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Abstract— The linear quadratic regulator (LQR) problem is a
cornerstone of control theory and a widely studied benchmark
problem. When a system model is not available, the conven-
tional approach to LQR design is indirect, i.e., based on a
model identified from data. Recently a suite of direct data-
driven LQR design approaches has surfaced by-passing explicit
system identification (SysID) and based on ideas from subspace
methods and behavioral systems theory. In either approach, the
data underlying the design can be taken at face value (certainty-
equivalence) or the design is robustified to account for noise. An
emerging topic in direct data-driven LQR design is to regularize
the optimal control objective to account for implicit SysID (in a
least-square or low-rank sense) or to promote robust stability.
These regularized formulations are flexible, computationally
attractive, and theoretically certifiable; they can interpolate
between direct vs. indirect and certainty-equivalent vs. robust
approaches; and they can be blended resulting in remarkable
empirical performance. This manuscript reviews and compares
different approaches to regularized direct data-driven LQR.

problems when identifying models from data. They facilitate
finding solutions to optimization problems by rendering them
unique or speeding up algorithms. Aside from such numer-
ical advantages, a Bayesian interpretation of regularizations
is that they condition models on prior knowledge [26], and
they robustify problems to uncertainty [27], [28].

An emergent approach to data-driven control is borne
out of the intersection of behavioral systems theory and
subspace methods [29]. In particular, the so-called Funda-
mental Lemma characterizes the behavior of an LTI system
by the range space of matrix time series data [30]. This
perspective gave rise to direct data-driven predictive and
explicit feedback control formulations [14]-[17], [24], [31],
[32]. Both lines of work emphasize robustness to noisy data.

This manuscript presents a tutorial review of regularized

direct data-driven LQR [16], [33], which touches upon all
of the ahove A< a haceline indirect CF data-driven T.OOR




Data-driven control dichotomy

* indirect data-driven control via models:
data > model + uncertainty — control

» growing trend direct data-driven control
by-passing models ... (again) hyped, why?

The direct approach is a viable alternative

« for some applications : models (plant, environments, or sensing
modalities) too complex to be useful (e.g., wind farm, soft robotics)

* due to (well-known) shortcomings of ID — cumbersome, models
not identified for control, incompatible uncertainty estimates, ...

» when sufficient brute force data / compute / storage is available

data-driven
control

* trade-offs \
* (non)modular
* (in)tractable
* (sub)optimal

e data richness )

today:
give
explicit
answers
for LQR
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LQR d—> ¢+ = A+ Bu+d ["%

_ 1/2 1/2
e cornerstone of z2=Q" x4+ R/“u

automatic control

u= Kxzx K e T

* Ho parameterization %ig_ir;li%? trace (QQ P) + trace (K "RK P)

subject to (A+ BK)P(A+BK)' —P+1=<0

(can be posed as convex SDP)

indirect

» the benchmark for all data-driven
control approaches in last decades(!)
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Indirect & certainty-equivalence LQR

« collect I/O data: Dyunknown & PE: rank {)Iﬂ =n-+m

0
Up := |[u(0) u(1) wT -1 —| . > Xo:= [z(0) (1)
Dy := [d(0) d(1) AT —1)] — X1 =AXo+ BUo+ Pol_, Xy = [z(1) z(2)

* indirect & certainty-

equivalence LQR

(in special cases optimal
in MLE sense but not robust)

minimize
P>1 K

trace (QP) + trace (K ' RK P)

subject to (A+ BK)P(A+BK)' —P+1=<0

[B fl] = arg min
B,A

X, - [B A}[
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certainty-
} equivalent
LQR

least

. squares

SysID
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Direct approach from subspace relations in data

e data: rank {UO} =—n+m = VK 4G s.t. {K} = {UO} G

Xy 1 Xo
Up = [u(0) (1) Wl —1)] — o > Xo o= [2(0) 2(1) ... @(T—1)]
Do = [d(0) d(1) d(T — 1) _>le _AX0+BUO+DOJ—> X = [e(1) z(2) ... x(T)]
* subspace

