^*$, assuming $extbf{t} \propto$ source rating P^*

Theorem: for $t_i/d_i=t_j/d_j$ the allocation problem reads equivalently as

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^n \frac{s_i}{m_i} \\ \text{subject to} & \sum_{i=1}^n m_i \leq m_{\text{bdg}} \\ & \underline{m_i} \leq m_i \leq \overline{m_i}, \ i \in \{1,\dots,n\} \end{array}$$

Key takeaways:

- optimal solution independent of network topology
- allocation $\propto \sqrt{s_i}$ or $m_i = \min\{m_{\text{bdg}}, \overline{m_i}\}$

What if freq. penalty \propto inertia? \rightarrow norm independent of inertia

Taylor & power series expansions

Key idea: expand the performance metric as a power series in m

$$||G||_2^2 = \operatorname{Trace}(B(m)^{\mathsf{T}} \mathbf{P}(m) B(m))$$

Motivation: scalar series expansion at m_i in direction μ_i :

$$rac{1}{\left(m_i+oldsymbol{\delta}\mu_i
ight)}=rac{1}{m_i}-rac{oldsymbol{\delta}\mu_i}{m_i^2}+\mathcal{O}(oldsymbol{\delta}^2)$$

Expand system matrices in direction μ , where $\Phi = \operatorname{diag}(\mu)$:

$$\mathbf{A}_{(\mathbf{m},\mu)}^{(0)} = \begin{bmatrix} 0 & I \\ -M^{-1}L & -M^{-1}D \end{bmatrix}, \ \mathbf{A}_{(\mathbf{m},\mu)}^{(1)} = \begin{bmatrix} 0 & 0 \\ \Phi M^{-2}L & \Phi M^{-2}D \end{bmatrix}$$
$$\mathbf{B}_{(\mathbf{m},\mu)}^{(0)} = \begin{bmatrix} 0 \\ M^{-1}T^{1/2} \end{bmatrix}, \ \mathbf{B}_{(\mathbf{m},\mu)}^{(1)} = \begin{bmatrix} 0 \\ -\Phi M^{-2}T^{1/2} \end{bmatrix}$$

Taylor & power series expansions cont'd

Expand the observability Gramian as a power series in direction μ

$$\mathbf{P}(m) = \mathbf{P}(m + \delta\mu) = \mathbf{P}_{(m,\mu)}^{(0)} + \mathbf{P}_{(m,\mu)}^{(1)} \delta + \mathcal{O}(\delta^2)$$

Formula for gradient in direction μ

- **1** nominal Lyapunov equation for $\mathcal{O}(\delta^0)$: $\mathbf{P^{(0)}} = \mathbf{Lyap}(\mathbf{A^{(0)}}, \mathbf{Q})$
- 2 perturbed Lyapunov equation for $\mathcal{O}(\delta^1)$ terms:

$$\mathbf{P^{(1)}} = \mathsf{Lyap}(\mathbf{A^{(0)}}, \mathbf{P^{(0)}}\mathbf{A^{(1)}} + \mathbf{A^{(1)}}^\mathsf{T}\mathbf{P^{(0)}})$$

3 expand objective in direction μ :

$$||G||_2^2 = \operatorname{Trace}(B(m)^{\mathsf{T}} \mathbf{P}(m)B(m)) = \operatorname{Trace}((\ldots) + \delta(\ldots)) + \mathcal{O}(\delta^2)$$

4 gradient: $Trace(2 * B^{(1)^T}P^{(0)}B^{(0)} + B^{(0)^T}P^{(1)}B^{(0)})$

Heuristics outperformed also for uniform disturbance Original, Optimal, and Capacity allocations Cost Scenario: uniform disturbance **Heuristics** for placement: max allocation in case of capacity constraints uniform allocation in case allocation subject to capacity constraints of budget constraint Original, Optimal, and Uniform allocations Cost Results & insights: locally optimal solution **outperforms** heuristics 2 optimal solution \neq max inertia at each bus allocation subject to the budget constraint

