

Data-Enabled Predictive Control : In the Shallows of the DeePC Florian Dörfler

Automatic Control Laboratory, ETH Zürich

Acknowledgements

Jeremy Coulson

Brain-storming: P. Mohajerin Esfahani, B. Recht, R. Smith, B. Bamieh, and M. Morari

Linbin Huang

John Lygeros

Big, deep, intelligent and so on

- unprecedented availability of computation, storage, and data
- *theoretical advances* in optimization, statistics, and machine learning
- ... and *big-data* frenzy
- → increasing importance of *data-centric methods* in all of science / engineering

Make up your own opinion, but machine learning works too well to be ignored.

🤒 nvidia: Developer

NVIDIA Developer Blo

End-to-End Deep Learning for Self-Driving Cars

By Mariusz Bojarski, Ben Firner, Beat Flepp, Larry Jackel, Urs Muller, Karol Zieba and Davide Del Testa | August 17, 2016

Feedback – our central paradigm

Control in a data-rich world

- ever-growing trend in CS and robotics: data-driven control by-passing models
- canonical problem: black/gray-box system control based on I/O samples

Q: Why give up physical modeling and reliable model-based algorithms?

Data-driven control is viable alternative when

- models are too complex to be useful (e.g., fluid dynamics & building automation)
- first-principle models are not conceivable (e.g., human-in-the-loop & perception)
- modeling & system ID is too cumbersome (e.g., robotics & power applications)

Central promise: It is often easier to learn control policies directly from data, rather than learning a model.

Example: PID

Snippets from the literature

 reinforcement learning / or stochastic adaptive control / or approximate dynamic programming

with key mathematical challenges

- (approximate/neuro) **DP** to learn approx. value/Q-function or optimal policy
- (stochastic) function approximation
- exploration-exploitation trade-offs

and practical limitations

- inefficiency: computation & samples
- complex and fragile algorithms
- safe real-time exploration
- ø suitable for physical control systems with real-time & safety constraints ?

Snippets from the literature cont'd

- 2. gray-box safe learning & control
- $\textit{robust} \rightarrow \text{conservative \& complex control}$
- *adaptive* → hard & asymptotic performance
- contemporary learning algorithms (e.g., MPC + Gaussian processes / RL)
- ightarrow non-conservative, optimal, & safe
- Ø limited applicability: need a-priori safety
- 3. Sequential system ID + control
- ID with uncertainty quantification followed by robust control design
- → recent finite-sample & end-to-end ID + control pipelines out-performing RL
 - ID seeks best but not most useful model
- Ø "easier to learn policies than models"

Key take-aways

- claim: easier to learn controllers from data rather than models
- data-driven approach is no silver bullet (see previous Ø)
- predictive models are preferable over data (even approximate)
- $\rightarrow\,$ models are tidied-up, compressed, & de-noised representations
- ightarrow model-based methods vastly out-perform model-agnostic ones

ø deadlock ?

- a useful ML insight: non-parametric methods are often preferable over parametric ones (e.g., basis functions vs. kernels)
- ightarrow build a predictive & non-parametric model directly from raw data?

Colorful idea

If you had the *impulse response* of a LTI system, then ...

- can build state-space system identification (Kalman-Ho realization)
- ... but can also build predictive model directly from raw data :

$$y_{\text{future}}(t) = \begin{bmatrix} y_1 & y_2 & y_3 & \dots \end{bmatrix} \cdot \begin{bmatrix} u_{\text{future}}(t) \\ u_{\text{future}}(t-1) \\ u_{\text{future}}(t-2) \\ \vdots \end{bmatrix}$$

- model predictive control from data: dynamic matrix control (DMC)
- today: can we do so with arbitrary, finite, and corrupted I/O samples?

Contents

I. Data-Enabled Predictive Control (DeePC): Basic Idea

J. Coulson, J. Lygeros, and F. Dörfler. *Data-Enabled Predictive Control: In the Shallows of the DeePC*. arxiv.org/abs/1811.05890.

