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Abstract— The linear quadratic regulator (LQR) problem is a
cornerstone of control theory and a widely studied benchmark
problem. When a system model is not available, the conven-
tional approach to LQR design is indirect, i.e., based on a
model identified from data. Recently a suite of direct data-
driven LQR design approaches has surfaced by-passing explicit
system identification (SysID) and based on ideas from subspace
methods and behavioral systems theory. In either approach, the
data underlying the design can be taken at face value (certainty-
equivalence) or the design is robustified to account for noise. An
emerging topic in direct data-driven LQR design is to regularize
the optimal control objective to account for implicit SysID (in a
least-square or low-rank sense) or to promote robust stability.
These regularized formulations are flexible, computationally
attractive, and theoretically certifiable; they can interpolate
between direct vs. indirect and certainty-equivalent vs. robust
approaches; and they can be blended resulting in remarkable
empirical performance. This manuscript reviews and compares
different approaches to regularized direct data-driven LQR.

I. INTRODUCTION

Linear quadratic regulator (LQR) design for linear time-
invariant (LTI) subject to process noise is a cornerstone of
the field [1]. It is the benchmark to validate and compare
different methods, among others in the context of data-driven

control when no model but only raw data is available. In the
terminology of adaptive control [2], different approaches to
data-driven LQR design can be classified as indirect, i.e.,
based on system identification (SysID) followed by model-
based design, versus direct when by-passing models. Another
distinction is certainty-equivalence (CE) versus robust design
depending on whether uncertainty is taken into account.

A representative (though not exhaustive) list of indirect
LQR approaches are [3]–[6] advocating CE and [7]–[9] in
the robust setting. Exemplary direct approaches are gradient
methods [10]–[12], reinforcement learning [13], behavioral
methods [14], and Riccati-based methods [15] in the CE
setting and [16]–[18] in the robust case. These classifications
are not strict: many approaches have bridged the direct and
indirect paradigms such as identification for control [19],
[20], dual control [21], [22], control-oriented identification
[23], and regularized data-enabled predictive control [24],
[25]. All these approaches advocate that the control anf
SysID objectives should be blendend to regularize each other.

Regularization methods have a long history in regression
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problems when identifying models from data. They facilitate
finding solutions to optimization problems by rendering them
unique or speeding up algorithms. Aside from such numer-
ical advantages, a Bayesian interpretation of regularizations
is that they condition models on prior knowledge [26], and
they robustify problems to uncertainty [27], [28].

An emergent approach to data-driven control is borne
out of the intersection of behavioral systems theory and
subspace methods [29]. In particular, the so-called Funda-

mental Lemma characterizes the behavior of an LTI system
by the range space of matrix time series data [30]. This
perspective gave rise to direct data-driven predictive and
explicit feedback control formulations [14]–[17], [24], [31],
[32]. Both lines of work emphasize robustness to noisy data.

This manuscript presents a tutorial review of regularized
direct data-driven LQR [16], [33], which touches upon all
of the above. As a baseline, indirect CE data-driven LQR
is formalized as a bi-level optimization problem: SysID
by means of ordinary least-squares followed by model-
based H2-optimal design. Further, we present the direct
certainty-equivalence approach [14] posing LQR design as
semidefinite program parameterized by data matrices.

Following [24], [33], we show that the indirect and direct
approaches are equivalent after augmenting the latter with a
regularizer accounting for the least-square fitting criterion.
We also review the regularizer proposed in [16] promoting
robust closed-loop stability in face of noise. Finally, we
present a novel `1-regularizer accounting for implicit low-
rank pre-processing conditioning noisy data on the set of
finite-dimensional LTI models. Hence, as in regression, reg-
ularizations not only ease the numerics but also condition the
control policy on prior knowledge and robustify the closed
loop. Further, following [16] we present theoretic certificates
for robust closed-loop stability and performance bounds as a
function of the signal-to-noise ratio (SNR) for finite sample
size. The sub-optimality gap scales linearly with the SNR.

Finally, we compare different approaches in a numerical
case study and show that regularized formulations can flexi-
bly interpolate between direct vs. indirect and CE vs. robust
approaches. We show that robustness-promoting regularizers
are superior for low SNR, whereas CE-promoting regulariz-
ers perform extremely well for larger SNR. As a remarkable
empirical result, blending different regularizers yields excel-
lent overall performance with constant hyperparameters.

The paper is organized as follows. Section III poses the
direct and indirect LQR problems. Section III discusses the
regularizations. Certificates are provided in Section IV. Sec-
tion V contains our numerical case study. Finally, Section VI
concludes the paper and presents directions for future work.
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Data-driven control dichotomy
Thoughts on data-driven control

• indirect data-driven control via models:
data SysID�! model + uncertainty ! control

• growing trend: direct data-driven control
by-passing models . . . (again) hyped, why ?

The direct approach is viable alternative
• for some applications : model-based

approach is too complex to be useful
! too complex models, environments, sensing
modalities, specifications (e.g., wind farm)

• due to (well-known) shortcomings of ID
! too cumbersome, models not identified for
control, incompatible uncertainty estimates, ...

• when brute force data/compute available

data-driven
control

u2

u1 y1

y2

Central promise: It is often
easier to learn a control policy
from data rather than a model.
Example: PID [Åström et al., ’73]

! theory trade-o�s: (non)modular + (in)tractable + (sub)optimal (?) 2/19

• indirect data-driven control via models:
data → model + uncertainty → control

• growing trend direct data-driven control 
by-passing models … (again) hyped, why?

ID

The direct approach is a viable alternative
• for some applications : models (plant, environments, or sensing 

modalities) too complex to be useful (e.g., wind farm, soft robotics) 

• due to (well-known) shortcomings of ID → cumbersome, models 
not identified for control, incompatible uncertainty estimates, ... 

• when sufficient brute force data / compute / storage is available 

• trade-offs 
• (non)modular
• (in)tractable
• (sub)optimal
• data richness

today: 
give 
explicit
answers
for LQR
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LQR

• cornerstone of 
automatic control

• parameterization
(can be posed as convex SDP)

• the benchmark for all data-driven 
control approaches in last decades(!)

II. INDIRECT & DIRECT DATA-DRIVEN LQR

We now review indirect LQR design (formalized as a bi-
level program: least-square SysID followed by model-based
optimal control) as well as a recent direct approach [14]
parameterizing the design by data matrices. The foundation
of both approaches are subspace relations in state-space data.

A. Model-based linear quadratic optimal control

Consider a linear time-invariant (LTI) system
8
>><

>>:

x(k + 1) = Ax(k) +Bu(k) + d(k)

z(k) =

"
Q1/2 0

0 R1/2

#"
x(k)

u(k)

#
, (1)

where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d is a disturbance term, and z is the performance signal
of interest. We assume that (A,B) is stabilizable. Finally,
Q � 0 and R � 0 are weighting matrices. Here, � (⌫) and
� (�) denote positive and negative (semi)definiteness.

The problem of interest is linear quadratic regulation

phrased as designing a state-feedback gain K that renders
A+ BK Schur and minimizes the H2-norm of the transfer
function T (K) := d ! z of the closed-loop system1


x(k + 1)
z(k)

�
=

2

4
A+BK I
Q1/2

R1/2K

�
0

3

5


x(k)
d(k)

�
, (2)

where our notation T (K) emphasizes the dependence of the
transfer function on K. When A+BK is Schur, it holds that

kT (K)k22 = trace (QP ) + trace
�
K>RKP

�
, (3)

where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A+BK)P (A+BK)> � P + I = 0.

We refer to [34] for properties and interpretations of the
H2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d is a white process with unit covariance.
Here, we view the LQR problem as a H2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H2-norm of T (K) (henceforth, optimal) is unique
and can be computed by solving a discrete-time Riccati equa-
tion [1]. Alternatively, following [35], this optimal controller
can be determined by solving the following program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (A+BK)P (A+BK)> � P + I � 0 ,
(4)

1Given a stable p ⇥ m transfer function T (�) in the indeterminate �,
the squared H2-norm of T (�) is defined as [34, Section 4.4]:

kT k
2
2 :=

1

2⇡

Z 2⇡

0
trace(T (ej✓)0T (ej✓)) d✓

The LQR problem indeed admits many parameterizations,
and the one in (4) can be turned into a convex semi-definite
program after a change of variables; see [33, Section III.C].

We aim to compute the optimal control in a data-driven
setting when (A,B) are unknown, but we have access to a
T -long stream of noisy data. Here noisy means that the data
collected from (1) are generated with a non-zero disturbance
d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-

square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
series of inputs, disturbances, states, and successor states

U0 :=
⇥
u(0) u(1) . . . u(T � 1)

⇤
2 Rm⇥T ,

D0 :=
⇥
d(0) d(1) . . . d(T � 1)

⇤
2 Rn⇥T ,

X0 :=
⇥
x(0) x(1) . . . x(T � 1)

⇤
2 Rn⇥T ,

X1 :=
⇥
x(1) x(2) . . . x(T )

⇤
2 Rn⇥T

satisfying the dynamics (1), that is,

X1 �D0 =
⇥
B A

⇤ U0

X0

�
. (5)

It is convenient to record the data as consecutive time series,
i.e., column i of X1 coincides with column i+1 of X0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity

W0 :=


U0

X0

�
.