SUSSPaACe A+ BK=[B A] [K] —[B A [U0] G[= (X, — Dy)G

I X,

- data-driven LQR LMIs by substituting A + BK = (X; — Dy)G
- certainty equivalence by neglecting noise Dy:|A + BK = X|G



Equivalence: direct + xxx < indirect

* direct approach
- optimizer has

U
nullspace ker [Xo}

- orthogonality

minimize
P>1K G

subject to

constraint

trace (QP) + trace (K ' RK P)

X,GPG'X] —P+1=<0

1] = x|

(- [5] o]) e-

G =

] [

v

equivalent constraints:

(%]

U1 (K
Xo| |1

* indirect
approach

minimize
P>1 K

AN

[B A] = arg min

trace (QP) + trace (K ' RK P)

AN AN

subject to (A+ BK)P(A+BK)' —P+1=<0

guin | X, — 5 4[

])p(m)T

—P+1=0




Regularized, direct, & certainty-equivalent LQR

» orthogonality constraint | inimize  trace (QP) + trace (KT RK P)
T P-1K,G
H=17-— )(?)] [)(?] subject to X ;GPG'X,| —P+1=<0
: - . 0 Kl _ o A
lifted to regularizer I~ | X

 equivalent to indirect certainty-equivalent LQR design for A suff. large

* )\ interpolates between direct & indirect approaches

* multi-criteria interpretation: \ interpolates control & SysID objectives

* however, certainty-equivalence formulation may not be robust (?)
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Robustness-promoting regularization

- effect of noise entering data: X; = AXy, + BUy + Dy |
_ T T for robustness
Lyapunov constraint X1GPG X, — P+1 =0 » GPG "or ||G||
becomes (X1 — Do)GPG' (X1 —Dy)' —P+1=<0 J should be small

* previous certainty-equivalence regularizer ||IIG|| achieves small |G ||

minimize trace (QP) + trace (K ' RK P)
* robustness-promoting PG

=
regularizer [de Persis & Tesi, 21] @ce (GPCD

subjectto X;GPG'X, —P+1=<0

5- 14
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Performance & robustness analysis

« SNR (signal-to-noise-ratio) Tmin (|Xo Uo))
Omazx (DO)
* relative performance metric
realized cost from regularized design with A & p if exact system matrices A and B were known
i i
L 1
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» certificate: optimal control problem is always feasible & stabilizing for

> robust

suff. large SNR & relative performance ~ O (SNR_l) + const. {p

/ reg.

-

proof bounds Lyapunov constraint (X; — Dg)GPG' (X1 — Do) — P+1 =<0



Numerical case study

» case study [Dean et al. 119]: discrete-time
marginally unstable Laplacian system
subject to noise of variance ¢2=0.01

- take-home message 1.
reqularization is needed !
prior work without regularizer
has no robustness margin
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Numerical case study cont’d

- take-home message 2: different regularizers promote different
features: robustness vs. certainty-equivalence (performance)

o= 0.01 oc=0.1 c=0.3 oc=0.7 oc=1
(SNR > 15dB) (SNR € [5,10]dB) | (SNR € [0,5]dB) | (SNR =~ 0dB) | (SNR < —5dB)
Certainty-equivalence S = 100% S = 100% S = 100% S =97% S = 84%
A=1,p=0) M = 2.5599e-05 M = 0.0026 M = 0.0237 M = 0.1366 M = 0.2596
Robust approach S =100% S =100% S = 100% S =100% S =100%
A=0,p=1) M = 0.0035 M = 0.0074 M = 0.0369 M = 0.2350 M = 0.6270

- take-home message 3: mixed regularization achieves best of both

Mixed regularization S =100% S = 100% S = 100% S =100% S =100%
(A= p=0.5) M = 0.0010 M = 0.0035 M = 0.0235 M = 0.1262 M = 0.2978




Conclusions

* interpolation of different regularizers
with high noise: 2= 1 (SNR< -5db)

98 [

 flexible multi-criteria formulation
trading off different objectives by
regularizers (best of all is attainable) =/

90 [

88 [

e classification direct vs. indirect
IS less relevant: A\ interpolates
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