II. From Heuristics & Numerical Promises to Theorems

J. Coulson, J. Lygeros, and F. Dörfler. *Regularized and Distributionally Robust Data-Enabled Predictive Control.* arxiv.org/abs/1903.06804.

III. Application: End-to-End Automation in Energy Systems

L. Huang, J. Coulson, J. Lygeros, and F. Dörfler. *Data-Enabled Predictive Control for Grid-Connected Power Converters*. arxiv.org/abs/1903.07339.

Preview

complex 2-area power *system*: large $(n \approx 10^2)$, nonlinear, noisy, stiff, & with input constraints

control objective: damping of inter-area oscillations via HVDC but without model

seek method that *works reliably*, can be *efficiently* implemented, & *certifiable*

 \rightarrow automating ourselves

Behavioral view on LTI systems

Definition: A discrete-time *dynamical system* is a 3-tuple $(\mathbb{Z}_{\geq 0}, \mathbb{W}, \mathscr{B})$ where

- (i) $\mathbb{Z}_{\geq 0}$ is the discrete-time axis,
- (ii) $\,\mathbb{W}$ is a signal space, and
- (iii) $\mathscr{B} \subseteq \mathbb{W}^{\mathbb{Z}_{\geq 0}}$ is the behavior.

Definition: The dynamical system $(\mathbb{Z}_{\geq 0}, \mathbb{W}, \mathscr{B})$ is

- (i) *linear* if \mathbb{W} is a vector space & \mathscr{B} is a subspace of $\mathbb{W}^{\mathbb{Z} \ge 0}$.
- (ii) *time-invariant* if $\mathscr{B} \subseteq \sigma \mathscr{B}$, where $\sigma w_t = w_{t+1}$, and
- (iii) *complete* if \mathscr{B} is closed $\Leftrightarrow \mathbb{W}$ is finite dimensional.

In the remainder we focus on *discrete-time LTI systems*.

Behavioral view cont'd

 $\mathscr{B} =$ *set of trajectories* in $\mathbb{W}^{\mathbb{Z}_{\geq 0}}$ & \mathscr{B}_T is *restriction* to $t \in [0,T]$

A system $(\mathbb{Z}_{\geq 0}, \mathbb{W}, \mathscr{B})$ is *controllable* if any two trajectories $w^1, w^2 \in \mathscr{B}$ can be patched with a trajectory $w \in \mathscr{B}_T$.

 \rightarrow **I/O**: $\mathscr{B} = \mathscr{B}^u \times \mathscr{B}^y$ where $\mathscr{B}^u = (\mathbb{R}^m)^{\mathbb{Z}_{\geq 0}}$ and $\mathscr{B}^y \subseteq (\mathbb{R}^p)^{\mathbb{Z}_{\geq 0}}$ are the spaces of *input and output* signals $\Rightarrow w = \operatorname{col}(u, y) \in \mathscr{B}$

- ightarrow different parametric representations: state space, kernel, image, \dots
- $\rightarrow \textbf{kernel representation (ARMA)} : \mathscr{B} = \operatorname{col}(u, y) \in (\mathbb{R}^{m+p})^{\mathbb{Z}_{\geq 0}} \text{ s.t.}$ $b_0 u + b_1 \sigma u + \dots + b_n \sigma^n u + a_0 y + a_1 \sigma y + \dots + a_n \sigma^n y = 0$

LTI systems and matrix time series

foundation of state-space subspace system ID & signal recovery algorithms

u(t) $u_1 u_3 u_4 u_7$ $u_2 u_5 u_6 t$

(u(t), y(t)) satisfy recursive difference equation

 $b_0u_t+b_1u_{t+1}+\ldots+b_nu_{t+n}+$

 $a_0 \mathbf{y}_t + a_1 \mathbf{y}_{t+1} + \ldots + a_n \mathbf{y}_{t+n} = 0$

(ARMA/kernel representation)