We assume that the data is sufficiently rich, that is,

rankW0 = n+m. (6)

The rank condition (6) is an identifiability condition ensuring
that (B,A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B,A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X0, X1) and under the rank condition (6),
an estimate (B̂, Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem
⇥
B̂ Â

⇤
= argmin

B,A

��X1 �
⇥
B A

⇤
W0

��
F
= X1W

†
0 , (7)

where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),
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We now review indirect LQR design (formalized as a bi-
level program: least-square SysID followed by model-based
optimal control) as well as a recent direct approach [14]
parameterizing the design by data matrices. The foundation
of both approaches are subspace relations in state-space data.

A. Model-based linear quadratic optimal control

Consider a linear time-invariant (LTI) system
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where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d is a disturbance term, and z is the performance signal
of interest. We assume that (A,B) is stabilizable. Finally,
Q � 0 and R � 0 are weighting matrices. Here, � (⌫) and
� (�) denote positive and negative (semi)definiteness.

The problem of interest is linear quadratic regulation

phrased as designing a state-feedback gain K that renders
A+ BK Schur and minimizes the H2-norm of the transfer
function T (K) := d ! z of the closed-loop system1
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where our notation T (K) emphasizes the dependence of the
transfer function on K. When A+BK is Schur, it holds that

kT (K)k22 = trace (QP ) + trace
�
K>RKP

�
, (3)

where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A+BK)P (A+BK)> � P + I = 0.

We refer to [34] for properties and interpretations of the
H2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d is a white process with unit covariance.
Here, we view the LQR problem as a H2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H2-norm of T (K) (henceforth, optimal) is unique
and can be computed by solving a discrete-time Riccati equa-
tion [1]. Alternatively, following [35], this optimal controller
can be determined by solving the following program:

minimize
P ⌫ I,K
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K>RKP

�

subject to (A+BK)P (A+BK)> � P + I � 0 ,
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1Given a stable p ⇥ m transfer function T (�) in the indeterminate �,
the squared H2-norm of T (�) is defined as [34, Section 4.4]:
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0
trace(T (ej✓)0T (ej✓)) d✓

The LQR problem indeed admits many parameterizations,
and the one in (4) can be turned into a convex semi-definite
program after a change of variables; see [33, Section III.C].

We aim to compute the optimal control in a data-driven
setting when (A,B) are unknown, but we have access to a
T -long stream of noisy data. Here noisy means that the data
collected from (1) are generated with a non-zero disturbance
d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-

square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
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�
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It is convenient to record the data as consecutive time series,
i.e., column i of X1 coincides with column i+1 of X0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity
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
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�
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We assume that the data is sufficiently rich, that is,

rankW0 = n+m. (6)

The rank condition (6) is an identifiability condition ensuring
that (B,A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B,A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X0, X1) and under the rank condition (6),
an estimate (B̂, Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem
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an estimate (B̂, Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem
⇥
B̂ Â
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D0 the matrices (B,A) are replaced by their estimates (7). This
approach can be formalized as a bi-level program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (Â+ B̂K)P (Â+ B̂K)> � P + I � 0
⇥
B̂ Â

⇤
= argmin

B,A

��X1 �
⇥
B A

⇤
W0

��
F
.

(8)

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (Â+ B̂K)P (Â+ B̂K)> � P + I � 0

⇥
B̂ Â

⇤
= argmin

B,A

����X1 �
⇥
B A

⇤ U0

X0

�����
F

Following classic terminology [2], we term problem (8)
a certainty-equivalence and indirect data-driven control ap-
proach and its solution K a certainty-equivalence controller.

Note that under the identifiability condition (6) and with
noise-free data, (8) is feasible and returns the optimal control.
This is because, under these circumstances, B̂ = B and Â =
A so that (8) coincides with the model-based program (4).

It can be argued that the sequential identification-followed-
by-control approach (8) is optimal in a maximum-likelihood
sense; see [19, Section 4.2]. However, it is also known that
noisy data should not be taken at face value (especially in the
low-data and low SNR limit), and the certainty-equivalence
approach has to be additionally robustified; see [6], [8],

C. Direct design & LQR parameterization by data matrices

Now we review a direct data-driven LQR approach laid
out in [14]. It uses the subspace relations (5) and (6) to
parametrize problem (4) by data matrices. Namely, due to
the rank condition (6), for any K, there is a matrix G so that


K
I

�
= W0G , (9)

and due to the relation (5) the closed-loop matrix A+ BK
can be parametrized directly by data matrices as

A+BK =
⇥
B A

⇤ K
I

�
(9)
=

⇥
B A

⇤
W0G

(5)
= (X1�D0)G .

(10)
This data-based parameterization allows us to replace the
closed-loop matrix A+BK in (4) by (X1 �D0)G subject
to the additional constraint (9). As a result, the LQR problem
(4) can be parametrized by means of data matrices as

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to (X1 �D0)GPG>(X1 �D0)
> � P + I � 0


K
I

�
= W0G

(11)
with optimal control gain K = U0G. This parametrization
is indeed a direct formulation of the LQR problem since no
explicit identification of the system matrices is involved.

With noise-free data (11) can be efficiently implemented
(after a convexification) and returns the optimal controller
[14]. With noisy data, as D0 is unknown, a natural approach
is to disregard D0 which leads to the formulation

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G ,

(12)

which can be posed as convex program; see [14], [16], [33].
In the noiseless case and under condition (6), all problem

formulations (4), (8), and (12) coincide. Further, there is a
considerable nullspace in the direct formulation (12).

Lemma 2.1: (Nullspace in direct data-driven control)
Consider the data-driven LQR problem (12). Assume noise-
less data, i.e., D0 = 0, and that the identifiability condition
(6) holds. Then the set of optimal solutions G? to (12)
coincides with the set of solutions to equation (9), i.e.,

{G? : (P ?,K?, G?) 2 argmin(12)} = W †
0 [KI ]+Ghom , (13)

where Ghom is any matrix in the nullspace of W0.
Proof: Clearly, any optimal solution is feasible and thus

satisfies the constraint equation (9). To prove the converse
inclusion, consider any two solutions G1 and G2 to the
constraint equation (9). Both solutions are of the form (13)
and by (10) lead to the same closed-loop matrix X1G1 =
A + BK = X1G2 and to the same K = U0G1 = U0G2.
Hence, neither the Lyapunov constraint nor the objective are
altered, and thus both solutions achieve an identical cost.

Hence, in case of exact data, the direct data-driven LQR
problem (12) contains a large nullspace, and its solutions are
non-unique. However, in case of noisy data, it will turn out
to be advantageous to bias (or regularize) problem (12) to
single out a solution with favorable noise rejection properties.
Similarly to (8), (12) also enforces some sort of certainty
equivalence since the design does not take noise into account.
In the next section, we show, among others, that a particular
regularized version of (12) is indeed equivalent to (8).

III. REGULARIZED & DIRECT DATA-DRIVEN LQR
This section derives different regularized formulations of

direct data-driven LQR (12) promoting certainty-equivalence
(in a least square or low-rank sense) and robust stability.

A. A direct version of the certainty-equivalence LQR

We first consider a regularized version of direct data-
driven LQR promoting certainty-equivalence, i.e., a least-
square fitting of the data (7). The results rest on [24], [33].

To relate (8) and (12), consider the following program

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

⇣
I �W †

0W0

⌘
G = 0 .

(14)

least
squares 
SysID

certainty-
equivalent
LQR
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II. INDIRECT & DIRECT DATA-DRIVEN LQR

We now review indirect LQR design (formalized as a bi-
level program: least-square SysID followed by model-based
optimal control) as well as a recent direct approach [14]
parameterizing the design by data matrices. The foundation
of both approaches are subspace relations in state-space data.

A. Model-based linear quadratic optimal control

Consider a linear time-invariant (LTI) system
8
>><

>>:

x(k + 1) = Ax(k) +Bu(k) + d(k)

z(k) =

"
Q1/2 0

0 R1/2

#"
x(k)

u(k)

#
, (1)
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Q � 0 and R � 0 are weighting matrices. Here, � (⌫) and
� (�) denote positive and negative (semi)definiteness.

The problem of interest is linear quadratic regulation

phrased as designing a state-feedback gain K that renders
A+ BK Schur and minimizes the H2-norm of the transfer
function T (K) := d ! z of the closed-loop system1


x(k + 1)
z(k)

�
=

2

4
A+BK I
Q1/2

R1/2K

�
0

3

5


x(k)
d(k)

�
, (2)

where our notation T (K) emphasizes the dependence of the
transfer function on K. When A+BK is Schur, it holds that
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where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A+BK)P (A+BK)> � P + I = 0.

We refer to [34] for properties and interpretations of the
H2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d is a white process with unit covariance.
Here, we view the LQR problem as a H2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H2-norm of T (K) (henceforth, optimal) is unique
and can be computed by solving a discrete-time Riccati equa-
tion [1]. Alternatively, following [35], this optimal controller
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subject to (A+BK)P (A+BK)> � P + I � 0 ,
(4)

1Given a stable p ⇥ m transfer function T (�) in the indeterminate �,
the squared H2-norm of T (�) is defined as [34, Section 4.4]:
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2⇡

Z 2⇡

0
trace(T (ej✓)0T (ej✓)) d✓

The LQR problem indeed admits many parameterizations,
and the one in (4) can be turned into a convex semi-definite
program after a change of variables; see [33, Section III.C].

We aim to compute the optimal control in a data-driven
setting when (A,B) are unknown, but we have access to a
T -long stream of noisy data. Here noisy means that the data
collected from (1) are generated with a non-zero disturbance
d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-

square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
series of inputs, disturbances, states, and successor states

U0 :=
⇥
u(0) u(1) . . . u(T � 1)

⇤
2 Rm⇥T ,

D0 :=
⇥
d(0) d(1) . . . d(T � 1)

⇤
2 Rn⇥T ,

X0 :=
⇥
x(0) x(1) . . . x(T � 1)

⇤
2 Rn⇥T ,

X1 :=
⇥
x(1) x(2) . . . x(T )

⇤
2 Rn⇥T

satisfying the dynamics (1), that is,

X1 �D0 =
⇥
B A

⇤ U0

X0

�
. (5)

It is convenient to record the data as consecutive time series,
i.e., column i of X1 coincides with column i+1 of X0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity

W0 :=


U0

X0

�
.

We assume that the data is sufficiently rich, that is,

rankW0 = n+m. (6)

The rank condition (6) is an identifiability condition ensuring
that (B,A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B,A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X0, X1) and under the rank condition (6),
an estimate (B̂, Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem
⇥
B̂ Â

⇤
= argmin

B,A

��X1 �
⇥
B A

⇤
W0

��
F
= X1W

†
0 , (7)

where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),

II. INDIRECT & DIRECT DATA-DRIVEN LQR

We now review indirect LQR design (formalized as a bi-
level program: least-square SysID followed by model-based
optimal control) as well as a recent direct approach [14]
parameterizing the design by data matrices. The foundation
of both approaches are subspace relations in state-space data.

A. Model-based linear quadratic optimal control

Consider a linear time-invariant (LTI) system
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where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d is a disturbance term, and z is the performance signal
of interest. We assume that (A,B) is stabilizable. Finally,
Q � 0 and R � 0 are weighting matrices. Here, � (⌫) and
� (�) denote positive and negative (semi)definiteness.
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where our notation T (K) emphasizes the dependence of the
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system (2), which coincides with the unique solution to the
Lyapunov equation (A+BK)P (A+BK)> � P + I = 0.

We refer to [34] for properties and interpretations of the
H2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d is a white process with unit covariance.
Here, we view the LQR problem as a H2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H2-norm of T (K) (henceforth, optimal) is unique
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an estimate (B̂, Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem
⇥
B̂ Â
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Equivalence: direct + xxx ó indirect
• direct approach

the matrices (B,A) are replaced by their estimates (7). This
approach can be formalized as a bi-level program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (Â+ B̂K)P (Â+ B̂K)> � P + I � 0
⇥
B̂ Â

⇤
= argmin

B,A

��X1 �
⇥
B A

⇤
W0

��
F
.

(8)

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (Â+ B̂K)P (Â+ B̂K)> � P + I � 0

⇥
B̂ Â

⇤
= argmin

B,A

����X1 �
⇥
B A

⇤ U0

X0

�����
F

Following classic terminology [2], we term problem (8)
a certainty-equivalence and indirect data-driven control ap-
proach and its solution K a certainty-equivalence controller.

Note that under the identifiability condition (6) and with
noise-free data, (8) is feasible and returns the optimal control.
This is because, under these circumstances, B̂ = B and Â =
A so that (8) coincides with the model-based program (4).

It can be argued that the sequential identification-followed-
by-control approach (8) is optimal in a maximum-likelihood
sense; see [19, Section 4.2]. However, it is also known that
noisy data should not be taken at face value (especially in the
low-data and low SNR limit), and the certainty-equivalence
approach has to be additionally robustified; see [6], [8],

C. Direct design & LQR parameterization by data matrices

Now we review a direct data-driven LQR approach laid
out in [14]. It uses the subspace relations (5) and (6) to
parametrize problem (4) by data matrices. Namely, due to
the rank condition (6), for any K, there is a matrix G so that


K
I

�
= W0G , (9)

and due to the relation (5) the closed-loop matrix A+ BK
can be parametrized directly by data matrices as

A+BK =
⇥
B A

⇤ K
I

�
(9)
=

⇥
B A

⇤
W0G

(5)
= (X1�D0)G .

(10)
This data-based parameterization allows us to replace the
closed-loop matrix A+BK in (4) by (X1 �D0)G subject
to the additional constraint (9). As a result, the LQR problem
(4) can be parametrized by means of data matrices as

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to (X1 �D0)GPG>(X1 �D0)
> � P + I � 0


K
I

�
= W0G

(11)
with optimal control gain K = U0G. This parametrization
is indeed a direct formulation of the LQR problem since no
explicit identification of the system matrices is involved.

With noise-free data (11) can be efficiently implemented
(after a convexification) and returns the optimal controller
[14]. With noisy data, as D0 is unknown, a natural approach
is to disregard D0 which leads to the formulation

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G ,

(12)

which can be posed as convex program; see [14], [16], [33].
In the noiseless case and under condition (6), all problem

formulations (4), (8), and (12) coincide. Further, there is a
considerable nullspace in the direct formulation (12).

Lemma 2.1: (Nullspace in direct data-driven control)
Consider the data-driven LQR problem (12). Assume noise-
less data, i.e., D0 = 0, and that the identifiability condition
(6) holds. Then the set of optimal solutions G? to (12)
coincides with the set of solutions to equation (9), i.e.,

{G? : (P ?,K?, G?) 2 argmin(12)} = W †
0 [KI ]+Ghom , (13)

where Ghom is any matrix in the nullspace of W0.
Proof: Clearly, any optimal solution is feasible and thus

satisfies the constraint equation (9). To prove the converse
inclusion, consider any two solutions G1 and G2 to the
constraint equation (9). Both solutions are of the form (13)
and by (10) lead to the same closed-loop matrix X1G1 =
A + BK = X1G2 and to the same K = U0G1 = U0G2.
Hence, neither the Lyapunov constraint nor the objective are
altered, and thus both solutions achieve an identical cost.

Hence, in case of exact data, the direct data-driven LQR
problem (12) contains a large nullspace, and its solutions are
non-unique. However, in case of noisy data, it will turn out
to be advantageous to bias (or regularize) problem (12) to
single out a solution with favorable noise rejection properties.
Similarly to (8), (12) also enforces some sort of certainty
equivalence since the design does not take noise into account.
In the next section, we show, among others, that a particular
regularized version of (12) is indeed equivalent to (8).

III. REGULARIZED & DIRECT DATA-DRIVEN LQR
This section derives different regularized formulations of

direct data-driven LQR (12) promoting certainty-equivalence
(in a least square or low-rank sense) and robust stability.

A. A direct version of the certainty-equivalence LQR

We first consider a regularized version of direct data-
driven LQR promoting certainty-equivalence, i.e., a least-
square fitting of the data (7). The results rest on [24], [33].
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A+BK =
⇥
B A

⇤ K
I

�
(9)
=
⇥
B A

⇤
W0G

(5)
= (X1�D0)G .

(10)
This data-based parameterization allows us to replace the
closed-loop matrix A+BK in (4) by (X1 �D0)G subject
to the additional constraint (9). As a result, the LQR problem
(4) can be parametrized by means of data matrices as

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to (X1 �D0)GPG>(X1 �D0)
> � P + I � 0


K
I

�
= W0G

(11)
with optimal control gain K = U0G. This parametrization
is indeed a direct formulation of the LQR problem since no
explicit identification of the system matrices is involved.

With noise-free data (11) can be efficiently implemented
(after a convexification) and returns the optimal controller
[14]. With noisy data, as D0 is unknown, a natural approach
is to disregard D0 which leads to the formulation

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G ,

(12)

which can be posed as convex program; see [14], [16], [33].
In the noiseless case and under condition (6), all problem

formulations (4), (8), and (12) coincide. Further, there is a
considerable nullspace in the direct formulation (12).

Lemma 2.1: (Nullspace in direct data-driven control)
Consider the data-driven LQR problem (12). Assume noise-
less data, i.e., D0 = 0, and that the identifiability condition
(6) holds. Then the set of optimal solutions G? to (12)
coincides with the set of solutions to equation (9), i.e.,

{G? : (P ?,K?, G?) 2 argmin(12)} = W †
0 [KI ]+Ghom , (13)

where Ghom is any matrix in the nullspace of W0.
Proof: Clearly, any optimal solution is feasible and thus

satisfies the constraint equation (9). To prove the converse
inclusion, consider any two solutions G1 and G2 to the
constraint equation (9). Both solutions are of the form (13)
and by (10) lead to the same closed-loop matrix X1G1 =
A + BK = X1G2 and to the same K = U0G1 = U0G2.
Hence, neither the Lyapunov constraint nor the objective are
altered, and thus both solutions achieve an identical cost.

Hence, in case of exact data, the direct data-driven LQR
problem (12) contains a large nullspace, and its solutions are
non-unique. However, in case of noisy data, it will turn out
to be advantageous to bias (or regularize) problem (12) to
single out a solution with favorable noise rejection properties.
Similarly to (8), (12) also enforces some sort of certainty
equivalence since the design does not take noise into account.
In the next section, we show, among others, that a particular
regularized version of (12) is indeed equivalent to (8).

III. REGULARIZED & DIRECT DATA-DRIVEN LQR
This section derives different regularized formulations of

direct data-driven LQR (12) promoting certainty-equivalence
(in a least square or low-rank sense) and robust stability.

A. A direct version of the certainty-equivalence LQR

We first consider a regularized version of direct data-
driven LQR promoting certainty-equivalence, i.e., a least-
square fitting of the data (7). The results rest on [24], [33].

To relate (8) and (12), consider the following program

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

⇣
I �W †

0W0

⌘
G = 0 .