 $\begin{bmatrix} b_0 & a_0 & b_1 & a_1 & \dots & b_n & a_n \end{bmatrix}$ spans left nullspace of *Hankel matrix* (collected from data)

$$\mathscr{H}_{L}\left(\begin{smallmatrix}u\\y_{1}\\y_{1}\end{smallmatrix}\right) = \begin{bmatrix} \begin{pmatrix}u_{1}\\y_{1}\end{smallmatrix}\right) \begin{pmatrix}u_{2}\\y_{2}\end{smallmatrix}\right) \begin{pmatrix}u_{3}\\y_{3}\end{smallmatrix}\right) \cdots \begin{pmatrix}u_{T-L+1}\\y_{T-L+1}\end{smallmatrix}\right) \\ \begin{pmatrix}u_{2}\\y_{2}\end{smallmatrix}\right) \begin{pmatrix}u_{3}\\y_{3}\end{smallmatrix}\right) \begin{pmatrix}u_{4}\\y_{4}\end{smallmatrix}\right) \begin{pmatrix}u_{5}\\y_{5}\end{smallmatrix}\right) \cdots \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \begin{pmatrix}u_{L}\\y_{L}\end{smallmatrix}\right) \cdots \cdots \cdots \begin{pmatrix}u_{T}\\y_{T}\end{smallmatrix}\right)$$

The Fundamental Lemma

Definition: The signal $u = \operatorname{col}(u_1, \dots, u_T) \in \mathbb{R}^{mT}$ is *persistently* exciting of order *L* if $\mathscr{H}_L(u) = \begin{bmatrix} u_1 \cdots u_{T-L+1} \\ \vdots & \ddots & \vdots \\ u_L \cdots & u_T \end{bmatrix}$ is of full row rank,

i.e., if the signal is sufficiently rich and long $(T - L + 1 \ge mL)$.

Fundamental lemma [Willems et al, '05]: Let $T, t \in \mathbb{Z}_{>0}$, Consider

- a *controllable* LTI system $(\mathbb{Z}_{\geq 0}, \mathbb{R}^{m+p}, \mathscr{B})$, and
- a T-sample long *trajectory* $col(u^d, y^d) \in \mathscr{B}_T$, where
- u is persistently exciting of order t + n (prediction span + # states).

Then

$$\operatorname{colspan}\left(\mathscr{H}_{t}\left(\begin{smallmatrix} u\\y\end{smallmatrix}\right)\right)=\mathscr{B}_{t}$$

Cartoon of Fundamental Lemma

all trajectories constructible from finitely many previous trajectories

Data-driven simulation [Markovsky & Rapisarda '08]

Problem : predict future output $y \in \mathbb{R}^{p \cdot T_{\text{future}}}$ based on

• input signal $u \in \mathbb{R}^{m \cdot T_{\text{future}}}$ \rightarrow to predict forward

• past data
$$col(u^d, y^d) \in \mathscr{B}_{T_{data}}$$

 \rightarrow to form Hankel matrix

Assume: \mathscr{B} controllable & u^{d} persistently exciting of order $T_{\text{future}} + n$

Solution: given $(u_1, \dots, u_{T_{\text{luture}}}) \rightarrow \text{compute } g \& (y_1, \dots, y_{T_{\text{luture}}})$ from $\frac{\begin{bmatrix} u_1^d & u_2^d & \cdots & u_{T-N+1}^d \\ \vdots & \vdots & \ddots & \vdots \\ u_{T_{\text{luture}}}^d & u_{T_{\text{luture}+1}}^d & \cdots & u_T^d \\ \hline y_1^d & y_2^d & \cdots & y_{T-N+1}^d \\ \vdots & \vdots & \ddots & \vdots \\ y_{T_{\text{luture}}}^d & y_{T_{\text{luture}+1}}^d & \cdots & y_T^d \end{bmatrix} g = \begin{bmatrix} u_1 \\ \vdots \\ u_{T_{\text{luture}}} \\ \hline y_1 \\ \vdots \\ y_{T_{\text{luture}}} \\ \hline y_{T_{\text{luture}}} \end{bmatrix}$

Issue: predicted output is not unique \rightarrow need to set initial conditions!