(14)

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
=


U0

X0

�
G

 
I �


U0

X0

�† 
U0

X0

�!
G = 0

(15)

à optimizer has  

nullspace

à orthogonality
constraint

equivalent constraints:

the matrices (B,A) are replaced by their estimates (7). This
approach can be formalized as a bi-level program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (Â+ B̂K)P (Â+ B̂K)> � P + I � 0
⇥
B̂ Â

⇤
= argmin

B,A

��X1 �
⇥
B A

⇤
W0

��
F
.

(8)

Following classic terminology [2], we term problem (8) a
certainty-equivalence and indirect data-driven control ap-
proach and its solution K a certainty-equivalence controller.

Note that under the identifiability condition (6) and with
noise-free data, (8) is feasible and returns the optimal control.
This is because, under these circumstances, B̂ = B and Â =
A so that (8) coincides with the model-based program (4).

It can be argued that the sequential identification-followed-
by-control approach (8) is optimal in a maximum-likelihood
sense; see [19, Section 4.2]. However, it is also known that
noisy data should not be taken at face value (especially in the
low-data and low SNR limit), and the certainty-equivalence
approach has to be additionally robustified; see [6], [8],

C. Direct design & LQR parameterization by data matrices

Now we review a direct data-driven LQR approach laid
out in [14]. It uses the subspace relations (5) and (6) to
parametrize problem (4) by data matrices. Namely, due to
the rank condition (6), for any K, there is a matrix G so that


K
I

�
= W0G , (9)

and due to the relation (5) the closed-loop matrix A+ BK
can be parametrized directly by data matrices as

A+BK =
⇥
B A

⇤ K
I

�
(9)
=
⇥
B A

⇤
W0G

(5)
= (X1�D0)G .

(10)
This data-based parameterization allows us to replace the
closed-loop matrix A+BK in (4) by (X1 �D0)G subject
to the additional constraint (9). As a result, the LQR problem
(4) can be parametrized by means of data matrices as

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to (X1 �D0)GPG>(X1 �D0)
> � P + I � 0


K
I

�
= W0G

(11)
with optimal control gain K = U0G. This parametrization
is indeed a direct formulation of the LQR problem since no
explicit identification of the system matrices is involved.

With noise-free data (11) can be efficiently implemented
(after a convexification) and returns the optimal controller
[14]. With noisy data, as D0 is unknown, a natural approach
is to disregard D0 which leads to the formulation

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G ,

(12)

which can be posed as convex program; see [14], [16], [33].
In the noiseless case and under condition (6), all problem

formulations (4), (8), and (12) coincide. Further, there is a
considerable nullspace in the direct formulation (12).

Lemma 2.1: (Nullspace in direct data-driven control)
Consider the data-driven LQR problem (12). Assume noise-
less data, i.e., D0 = 0, and that the identifiability condition
(6) holds. Then the set of optimal solutions G? to (12)
coincides with the set of solutions to equation (9), i.e.,

{G? : (P ?,K?, G?) 2 argmin(12)} = W †
0 [KI ]+Ghom , (13)

where Ghom is any matrix in the nullspace of W0.
Proof: Clearly, any optimal solution is feasible and thus

satisfies the constraint equation (9). To prove the converse
inclusion, consider any two solutions G1 and G2 to the
constraint equation (9). Both solutions are of the form (13)
and by (10) lead to the same closed-loop matrix X1G1 =
A + BK = X1G2 and to the same K = U0G1 = U0G2.
Hence, neither the Lyapunov constraint nor the objective are
altered, and thus both solutions achieve an identical cost.

Hence, in case of exact data, the direct data-driven LQR
problem (12) contains a large nullspace, and its solutions are
non-unique. However, in case of noisy data, it will turn out
to be advantageous to bias (or regularize) problem (12) to
single out a solution with favorable noise rejection properties.
Similarly to (8), (12) also enforces some sort of certainty
equivalence since the design does not take noise into account.
In the next section, we show, among others, that a particular
regularized version of (12) is indeed equivalent to (8).

III. REGULARIZED & DIRECT DATA-DRIVEN LQR
This section derives different regularized formulations of

direct data-driven LQR (12) promoting certainty-equivalence
(in a least square or low-rank sense) and robust stability.

A. A direct version of the certainty-equivalence LQR

We first consider a regularized version of direct data-
driven LQR promoting certainty-equivalence, i.e., a least-
square fitting of the data (7). The results rest on [24], [33].

To relate (8) and (12), consider the following program

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

⇣
I �W †

0W0

⌘
G = 0 .

(14)

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
=


U0

X0

�
G

 
I �


U0

X0

�† 
U0

X0

�!
G = 0

(15)

<latexit sha1_base64="q5C9QC3gYqqfCJJtqKkGc4guYfo="></latexit>

⇥
B̂ Â

⇤
= X1


U0

X0

�†
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ker
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Regularized, direct, & certainty-equivalent LQR

• orthogonality constraint

lifted to regularizer

indirect data-driven LQR formulations (8) and (14), respec-

tively. The two formulations are equivalent in the sense that

the cost functions coincide and feasible sets coincide. ⌅
The orthogonal projector on the nullspace of W0 is termed

⇧ := I �W †
0W0 .

By lifting the orthogonality constraint ⇧G = 0 in (14) to
the objective, we get a regularized data-driven LQR problem

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�
+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(15)

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�
+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0


K
I

�
=


U0

X0

�
G

where k ·k is any matrix norm. We have the following result.
Theorem 3.2: (Regularized direct data-driven LQR [33,

Theorem 3.3]) Consider the direct data-driven LQR formu-

lation (14) and its regularized version (16) with parameter

� � 0. The two problems coincide for � sufficiently large.

Otherwise, for general � � 0, (16) lower-bounds (14).
For noise-free data it can also be shown that (14) and (16)

coincide for every � � 0. We do not further elaborate on this
point but rather discuss the implications of Theorem 3.2.

Remark 3.3 (Comparison of formulations): The standard
indirect certainty-equivalence LQR problem is formulated
as the bi-level problem (8) consisting of sequential identi-
fication and model-based LQR. Theorem 3.2 shows that (8)
is equivalent to the single-level and multi-criteria problem
(16) simultaneously accounting for identification and control
objectives. This formulation is interesting in its own right,
and we further elaborate on it in Sections V and VI. Given
the equivalence of the formulations (8), (14), or (16), the
latter for � sufficiently large, one may wonder which is the
preferred one. For now we remark that they can all be posed
as convex programs (see [33, Section III.C]) and display sim-
ilar computational performance. We defer a more in-depth
discussion to Sections V and VI after analyzing robustness
and performance properties of certainty-equivalence LQR.⇤
B. Robustness-inducing regularization

The certainty-equivalence LQR problem (8) can be cast
as direct (non-sequential) control design via the single-level
program (16). Further, one can show that the regularization
induced by the certainty-equivalence approach indeed gives a
certain level of robustness to noise. To see this, note that (16)
searches for a solution that satisfies the Lyapunov inequality

X1GPG>X>
1 � P + I � 0 (16)

which amounts to regarding X1G as the closed-loop system
matrix. In view of the relation A+BK = (X1 �D0)G, the
stability constraint that should be met is actually

(X1 �D0)GPG>(X1 �D0)
> � P + I � 0 . (17)

In order for (17) to imply (18) it is sufficient that G has
small norm. In fact, certainty-equivalence regularization � ·
k⇧Gk precisely achieves this: Theorem 3.2 shows that for �
sufficiently large the solution to (16) returns G = W †

0 [KI ],
which is the least Frobenius norm k·kF solution to (9):

minimize
G

kGkF

subject to


K
I

�
= W0G .

This suggests that the certainty-equivalence LQR (8) must
possess a certain degree of robustness to noise. We will give
a formal result on this aspect later in Section IV.

The question when feasibility of (17) implies feasibility
of (18) has been studied extensively in [16] which proposed
to regularize problem (12) with trace(GPG>), namely:

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ ⇢ · trace
�
GPG>�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(18)

where ⇢ > 0 is a design parameter (see [16] for a convex
formulation of (19)). This regularizer accounts for the whole
term GPG> multiplying (18), instead of G alone as done in
(8), making stability easier to achieve. We defer a detailed
comparison of the two regularizers to Sections IV-V.

C. Regularization as surrogate for low-rank approximation

Thus far we have motivated norm-based regularizers by
least-squares SysID or to assure that the stability constraint
(18) is met. In this subsection we motivate an `1-norm-based
regularizer by a prior data pre-processing (de-noising).

To motivate the pre-processing, note that for clean data
the subspace relations (5)-(6) imply a low-rank property:

rank

2

4
U0

X0

X1

3

5 = rank

U0

X0

�
= n+m. (19)

The converse statement holds as well as formalized below:
Lemma 3.4: (Rank condition) Consider the data (U0, X0,

X1), and let condition (6) hold. The following are equivalent:
(i) There exists a unique pair of matrices A 2 Rn⇥n and

B 2 Rn⇥m so that X1 = AX0 +BU0.
(ii) The low-rank condition (20) holds.

Proof: The implication (i) ) (ii) follows since
X1 = [B A]W0, and thus n rows of the stacked matrices
(U0, X0, X1) are linearly dependent. To prove the converse
(ii) ) (i) note that condition (20) implies that n rows of
the stacked matrices (U0, X0, X1) are linearly dependent.
Since (U0, X0) are linearly independent by condition (6),

indirect data-driven LQR formulations (8) and (14), respec-

tively. The two formulations are equivalent in the sense that

the cost functions coincide and feasible sets coincide. ⌅
The orthogonal projector on the nullspace of W0 is termed

⇧ := I �W †
0W0 .