Refined problem : predict future output $y \in \mathbb{R}^{p \cdot T_{\text{future}}}$ based on

- initial trajectory $col(u_{ini}, y_{ini}) \in \mathbb{R}^{(m+p)T_{ini}} \rightarrow to estimate initial x_{ini}$
- input signal $u \in \mathbb{R}^{m \cdot T_{\text{future}}}$ \rightarrow to predict forward

 \rightarrow to form Hankel matrix

Assume: \mathscr{B} controllable & u^{d} persist. exciting of order $T_{ini} + T_{future} + n$

 $\begin{array}{l} \textbf{Solution: given } (u_1, \dots, u_{T_{\mathsf{future}}}) \And \mathsf{col}(u_{\mathsf{ini}}, y_{\mathsf{ini}}) \\ \rightarrow \mathsf{compute } g \And (y_1, \dots, y_{T_{\mathsf{future}}}) \mathsf{ from} \\ \Rightarrow \mathsf{if } T_{\mathsf{ini}} \ge \mathsf{lag of system, then } y \mathsf{ is unique} \end{array} \left[\begin{array}{c} U_p \\ Y_p \\ U_f \\ Y_f \end{array} \right] g = \begin{bmatrix} u_{\mathsf{ini}} \\ y_{\mathsf{ini}} \\ u \\ y \end{bmatrix}$

Output Model Predictive Control

The canonical receding-horizon MPC optimization problem :

 $T_{\rm future} - 1$ quadratic cost with $\sum \|y_k - r_{t+k}\|_Q^2 + \|u_k\|_R^2$ minimize $\overline{u, x, y}$ $R \succ 0, Q \succeq 0$ & ref. r subject to $x_{k+1} = Ax_k + Bu_k, \ \forall k \in \{0, \dots, T_{\text{future}} - 1\},\$ model for prediction over $k \in [0, T_{\text{future}} - 1]$ $y_k = Cx_k + Du_k, \quad \forall k \in \{0, \dots, T_{\text{future}} - 1\},$ $x_{k+1} = Ax_k + Bu_k, \ \forall k \in \{-T_{ini} - 1, \dots, -1\},\$ model for estimation $y_k = Cx_k + Du_k, \quad \forall k \in \{-T_{ini} - 1, \dots, -1\},\$ (many variations) $u_k \in \mathcal{U}, \quad \forall k \in \{0, \ldots, T_{\text{future}} - 1\},$ hard operational or $y_k \in \mathcal{Y}, \quad \forall k \in \{0, \dots, T_{\text{future}} - 1\}$ safety constraints

For a deterministic LTI plant and an exact model of the plant, MPC is the *gold standard of control*: safe, optimal, tracking, ...

Data-Enabled Predictive Control

DeePC uses non-parametric and data-based Hankel matrix time series as prediction/estimation model inside MPC optimization problem:

$$\begin{array}{ll} \underset{g, u, y}{\operatorname{minimize}} & \sum_{k=0}^{T_{\operatorname{luture}}-1} \|y_k - r_{t+k}\|_Q^2 + \|u_k\|_R^2 & \qquad \operatorname{quadratic \ cost \ with} \\ \operatorname{subject \ to} & \begin{bmatrix} U_{\mathrm{p}} \\ Y_{\mathrm{p}} \\ U_{\mathrm{f}} \\ U_{\mathrm{f}} \\ Y_{\mathrm{f}} \end{bmatrix} g = \begin{bmatrix} u_{\mathrm{ini}} \\ y_{\mathrm{ini}} \\ u \\ y \end{bmatrix}, & \qquad \operatorname{non-parametric} \\ \operatorname{nodel \ for \ prediction} \\ \operatorname{and \ estimation} \\ \operatorname{and \ estimation} \\ u_k \in \mathcal{U}, \quad \forall k \in \{0, \dots, T_{\mathrm{future}} - 1\}, \\ y_k \in \mathcal{Y}, \quad \forall k \in \{0, \dots, T_{\mathrm{future}} - 1\} \end{array} & \qquad \operatorname{hard \ operational \ or} \\ \operatorname{safety \ constraints} \end{array}$$