⇧ = I �

U0

X0

�† 
U0

X0

�

By lifting the orthogonality constraint ⇧G = 0 in (14) to
the objective, we get a regularized data-driven LQR problem

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�
+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(15)
where k ·k is any matrix norm. We have the following result.

Theorem 3.2: (Regularized direct data-driven LQR [33,
Theorem 3.3]) Consider the direct data-driven LQR formu-

lation (14) and its regularized version (15) with parameter

� � 0. The two problems coincide for � sufficiently large.

Otherwise, for general � � 0, (15) lower-bounds (14).
For noise-free data it can also be shown that (14) and (15)

coincide for every � � 0. We do not further elaborate on this
point but rather discuss the implications of Theorem 3.2.

Remark 3.3 (Comparison of formulations): The standard
indirect certainty-equivalence LQR problem is formulated
as the bi-level problem (8) consisting of sequential identi-
fication and model-based LQR. Theorem 3.2 shows that (8)
is equivalent to the single-level and multi-criteria problem
(15) simultaneously accounting for identification and control
objectives. This formulation is interesting in its own right,
and we further elaborate on it in Sections V and VI. Given
the equivalence of the formulations (8), (14), or (15), the
latter for � sufficiently large, one may wonder which is the
preferred one. For now we remark that they can all be posed
as convex programs (see [33, Section III.C]) and display sim-
ilar computational performance. We defer a more in-depth
discussion to Sections V and VI after analyzing robustness
and performance properties of certainty-equivalence LQR.⇤
B. Robustness-inducing regularization

The certainty-equivalence LQR problem (8) can be cast
as direct (non-sequential) control design via the single-level
program (15). Further, one can show that the regularization
induced by the certainty-equivalence approach indeed gives a
certain level of robustness to noise. To see this, note that (15)
searches for a solution that satisfies the Lyapunov inequality

X1GPG>X>
1 � P + I � 0 (16)

which amounts to regarding X1G as the closed-loop system
matrix. In view of the relation A+BK = (X1 �D0)G, the
stability constraint that should be met is actually

(X1 �D0)GPG>(X1 �D0)
> � P + I � 0 . (17)

In order for (16) to imply (17) it is sufficient that G has
small norm. In fact, certainty-equivalence regularization � ·
k⇧Gk precisely achieves this: Theorem 3.2 shows that for �
sufficiently large the solution to (15) returns G = W †

0 [KI ],
which is the least Frobenius norm k·kF solution to (9):

minimize
G

kGkF

subject to


K
I

�
= W0G .

This suggests that the certainty-equivalence LQR (8) must
possess a certain degree of robustness to noise. We will give
a formal result on this aspect later in Section IV.

The question when feasibility of (16) implies feasibility
of (17) has been studied extensively in [16] which proposed
to regularize problem (12) with trace(GPG>), namely:

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ ⇢ · trace
�
GPG>�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(18)

where ⇢ > 0 is a design parameter (see [16] for a convex
formulation of (18)). This regularizer accounts for the whole
term GPG> multiplying (17), instead of G alone as done in
(8), making stability easier to achieve. We defer a detailed
comparison of the two regularizers to Sections IV-V.

C. Regularization as surrogate for low-rank approximation

Thus far we have motivated norm-based regularizers by
least-squares SysID or to assure that the stability constraint
(17) is met. In this subsection we motivate an `1-norm-based
regularizer by a prior data pre-processing (de-noising).

To motivate the pre-processing, note that for clean data
the subspace relations (5)-(6) imply a low-rank property:

rank

2

4
U0

X0

X1

3

5 = rank

U0

X0

�
= n+m. (19)

The converse statement holds as well as formalized below:
Lemma 3.4: (Rank condition) Consider the data (U0, X0,

X1), and let condition (6) hold. The following are equivalent:
(i) There exists a unique pair of matrices A 2 Rn⇥n and

B 2 Rn⇥m so that X1 = AX0 +BU0.
(ii) The low-rank condition (19) holds.

Proof: The implication (i) ) (ii) follows since
X1 = [B A]W0, and thus n rows of the stacked matrices
(U0, X0, X1) are linearly dependent. To prove the converse
(ii) ) (i) note that condition (19) implies that n rows of
the stacked matrices (U0, X0, X1) are linearly dependent.
Since (U0, X0) are linearly independent by condition (6),
there exist matrices A and B so that X1 = [B A]

⇥
U0
X0

⇤
.

Uniqueness follows since
⇥
U0
X0

⇤
has full row rank.

• equivalent to indirect certainty-equivalent LQR design for     suff. large 
<latexit sha1_base64="Cu3OsCVWUlrnrlcec2iJKPEwJ5Q="></latexit>

�

• multi-criteria interpretation:    interpolates control & SysID objectives 
<latexit sha1_base64="Cu3OsCVWUlrnrlcec2iJKPEwJ5Q="></latexit>

�

• however, certainty-equivalence formulation may not be robust (?)

• interpolates between direct & indirect approaches
<latexit sha1_base64="Cu3OsCVWUlrnrlcec2iJKPEwJ5Q="></latexit>
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Robustness-promoting regularization

• effect of noise entering data:
Lyapunov constraint                                         
becomes

indirect data-driven LQR formulations (8) and (14), respec-

tively. The two formulations are equivalent in the sense that

the cost functions coincide and feasible sets coincide. ⌅
The orthogonal projector on the nullspace of W0 is termed

⇧ := I �W †
0W0 .

By lifting the orthogonality constraint ⇧G = 0 in (14) to
the objective, we get a regularized data-driven LQR problem

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�
+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(15)
where k ·k is any matrix norm. We have the following result.

Theorem 3.2: (Regularized direct data-driven LQR [33,
Theorem 3.3]) Consider the direct data-driven LQR formu-

lation (14) and its regularized version (15) with parameter

� � 0. The two problems coincide for � sufficiently large.

Otherwise, for general � � 0, (15) lower-bounds (14).
For noise-free data it can also be shown that (14) and (15)

coincide for every � � 0. We do not further elaborate on this
point but rather discuss the implications of Theorem 3.2.

Remark 3.3 (Comparison of formulations): The standard
indirect certainty-equivalence LQR problem is formulated
as the bi-level problem (8) consisting of sequential identi-
fication and model-based LQR. Theorem 3.2 shows that (8)
is equivalent to the single-level and multi-criteria problem
(15) simultaneously accounting for identification and control
objectives. This formulation is interesting in its own right,
and we further elaborate on it in Sections V and VI. Given
the equivalence of the formulations (8), (14), or (15), the
latter for � sufficiently large, one may wonder which is the
preferred one. For now we remark that they can all be posed
as convex programs (see [33, Section III.C]) and display sim-
ilar computational performance. We defer a more in-depth
discussion to Sections V and VI after analyzing robustness
and performance properties of certainty-equivalence LQR.⇤

B. Robustness-inducing regularization

The certainty-equivalence LQR problem (8) can be cast
as direct (non-sequential) control design via the single-level
program (15). Further, one can show that the regularization
induced by the certainty-equivalence approach indeed gives a
certain level of robustness to noise. To see this, note that (15)
searches for a solution that satisfies the Lyapunov inequality

X1GPG>X>
1 � P + I � 0 (16)

which amounts to regarding X1G as the closed-loop system
matrix. In view of the relation A+BK = (X1 �D0)G, the
stability constraint that should be met is actually

(X1 �D0)GPG>(X1 �D0)
> � P + I � 0 . (17)

In order for (16) to imply (17) it is sufficient that G has
small norm. In fact, certainty-equivalence regularization � ·
k⇧Gk precisely achieves this: Theorem 3.2 shows that for �
sufficiently large the solution to (15) returns G = W †

0 [KI ],
which is the least Frobenius norm k·kF solution to (9):

minimize
G

kGkF

subject to


K
I

�
= W0G .

This suggests that the certainty-equivalence LQR (8) must
possess a certain degree of robustness to noise. We will give
a formal result on this aspect later in Section IV.

The question when feasibility of (16) implies feasibility
of (17) has been studied extensively in [16] which proposed
to regularize problem (12) with trace(GPG>), namely:

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ ⇢ · trace
�
GPG>�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(18)

where ⇢ > 0 is a design parameter (see [16] for a convex
formulation of (18)). This regularizer accounts for the whole
term GPG> multiplying (17), instead of G alone as done in
(8), making stability easier to achieve. We defer a detailed
comparison of the two regularizers to Sections IV-V.

C. Regularization as surrogate for low-rank approximation

Thus far we have motivated norm-based regularizers by
least-squares SysID or to assure that the stability constraint
(17) is met. In this subsection we motivate an `1-norm-based
regularizer by a prior data pre-processing (de-noising).

To motivate the pre-processing, note that for clean data
the subspace relations (5)-(6) imply a low-rank property:

rank

2

4
U0

X0

X1

3

5 = rank

U0

X0

�
= n+m. (19)

The converse statement holds as well as formalized below:
Lemma 3.4: (Rank condition) Consider the data (U0, X0,

X1), and let condition (6) hold. The following are equivalent:
(i) There exists a unique pair of matrices A 2 Rn⇥n and

B 2 Rn⇥m so that X1 = AX0 +BU0.
(ii) The low-rank condition (19) holds.