• Hankel matrix with $T_{\text{ini}} + T_{\text{future}}$ rows from past data $\begin{bmatrix} U_{\text{p}} \\ U_{\text{f}} \end{bmatrix} = \mathscr{H}_{T_{\text{ini}} + T_{\text{future}}}(u^{\text{d}}) \text{ and } \begin{bmatrix} Y_{\text{p}} \\ Y_{\text{f}} \end{bmatrix} = \mathscr{H}_{T_{\text{ini}} + T_{\text{future}}}(y^{\text{d}})$

collected **offline** (could be adapted online)

• past $T_{ini} \ge lag$ samples (u_{ini}, y_{ini}) for x_{ini} estimation

updated online

Correctness for LTI Systems

Theorem: Consider a *controllable LTI system* and the DeePC & MPC optimization problems with *persistently exciting* data of order $T_{ini}+T_{future}+n$. Then the *feasible sets of DeePC & MPC coincide*.

Corollary: If U, \mathcal{Y} are *convex*, then also the *trajectories coincide*.

Thus, *MPC carries over to DeePC* ... at least in the *nominal case*.

Beyond LTI, what about measurement noise, corrupted past data, and nonlinearities?

Noisy real-time measurements

$$\begin{array}{ll} \underset{g, u, y}{\operatorname{minimize}} & \sum_{k=0}^{T_{\operatorname{future}}-1} \|y_k - r_{t+k}\|_Q^2 + \|u_k\|_R^2 + \lambda_y \|\sigma_y\|_1 \\ \text{subject to} & \begin{bmatrix} U_{\mathrm{p}} \\ Y_{\mathrm{p}} \\ U_{\mathrm{f}} \\ Y_{\mathrm{f}} \end{bmatrix} g = \begin{bmatrix} u_{\mathrm{ini}} \\ y_{\mathrm{ini}} \\ u \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ \sigma_y \\ 0 \\ 0 \end{bmatrix}, \\ u_k \in \mathcal{U}, \quad \forall k \in \{0, \dots, T_{\operatorname{future}} - 1\}, \\ y_k \in \mathcal{Y}, \quad \forall k \in \{0, \dots, T_{\operatorname{future}} - 1\} \end{array}$$

Solution: add slack to ensure feasibility with ℓ_1 -penalty \Rightarrow for λ_y sufficiently

large $\sigma_y \neq 0$ only if constraint infeasible

c.f. *sensitivity analysis* over randomized sims

Hankel matrix corrupted by noise

$$\begin{array}{ll} \underset{g, u, y}{\operatorname{minimize}} & \sum_{k=0}^{T_{\operatorname{itutre}}-1} \|y_k - r_{t+k}\|_Q^2 + \|u_k\|_R^2 + \lambda_g \|g\|_1 \\ \text{subject to} & \begin{bmatrix} U_{\mathrm{p}} \\ Y_{\mathrm{p}} \\ U_{\mathrm{f}} \\ Y_{\mathrm{f}} \end{bmatrix} g = \begin{bmatrix} u_{\mathrm{ini}} \\ y_{\mathrm{ini}} \\ u \\ y \end{bmatrix}, \\ u_k \in \mathcal{U}, \quad \forall k \in \{0, \dots, T_{\operatorname{future}} - 1\}, \\ y_k \in \mathcal{Y}, \quad \forall k \in \{0, \dots, T_{\operatorname{future}} - 1\} \end{array}$$

Solution: add a ℓ_1 -penalty on gintuition: ℓ_1 sparsely selects

{Hankel matrix columns}

- = {past trajectories}
- = {motion primitives}

c.f. *sensitivity analysis* over randomized sims

Towards nonlinear systems ...