Proof: The implication (i) ) (ii) follows since
X1 = [B A]W0, and thus n rows of the stacked matrices
(U0, X0, X1) are linearly dependent. To prove the converse
(ii) ) (i) note that condition (19) implies that n rows of
the stacked matrices (U0, X0, X1) are linearly dependent.
Since (U0, X0) are linearly independent by condition (6),
there exist matrices A and B so that X1 = [B A]

⇥
U0
X0

⇤
.

Uniqueness follows since
⇥
U0
X0

⇤
has full row rank.

indirect data-driven LQR formulations (8) and (14), respec-

tively. The two formulations are equivalent in the sense that

the cost functions coincide and feasible sets coincide. ⌅
The orthogonal projector on the nullspace of W0 is termed

⇧ := I �W †
0W0 .

By lifting the orthogonality constraint ⇧G = 0 in (14) to
the objective, we get a regularized data-driven LQR problem

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�
+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(15)
where k ·k is any matrix norm. We have the following result.

Theorem 3.2: (Regularized direct data-driven LQR [33,
Theorem 3.3]) Consider the direct data-driven LQR formu-

lation (14) and its regularized version (15) with parameter

� � 0. The two problems coincide for � sufficiently large.

Otherwise, for general � � 0, (15) lower-bounds (14).
For noise-free data it can also be shown that (14) and (15)

coincide for every � � 0. We do not further elaborate on this
point but rather discuss the implications of Theorem 3.2.

Remark 3.3 (Comparison of formulations): The standard
indirect certainty-equivalence LQR problem is formulated
as the bi-level problem (8) consisting of sequential identi-
fication and model-based LQR. Theorem 3.2 shows that (8)
is equivalent to the single-level and multi-criteria problem
(15) simultaneously accounting for identification and control
objectives. This formulation is interesting in its own right,
and we further elaborate on it in Sections V and VI. Given
the equivalence of the formulations (8), (14), or (15), the
latter for � sufficiently large, one may wonder which is the
preferred one. For now we remark that they can all be posed
as convex programs (see [33, Section III.C]) and display sim-
ilar computational performance. We defer a more in-depth
discussion to Sections V and VI after analyzing robustness
and performance properties of certainty-equivalence LQR.⇤

B. Robustness-inducing regularization

The certainty-equivalence LQR problem (8) can be cast
as direct (non-sequential) control design via the single-level
program (15). Further, one can show that the regularization
induced by the certainty-equivalence approach indeed gives a
certain level of robustness to noise. To see this, note that (15)
searches for a solution that satisfies the Lyapunov inequality

X1GPG>X>
1 � P + I � 0 (16)

which amounts to regarding X1G as the closed-loop system
matrix. In view of the relation A+BK = (X1 �D0)G, the
stability constraint that should be met is actually

(X1 �D0)GPG>(X1 �D0)
> � P + I � 0 . (17)

In order for (16) to imply (17) it is sufficient that G has
small norm. In fact, certainty-equivalence regularization � ·
k⇧Gk precisely achieves this: Theorem 3.2 shows that for �
sufficiently large the solution to (15) returns G = W †

0 [KI ],
which is the least Frobenius norm k·kF solution to (9):

minimize
G

kGkF

subject to


K
I

�
= W0G .

This suggests that the certainty-equivalence LQR (8) must
possess a certain degree of robustness to noise. We will give
a formal result on this aspect later in Section IV.

The question when feasibility of (16) implies feasibility
of (17) has been studied extensively in [16] which proposed
to regularize problem (12) with trace(GPG>), namely:

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ ⇢ · trace
�
GPG>�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(18)

where ⇢ > 0 is a design parameter (see [16] for a convex
formulation of (18)). This regularizer accounts for the whole
term GPG> multiplying (17), instead of G alone as done in
(8), making stability easier to achieve. We defer a detailed
comparison of the two regularizers to Sections IV-V.

C. Regularization as surrogate for low-rank approximation

Thus far we have motivated norm-based regularizers by
least-squares SysID or to assure that the stability constraint
(17) is met. In this subsection we motivate an `1-norm-based
regularizer by a prior data pre-processing (de-noising).

To motivate the pre-processing, note that for clean data
the subspace relations (5)-(6) imply a low-rank property:

rank

2

4
U0

X0

X1

3

5 = rank

U0

X0

�
= n+m. (19)

The converse statement holds as well as formalized below:
Lemma 3.4: (Rank condition) Consider the data (U0, X0,

X1), and let condition (6) hold. The following are equivalent:
(i) There exists a unique pair of matrices A 2 Rn⇥n and

B 2 Rn⇥m so that X1 = AX0 +BU0.
(ii) The low-rank condition (19) holds.

Proof: The implication (i) ) (ii) follows since
X1 = [B A]W0, and thus n rows of the stacked matrices
(U0, X0, X1) are linearly dependent. To prove the converse
(ii) ) (i) note that condition (19) implies that n rows of
the stacked matrices (U0, X0, X1) are linearly dependent.
Since (U0, X0) are linearly independent by condition (6),
there exist matrices A and B so that X1 = [B A]

⇥
U0
X0

⇤
.

Uniqueness follows since
⇥
U0
X0

⇤
has full row rank.
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indirect data-driven LQR formulations (8) and (14), respec-

tively. The two formulations are equivalent in the sense that

the cost functions coincide and feasible sets coincide. ⌅
The orthogonal projector on the nullspace of W0 is termed

⇧ := I �W †
0W0 .

By lifting the orthogonality constraint ⇧G = 0 in (14) to
the objective, we get a regularized data-driven LQR problem

minimize
P ⌫ I,K,G

trace (QP ) + trace
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K>RKP
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+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(15)
where k ·k is any matrix norm. We have the following result.

Theorem 3.2: (Regularized direct data-driven LQR [33,
Theorem 3.3]) Consider the direct data-driven LQR formu-

lation (14) and its regularized version (15) with parameter

� � 0. The two problems coincide for � sufficiently large.

Otherwise, for general � � 0, (15) lower-bounds (14).
For noise-free data it can also be shown that (14) and (15)

coincide for every � � 0. We do not further elaborate on this
point but rather discuss the implications of Theorem 3.2.

Remark 3.3 (Comparison of formulations): The standard
indirect certainty-equivalence LQR problem is formulated
as the bi-level problem (8) consisting of sequential identi-
fication and model-based LQR. Theorem 3.2 shows that (8)
is equivalent to the single-level and multi-criteria problem
(15) simultaneously accounting for identification and control
objectives. This formulation is interesting in its own right,
and we further elaborate on it in Sections V and VI. Given
the equivalence of the formulations (8), (14), or (15), the
latter for � sufficiently large, one may wonder which is the
preferred one. For now we remark that they can all be posed
as convex programs (see [33, Section III.C]) and display sim-
ilar computational performance. We defer a more in-depth
discussion to Sections V and VI after analyzing robustness
and performance properties of certainty-equivalence LQR.⇤

B. Robustness-inducing regularization

The certainty-equivalence LQR problem (8) can be cast
as direct (non-sequential) control design via the single-level
program (15). Further, one can show that the regularization
induced by the certainty-equivalence approach indeed gives a
certain level of robustness to noise. To see this, note that (15)
searches for a solution that satisfies the Lyapunov inequality

X1GPG>X>
1 � P + I � 0 (16)

which amounts to regarding X1G as the closed-loop system
matrix. In view of the relation A+BK = (X1 �D0)G, the
stability constraint that should be met is actually

(X1 �D0)GPG>(X1 �D0)
> � P + I � 0 . (17)

In order for (16) to imply (17) it is sufficient that G has
small norm. In fact, certainty-equivalence regularization � ·
k⇧Gk precisely achieves this: Theorem 3.2 shows that for �
sufficiently large the solution to (15) returns G = W †

0 [KI ],
which is the least Frobenius norm k·kF solution to (9):

minimize
G

kGkF

subject to


K
I

�
= W0G .

This suggests that the certainty-equivalence LQR (8) must
possess a certain degree of robustness to noise. We will give
a formal result on this aspect later in Section IV.

The question when feasibility of (16) implies feasibility
of (17) has been studied extensively in [16] which proposed
to regularize problem (12) with trace(GPG>), namely:

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ ⇢ · trace
�
GPG>�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(18)

where ⇢ > 0 is a design parameter (see [16] for a convex
formulation of (18)). This regularizer accounts for the whole
term GPG> multiplying (17), instead of G alone as done in
(8), making stability easier to achieve. We defer a detailed
comparison of the two regularizers to Sections IV-V.

C. Regularization as surrogate for low-rank approximation

Thus far we have motivated norm-based regularizers by
least-squares SysID or to assure that the stability constraint
(17) is met. In this subsection we motivate an `1-norm-based
regularizer by a prior data pre-processing (de-noising).

To motivate the pre-processing, note that for clean data
the subspace relations (5)-(6) imply a low-rank property:

rank
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X0

X1

3

5 = rank

U0

X0

�
= n+m. (19)

The converse statement holds as well as formalized below:
Lemma 3.4: (Rank condition) Consider the data (U0, X0,

X1), and let condition (6) hold. The following are equivalent:
(i) There exists a unique pair of matrices A 2 Rn⇥n and

B 2 Rn⇥m so that X1 = AX0 +BU0.
(ii) The low-rank condition (19) holds.

Proof: The implication (i) ) (ii) follows since
X1 = [B A]W0, and thus n rows of the stacked matrices
(U0, X0, X1) are linearly dependent. To prove the converse
(ii) ) (i) note that condition (19) implies that n rows of
the stacked matrices (U0, X0, X1) are linearly dependent.
Since (U0, X0) are linearly independent by condition (6),
there exist matrices A and B so that X1 = [B A]

⇥
U0
X0

⇤
.