Idea : lift nonlinear system to large/ ∞ -dimensional bi-/linear system \rightarrow Carleman, Volterra, Fliess, Koopman, Sturm-Liouville methods

- \rightarrow exploit size rather than nonlinearity and find features in data
- \rightarrow exploit size, collect more data, & build a *larger Hankel matrix*
- → regularization singles out relevant features / basis functions

recall the *central promise*: it is easier to learn control policies directly from data, rather than learning a model

Comparison to system ID + MPC

Setup : nonlinear stochastic quadcopter model with full state info DeePC + ℓ_1 -regularization for g and σ_y MPC : system ID via prediction error method + nominal MPC

from heuristics & numerical promises to *theorems*

Robust problem formulation

1. the *nominal problem* (without *g*-regularization)

$$\begin{array}{ll} \underset{g, u, y}{\text{minimize}} & \sum_{k=0}^{T_{\text{tuture}}-1} \|y_k - r_{t+k}\|_Q^2 + \|u_k\|_R^2 + \lambda_y \|\sigma_y\|_1 \\ \\ \text{subject to} & \begin{bmatrix} \widehat{U_p} \\ \widehat{Y_p} \\ \widehat{U_f} \\ \widehat{Y_f} \end{bmatrix} g = \begin{bmatrix} u_{\text{ini}} \\ \widehat{y}_{\text{ini}} \\ u \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ \sigma_y \\ 0 \\ 0 \end{bmatrix}, \\ \\ u_k \in \mathcal{U}, \quad \forall k \in \{0, \dots, T_{\text{future}} - 1\} \end{aligned}$$

where $\widehat{}$ denotes *measured* & thus possibly corrupted data

2. an *abstraction* of this problem $\min_{g \in G} f\left(\widehat{U}_{\mathbf{f}}g, \widehat{Y}_{\mathbf{f}}g\right) + \lambda_y \left\|\widehat{Y}_{\mathbf{p}}g - \widehat{y}_{\mathsf{ini}}\right\|_1$

where
$$G = \left\{ g: \ \widehat{U_p}g = u_{\text{ini}} \& \ \widehat{U_f}g \in \mathcal{U} \right\}$$

3. a *further abstraction*
$$\begin{array}{l} \underset{g \in G}{\operatorname{minimize}} c\left(\widehat{\xi}, g\right) = \underset{g \in G}{\operatorname{minimize}} \mathbb{E}_{\widehat{\mathbb{P}}}\left[c\left(\xi, g\right)\right] \\ \text{with } G = \left\{g : \ \widehat{U_{\mathrm{p}}}g = u_{\mathrm{ini}} \& \ \widehat{U_{\mathrm{f}}}g \in \mathcal{U}\right\}, \text{ measured } \widehat{\xi} = \left(\widehat{Y_{\mathrm{p}}}, \widehat{Y_{\mathrm{f}}}, \widehat{y_{\mathrm{ini}}}\right), \\ \& \quad \widehat{\mathbb{P}} = \delta_{\widehat{\xi}} \text{ denotes the empirical distribution from which we obtained } \widehat{\xi} \end{aligned}$$

4. the solution g^* of the above problem gives *poor out-of-sample performance* for the problem *we really want to solve*: $\mathbb{E}_{\mathbb{P}}[c(\xi, g^*)]$ where \mathbb{P} is the *unknown* probability distribution of ξ

5. distributionally robust formulation

$$\inf_{g \in G} \sup_{Q \in \mathbb{B}_{\epsilon}(\widehat{P})} \mathbb{E}_{Q}\left[c\left(\xi,g\right)\right]$$

where the *ambiguity set* $\mathbb{B}_{\epsilon}(\widehat{P})$ is an ϵ -Wasserstein ball centered at \widehat{P} :

$$\mathbb{B}_{\epsilon}(\widehat{P}) = \left\{P : \inf_{\Pi} \int \|\xi - \xi'\|_{W} \, d\Pi \le \epsilon \right\} \text{ where } \Pi \text{ has marginals } \widehat{P} \text{ and } P$$

5. distributionally robust formulation

 $\inf_{g \in G} \sup_{Q \in \mathbb{B}_{\epsilon}(\widehat{P})} \mathbb{E}_{Q}\left[c\left(\xi,g\right)\right]$

where the *ambiguity set* $\mathbb{B}_{\epsilon}(\widehat{P})$ is an ϵ -Wasserstein ball centered at \widehat{P} :

 $\mathbb{B}_{\epsilon}(\widehat{P}) = \left\{ P \ : \ \inf_{\Pi} \int \|\xi - \xi'\|_{W} \, d\Pi \ \le \ \epsilon \right\} \text{ where } \Pi \text{ has marginals } \hat{P} \text{ and } P$

Theorem: Under minor technical conditions: $\inf_{g \in G} \sup_{Q \in \mathbb{B}_{\epsilon}(\widehat{P})} \mathbb{E}_{Q} \left[c\left(\xi, g\right) \right] \equiv \min_{g \in G} c\left(\widehat{\xi}, g\right) + \epsilon \lambda_{y} \left\| g \right\|_{W}^{\star}$

Cor: ℓ_{∞} -robustness in trajectory space $\Leftrightarrow \ell_1$ -regularization of DeePC

Proof uses methods by Kuhn & Esfahani: semi-infinite problem becomes finite after marginalization & for discrete worst case

Relation to system ID & MPC

1. regularized DeePC problem

$$\begin{array}{l} \underset{g, u \in \mathcal{U}, y \in \mathcal{Y}}{\text{minimize}} & f(u, y) + \lambda_{g} \|g\|_{2}^{2} \\ \text{subject to} & \begin{bmatrix} U_{\text{p}} \\ Y_{\text{p}} \\ U_{\text{f}} \\ Y_{\text{f}} \end{bmatrix} g = \begin{bmatrix} u_{\text{ini}} \\ y_{\text{ini}} \\ u \\ y \end{bmatrix} \end{array}$$

2. standard model-based *MPC* (ARMA parameterization)

$$\begin{array}{ll} \underset{u \in \mathcal{U}, y \in \mathcal{Y}}{\text{minimize}} & f(u, y) \\ \text{subject to} & y = K \begin{bmatrix} u_{\text{ini}} \\ y_{\text{ini}} \\ u \end{bmatrix} \end{array}$$

- 3. subspace ID $y = Y_f g^*$ where $g^* = g^*(u_{\text{ini}}, y_{\text{ini}}, u)$ solves $\arg \min_g \|g\|_2^2$ subject to $\begin{bmatrix} U_p \\ Y_p \\ U_f \end{bmatrix} g = \begin{bmatrix} u_{\text{ini}} \\ y_{\text{ini}} \\ u \end{bmatrix}$
- 4. equivalent prediction error ID

$$\begin{array}{cc} \text{minimize} & \sum_{j} \left\| y_{j}^{\mathsf{d}} - K \begin{bmatrix} u_{\mathsf{ini}} \\ y_{\mathsf{ini}} \\ u_{j}^{\mathsf{d}} \end{bmatrix} \right\|^{2} \end{array}$$

$$\rightarrow \quad y = K \begin{bmatrix} u_{\text{ini}} \\ y_{\text{ini}} \\ u \end{bmatrix} = Y_{\text{f}} g^{\star}$$