Uniqueness follows since
⇥
U0
X0

⇤
has full row rank.

indirect data-driven LQR formulations (8) and (14), respec-

tively. The two formulations are equivalent in the sense that

the cost functions coincide and feasible sets coincide. ⌅
The orthogonal projector on the nullspace of W0 is termed

⇧ := I �W †
0W0 .

By lifting the orthogonality constraint ⇧G = 0 in (14) to
the objective, we get a regularized data-driven LQR problem

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�
+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0


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= W0G

(15)

minimize
P ⌫ I,K,G
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�
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1 � P + I � 0


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where k ·k is any matrix norm. We have the following result.
Theorem 3.2: (Regularized direct data-driven LQR [33,

Theorem 3.3]) Consider the direct data-driven LQR formu-

lation (14) and its regularized version (16) with parameter

� � 0. The two problems coincide for � sufficiently large.

Otherwise, for general � � 0, (16) lower-bounds (14).
For noise-free data it can also be shown that (14) and (16)

coincide for every � � 0. We do not further elaborate on this
point but rather discuss the implications of Theorem 3.2.

Remark 3.3 (Comparison of formulations): The standard
indirect certainty-equivalence LQR problem is formulated
as the bi-level problem (8) consisting of sequential identi-
fication and model-based LQR. Theorem 3.2 shows that (8)
is equivalent to the single-level and multi-criteria problem
(16) simultaneously accounting for identification and control
objectives. This formulation is interesting in its own right,
and we further elaborate on it in Sections V and VI. Given
the equivalence of the formulations (8), (14), or (16), the
latter for � sufficiently large, one may wonder which is the
preferred one. For now we remark that they can all be posed
as convex programs (see [33, Section III.C]) and display sim-
ilar computational performance. We defer a more in-depth
discussion to Sections V and VI after analyzing robustness
and performance properties of certainty-equivalence LQR.⇤
B. Robustness-inducing regularization

The certainty-equivalence LQR problem (8) can be cast
as direct (non-sequential) control design via the single-level
program (16). Further, one can show that the regularization
induced by the certainty-equivalence approach indeed gives a
certain level of robustness to noise. To see this, note that (16)
searches for a solution that satisfies the Lyapunov inequality

X1GPG>X>
1 � P + I � 0 (16)

which amounts to regarding X1G as the closed-loop system
matrix. In view of the relation A+BK = (X1 �D0)G, the
stability constraint that should be met is actually

(X1 �D0)GPG>(X1 �D0)
> � P + I � 0 . (17)

In order for (17) to imply (18) it is sufficient that G has
small norm. In fact, certainty-equivalence regularization � ·
k⇧Gk precisely achieves this: Theorem 3.2 shows that for �
sufficiently large the solution to (16) returns G = W †

0 [KI ],
which is the least Frobenius norm k·kF solution to (9):

minimize
G

kGkF

subject to


K
I

�
= W0G .

This suggests that the certainty-equivalence LQR (8) must
possess a certain degree of robustness to noise. We will give
a formal result on this aspect later in Section IV.

The question when feasibility of (17) implies feasibility
of (18) has been studied extensively in [16] which proposed
to regularize problem (12) with trace(GPG>), namely:

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ ⇢ · trace
�
GPG>�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(18)

where ⇢ > 0 is a design parameter (see [16] for a convex
formulation of (19)). This regularizer accounts for the whole
term GPG> multiplying (18), instead of G alone as done in
(8), making stability easier to achieve. We defer a detailed
comparison of the two regularizers to Sections IV-V.

C. Regularization as surrogate for low-rank approximation

Thus far we have motivated norm-based regularizers by
least-squares SysID or to assure that the stability constraint
(18) is met. In this subsection we motivate an `1-norm-based
regularizer by a prior data pre-processing (de-noising).

To motivate the pre-processing, note that for clean data
the subspace relations (5)-(6) imply a low-rank property:

rank

2

4
U0

X0

X1

3

5 = rank

U0

X0

�
= n+m. (19)

The converse statement holds as well as formalized below:
Lemma 3.4: (Rank condition) Consider the data (U0, X0,

X1), and let condition (6) hold. The following are equivalent:
(i) There exists a unique pair of matrices A 2 Rn⇥n and

B 2 Rn⇥m so that X1 = AX0 +BU0.
(ii) The low-rank condition (20) holds.

Proof: The implication (i) ) (ii) follows since
X1 = [B A]W0, and thus n rows of the stacked matrices
(U0, X0, X1) are linearly dependent. To prove the converse
(ii) ) (i) note that condition (20) implies that n rows of
the stacked matrices (U0, X0, X1) are linearly dependent.
Since (U0, X0) are linearly independent by condition (6),
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indirect data-driven LQR formulations (8) and (14), respec-

tively. The two formulations are equivalent in the sense that

the cost functions coincide and feasible sets coincide. ⌅
The orthogonal projector on the nullspace of W0 is termed

⇧ := I �W †
0W0 .

By lifting the orthogonality constraint ⇧G = 0 in (14) to
the objective, we get a regularized data-driven LQR problem

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�
+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0


K
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�
= W0G

(15)
where k ·k is any matrix norm. We have the following result.

Theorem 3.2: (Regularized direct data-driven LQR [33,
Theorem 3.3]) Consider the direct data-driven LQR formu-

lation (14) and its regularized version (15) with parameter

� � 0. The two problems coincide for � sufficiently large.

Otherwise, for general � � 0, (15) lower-bounds (14).
For noise-free data it can also be shown that (14) and (15)

coincide for every � � 0. We do not further elaborate on this
point but rather discuss the implications of Theorem 3.2.

Remark 3.3 (Comparison of formulations): The standard
indirect certainty-equivalence LQR problem is formulated
as the bi-level problem (8) consisting of sequential identi-
fication and model-based LQR. Theorem 3.2 shows that (8)
is equivalent to the single-level and multi-criteria problem
(15) simultaneously accounting for identification and control
objectives. This formulation is interesting in its own right,
and we further elaborate on it in Sections V and VI. Given
the equivalence of the formulations (8), (14), or (15), the
latter for � sufficiently large, one may wonder which is the
preferred one. For now we remark that they can all be posed
as convex programs (see [33, Section III.C]) and display sim-
ilar computational performance. We defer a more in-depth
discussion to Sections V and VI after analyzing robustness
and performance properties of certainty-equivalence LQR.⇤

B. Robustness-inducing regularization

The certainty-equivalence LQR problem (8) can be cast
as direct (non-sequential) control design via the single-level
program (15). Further, one can show that the regularization
induced by the certainty-equivalence approach indeed gives a
certain level of robustness to noise. To see this, note that (15)
searches for a solution that satisfies the Lyapunov inequality

X1GPG>X>
1 � P + I � 0 (16)

which amounts to regarding X1G as the closed-loop system
matrix. In view of the relation A+BK = (X1 �D0)G, the
stability constraint that should be met is actually

(X1 �D0)GPG>(X1 �D0)
> � P + I � 0 . (17)

In order for (16) to imply (17) it is sufficient that G has
small norm. In fact, certainty-equivalence regularization � ·
k⇧Gk precisely achieves this: Theorem 3.2 shows that for �
sufficiently large the solution to (15) returns G = W †

0 [KI ],
which is the least Frobenius norm k·kF solution to (9):

minimize
G

kGkF

subject to


K
I

�
= W0G .

This suggests that the certainty-equivalence LQR (8) must
possess a certain degree of robustness to noise. We will give
a formal result on this aspect later in Section IV.

The question when feasibility of (16) implies feasibility
of (17) has been studied extensively in [16] which proposed
to regularize problem (12) with trace(GPG>), namely:

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ ⇢ · trace
�
GPG>�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(18)

where ⇢ > 0 is a design parameter (see [16] for a convex
formulation of (18)). This regularizer accounts for the whole
term GPG> multiplying (17), instead of G alone as done in
(8), making stability easier to achieve. We defer a detailed
comparison of the two regularizers to Sections IV-V.

C. Regularization as surrogate for low-rank approximation

Thus far we have motivated norm-based regularizers by
least-squares SysID or to assure that the stability constraint
(17) is met. In this subsection we motivate an `1-norm-based
regularizer by a prior data pre-processing (de-noising).

To motivate the pre-processing, note that for clean data
the subspace relations (5)-(6) imply a low-rank property:
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The converse statement holds as well as formalized below:
Lemma 3.4: (Rank condition) Consider the data (U0, X0,

X1), and let condition (6) hold. The following are equivalent:
(i) There exists a unique pair of matrices A 2 Rn⇥n and

B 2 Rn⇥m so that X1 = AX0 +BU0.
(ii) The low-rank condition (19) holds.

Proof: The implication (i) ) (ii) follows since
X1 = [B A]W0, and thus n rows of the stacked matrices
(U0, X0, X1) are linearly dependent. To prove the converse
(ii) ) (i) note that condition (19) implies that n rows of
the stacked matrices (U0, X0, X1) are linearly dependent.
Since (U0, X0) are linearly independent by condition (6),
there exist matrices A and B so that X1 = [B A]

⇥
U0
X0

⇤
.