subsequent ID & MPC

$$\begin{array}{ll} \underset{u \in \mathcal{U}, y \in \mathcal{Y}}{\text{minimize}} & f(u, y) \\ \text{subject to} & y = K \begin{bmatrix} u_{\text{ini}} \\ y_{\text{ini}} \\ u \end{bmatrix} \\ \text{where } K \text{ solves} \\ \underset{K}{\text{arg min}} & \sum_{j} \left\| y_{j} - K \begin{bmatrix} u_{\text{ini}j} \\ y_{\text{ini}j} \\ u_{j} \end{bmatrix} \right\|^{2}$$

regularized DeePC

$ \substack{ \text{minimize} \\ g, u \in \mathcal{U}, y \in \mathcal{Y} } $	$f(u,y) + \lambda_g \ g\ _2^2$	
subject to	$\begin{bmatrix} U_{\rm p} \\ Y_{\rm p} \\ U_{\rm f} \\ Y_{\rm f} \end{bmatrix} g =$	$\begin{bmatrix} u_{\rm ini} \\ y_{\rm ini} \\ u \\ y \end{bmatrix}$

$$\begin{array}{ll} \underset{u \in \mathcal{U}, y \in \mathcal{Y}}{\text{minimize}} & f(u, y) \\ \text{subject to} & \begin{bmatrix} y \\ u \end{bmatrix} = \begin{bmatrix} Y_{\text{f}} \\ U_{\text{f}} \end{bmatrix} g \\ \text{where } g \text{ solves} \\ \underset{g}{\text{arg min}} & \|g\|_2^2 \\ \text{subject to} & \begin{bmatrix} U_{\text{p}} \\ Y_{\text{p}} \\ U_{\text{f}} \end{bmatrix} g = \begin{bmatrix} u_{\text{ini}} \\ y_{\text{ini}} \\ u \end{bmatrix} \end{array}$$

 $\Rightarrow \text{feasible set of ID \& MPC} \\ \subseteq \text{feasible set for DeePC}$

 \Rightarrow DeePC \leq MPC + $\lambda_g \cdot$ ID

"easier to learn control policies from data rather than models"

28/34

application: *end-to-end automation* in energy systems

Grid-connected converter control

Task: control converter (nonlinear, noisy & constrained) without a model of the grid, line, passives, or inner loops

DeePC tracking constant *dq*-frame references subject to constraints

 $u_1 = u_2$

Effect of regularizations

DeePC time-domain cost = $\sum_{k} \|y_k - r_k\|_Q^2 + \|u_k\|_R^2$ (closed-loop measurements) Optimization cost = $\sum_{k} ||y_k - r_k||_Q^2 + ||u_k||_R^2 + \lambda_g ||g||^2$ (closed-loop measurements)

Power system case study

extrapolation from previous case study: const. voltage \rightarrow grid

complex 2-area power *system*: large $(n \approx 10^2)$, nonlinear, noisy, stiff, & with input constraints

control objective: damping of inter-area oscillations via HVDC

real-time closed-loop MPC & DeePC become prohibitive (on laptop) \rightarrow choose *T*, *T*_{ini}, and *T*_{future} wisely

Choice of time constants

Summary & conclusions

- fundamental lemma from behavioral systems
- matrix time series serves as predictive model
- data-enabled predictive control (DeePC)
- ✓ certificates for deterministic LTI systems
- ✓ distributional robustness via regularizations
- ✓ outperforms ID + MPC in optimization metric
- $\rightarrow\,$ certificates for nonlinear & stochastic setup
- ightarrow adaptive extensions, explicit policies, ...
- $\rightarrow\,$ applications to building automation, bio, etc.

Why have these powerful ideas not been mixed long before ?

Willems '07: "[MPC] has perhaps too little system theory and too much brute force computation in it."

The other side often proclaims "behavioral systems theory is beautiful but did not prove utterly useful"