Uniqueness follows since
⇥
U0
X0

⇤
has full row rank.
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• case study [Dean et al. ‘19]: discrete-time
marginally unstable Laplacian system
subject to noise of variance 𝜎2 = 0.01

sub-optimality gap. Regarding the assumptions, Theorem 4.2
requires kD0k to be sufficiently small, instead of a SNR
sufficiently large. This more restrictive condition is due to the
presence of ⇢. As shown in [16], (25) indeed holds provided
that the SNR is sufficiently large (just like Theorem 4.1) and

kD0k2/⇢ is sufficiently small. As discussed in Section III-
B, the trace regularization favours robustness, and kD0k2/⇢
quantitatively captures this fact: as kD0k increases (data are
more noisy) we need larger values of ⇢ (larger regulariza-
tion), and this is precisely what Theorem 4.2 entails. This
requirement is not present in Theorem 4.1 because certainty
equivalence directly gives a regularizer with large enough
weight (Theorem 3.2). The robust formulation nonetheless
has some advantages. As we previously discussed, for both
(8) and (18) stability follows if the solution satisfies (17).
For certainty-equivalence LQR we have G = W †

0 [KI ], so
the fulfilment of inequality (17) essentially depends on the
product D0W

†
0 , hence on the SNR. In contrast, for the robust

formulation the stability condition can be satisfied even if
the SNR is low as long as GPG> has small norm, and this
condition can be obtained if ⇢ is sufficiently large. Hence, as
far as stabilization is concerned, the robust formulation gives
some advantages, the price paid being a potentially worse
sub-optimality gap. These considerations are fully supported
by numerical evidence, see Section V below.

Regarding the novel norm-based regularizer presented
in Section III-C: as of today, there is no robust stability
certificate, though the authors are confident that the methods
leading up to Theorems 4.1 and 4.2 can be used as well.

V. NUMERICAL CASE STUDY

We exemplify our theoretical findings via a simulation case
study. We consider the system proposed in [7, Section 6]:

A =

2

4
1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

3

5 , B = I .

These dynamics correspond to a discrete-time marginally
unstable Laplacian system. As weight matrices, we select
Q = I and R = 10�3I . Taking the input weight R small
relatively to the state weight Q favours stabilizing solutions
[16, Section 5]. In particular, this choice makes it possible
to find stabilizing controllers even from a single experiment.

A. Need for regularization

First, we discuss the need for regularization. Figure 1
shows the performance of the approach (15) as we vary the
regularization coefficient �. In particular, � = 0 corresponds
to no regularization, while increasing values of � eventually
give certainty equivalence; see Theorem 3.2. For each value
of � we run 100 trials with input u ⇠ N (0, I) and distur-
bance d ⇠ N (0, 0.01I), which corresponds approximately
to SNR 2 [0, 5]dB. For each trial we collect T = 20 state
and input samples. We let K(k) be the controller obtained in
k-th trial and define the relative performance error

Ek :=
kT (K(k))k22 � kT (K?)k22

kT (K?)k22
(26)

Fig. 1. Performance of (15) as we vary �. For each value of � we run 100
trials with Gaussian input u ⇠ N (0, I) and disturbance d ⇠ N (0, 0.01I).
The blue curve displays the percentage S of stabilizing controllers, along
with red curve showing the median percentage error (26). In agreement with
Theorem 3.2, the approach (15) coincides with (8) (equivalently (14)) for
� sufficiently large, which is � � 0.0028 for this particular setting.

whenever K(k) is stabilizing. We denote by S the percentage
of times that we find a stabilizing controller and by M the
median of Ek through all the trials. We consider the median
because it is more robust to outliers (large or small values
of Ek that are due to the a particular instance of the noise).

Figure 1 confirms that regularization is needed and that the
certainty-equivalence approach, is robust to noisy data and
achieves good performance (S = 100% and M = 0.0026)
when the SNR is not too small like in the present setting.

B. Certainty-equivalence approach, robust approach, mixed

regularization, and low-rank approximation / surrogate

Now we compare certainty equivalence approach (15) with
the robust one (18). Specifically, consider the program

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ � · k⇧Gk+ ⇢ · trace(GPG>)

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(27)

with hyperparameters �, ⇢ � 0. For ⇢ = 0 and � sufficiently
large we recover the certainty-equivalence approach, whereas
� = 0 and ⇢ > 0 gives the robust approach (additionally
requiring ⇢ sufficiently large). We carry out simulations with
different values of the noise variance �2, thus different values
of the SNR. For each value of � we run 100 trials with input
u ⇠ N (0, I) and disturbance d ⇠ N (0,�2I). For each trial
we take T = 20 state and input samples.

The simulation results are reported in Table I. In line with
the discussion of Section IV and with the results of [6], [7],
the simulations show that certainty-equivalence controllers
are less robust in general but, when stabilizing, outperform
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achieves good performance (S = 100% and M = 0.0026)
when the SNR is not too small like in the present setting.
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Now we compare certainty equivalence approach (15) with
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of the SNR. For each value of � we run 100 trials with input
u ⇠ N (0, I) and disturbance d ⇠ N (0,�2I). For each trial
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The simulation results are reported in Table I. In line with
the discussion of Section IV and with the results of [6], [7],
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Numerical case study cont’d

• take-home message 2: different regularizers promote different 
features: robustness vs. certainty-equivalence (performance)

� = 0.01 � = 0.1 � = 0.3 � = 0.7 � = 1

(SNR > 15dB) (SNR 2 [5, 10]dB) (SNR 2 [0, 5]dB) (SNR ⇡ 0dB) (SNR < �5dB)

Certainty-equivalence S = 100% S = 100% S = 100% S = 97% S = 84%

(� = 1, ⇢ = 0) M = 2.5599e-05 M = 0.0026 M = 0.0237 M = 0.1366 M = 0.2596

Robust approach S = 100% S = 100% S = 100% S = 100% S = 100%

(� = 0, ⇢ = 1) M = 0.0035 M = 0.0074 M = 0.0369 M = 0.2350 M = 0.6270

Mixed regularization S = 100% S = 100% S = 100% S = 97% S = 86%

(� = 0.9, ⇢ = 0.1) M = 7.7929e-05 M = 0.0028 M = 0.0234 M = 0.1344 M = 0.2647

Mixed regularization S = 100% S = 100% S = 100% S = 100% S = 100%

(� = ⇢ = 0.5) M = 0.0010 M = 0.0035 M = 0.0235 M = 0.1262 M = 0.2978

Mixed regularization S = 100% S = 100% S = 100% S = 100% S = 100%

(� = 0.1, ⇢ = 0.9) M = 0.0029 M = 0.0057 M = 0.0297 M = 0.2078 M = 0.5369

Certainty equivalence S = 100% S = 100% S = 100% S = 99% S = 91%

with LRA M = 2.5616e-05 M = 0.0026 M = 0.0229 M = 0.1215 M = 0.2265

`1-regularization S = 100% S = 100% S = 100% S = 98% S = 83%

(� = 1) M = 0.0104 M = 0.0185 M = 0.0914 M = 0.6713 M = 1.8626
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Conclusions

• interpolation of different regularizers
with high noise: 𝜎2 = 1 (SNR< -5db)

• flexible multi-criteria formulation 
trading off different objectives by 
regularizers (best of all is attainable)

Fig. 2. Performance of (27) for different pairs (�, ⇢). For each pair (�, ⇢)
we run 100 trials with input u ⇠ N (0, I) and disturbance d ⇠ N (0, I).
The blue curve displays the percentage S of stabilizing controllers, while
the red curve shows the median percentage error (26).

robust controllers. The table also shows the remarkable per-
formance that can be obtained when blending the certainty-
equivalence and the robust approach i.e., when both � and ⇢
are nonzero (henceforth, mixed regularization). This fact can
be better appreciated from Figure 2 which reports simulation
results for the mixed regularization for several combinations
of the parameters �, ⇢. The figure clearly shows that ⇢ > 0
(i.e., a stability-promoting regularizer) is needed when the
SNR is low (�2 = 1). At the same time, however, having
� > 0 brings benefits in terms of performance. Overall, the
simulations suggest that the best option is to choose the
largest value of �/⇢ for which stability is not destroyed,
although we do not have a proof of this conjecture yet.

Finally, Table I reports simulation results for the certainty
equivalence approach when using the low-rank approxima-
tion (LRA) schemes of Section III-C. In particular, the
second-to-last row shows LRA pre-processing (20) followed
by data-driven LQR (12). The simulations indicate that this
de-noising scheme is another interesting venue to improve
robustness. Finally, the last row shows the `1-regularized
approach (22) which acts as a surrogate for LRA. One
can observe that `1-regularization improves the performance
compared to not regularizing the data-driven LQR (12), c.f.,
Figure 1. However, its performance does not quite match the
certainty-equivalence or robustness-inducing regularization.

We leave further considerations to future works.

VI. DISCUSSION & CONCLUSIONS

We presented a tutorial on data-driven LQR. We covered
direct approaches employing system identification (ordinary
least squares or low-rank approximation) followed by model-
based design as well as a recent indirect approach based on
subspace and behavioral methods and suitably regularized to
account for noisy data. In particular, we discussed certainty-
equivalence, robust stability, and low-rank promoting regular-

izers. For the former two, we provided results on the achiev-
able closed-loop performance. The various regularizers can
also be blended giving rise to flexible problem formulations
and resulting in remarkable empirical performance.

While lots of recent progress has been made, there re-
main various open points: the theoretic closed-loop certifi-
cates are thus far restricted to the certainty-equivalence and
robustness-inducing regularizers and do not yet cover norm-
based or blended regularizers. Further, it would be interesting
to robustify recent related direct data-driven control problems
by means of regularization, e.g., LQG formulations [39] or
the various problems laid out in [14]–[18]. Finally, it would
be interesting to extend the system class beyond LTI systems.
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