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What do we see here?

Hz

*10 sec
BEWAG      UCTE
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Frequency of West Berlin when re-connecting to Europe
Source: Energie-Museum Berlin

Hz

*10 sec
BEWAG      UCTE

December 7, 1994

before re-connection: islanded operation based on batteries & single boiler

afterwards connected to European grid based on synchronous generation
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Essentially, the pre/post West Berlin curves date back to. . .

Fact: all of AC power systems built around synchronous machines !

At the heart of it is the generator swing equation:

M
d

dt
ω(t) = Pgeneration(t)− Pdemand(t)

change of kinetic energy = instantaneous power balance
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Operation centered around bulk synchronous generation
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Renewable/distributed/non-rotational generation on the rise

synchronous generator new workhorse scaling

new primary sources location & distributed implementation

Almost all operational problems can
principally be resolved . . . but one (?)
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Fundamental challenge: operation of low-inertia systems

We slowly loose our giant electromechanical low-pass filter:

M
d

dt
ω(t) = Pgeneration(t)− Pdemand(t)

change of kinetic energy = instantaneous power balance

τm

θ, ω

τ

M

      
      

      
      

d
e
m

a
n

d

g
e
n

e
ra

ti
o

n

0 5 10 15 20 25 30 35
49

49.2

49.4

49.6

49.8

50

J

Time t [s]

f
[H

z] M

8 / 38



Berlin curves before and after re-connecting to Europe
Source: Energie-Museum Berlin

islanded Berlin grid

loss of 146 MW

loss of 2500 MW

Berlin re-connected to Europe

loss of 1200 MW
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Low-inertia stability: # 1 problem of distributed generation

# frequency violations in Nordic grid

(source: ENTSO-E)
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Fig. 3.2:  Frequency quality behaviour in Continental Europe during the last ten years. Source: Swissgrid 

It can clearly be observed how the accumulated time continuously increases with higher 
frequency deviations as well as the number of corresponding events. 

3.1.2. CAUSES 

The unbundling process has separated power generation from TSO, imposing new 
commercial rules in the system operating process. Generation units are considered as 
simple balance responsible parties without taking dynamic behaviour into account: slow 
or fast units. Following the principle of equality, the market has created unique rules for 
settlement: energy supplied in a time frame versus energy calculated from schedule in 
the same time frame. Energy is traded as constant power in time frame. 

The market, being orientated on energy, has not developed rules for real time operation 
as power. In consequence we are faced with the following unit behaviour (Figure 3.3): 

 

 

 

 

 
 
 
 
Fig. 3.3 a:  Unit behaviour in scheduled time frames. Source: Transelectrica 
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same in Switzerland (source: Swissgrid)

inertia is shrinking, time-varying, localized, . . . & increasing disturbances

Solutions in sight: none really . . . other than emulating virtual inertia
through fly-wheels, batteries, super caps, HVDC, demand-response, . . .
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Virtual inertia emulation
devices commercially available, required by grid-codes, or incentivized through markets
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Virtual synchronous generators: A survey and new perspectives
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M
d

dt
ω(t) = Pgeneration(t)−Pdemand(t) ≈ derivative control on ω(t)

⇒ focus today: where to do it? how to do it properly? what else?
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Outline

Introduction

Optimal Placement of Virtual Inertia
network, disturbances, & performance metrics matter

Proper Virtual Inertia Emulation Strategy
maybe we should not think about frequency and inertia

A Foundational Control Approach
restart from scratch for low-inertia systems

Conclusions



Virtual inertia is becoming a technology and a product
so let’s see how we can make use of it
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optimal placement

of virtual inertia

General power system & inertia emulation model

M̃is + D̃i

Tis + 1

. . .

. . .

power system model

ω

τm

τe iαβ

if

Lg

Lg Lg

iPV

Lg

virtual inertia & damping

synchronous machines, governors, 

loads, transmission, batteries, PLL, …

disturbance inputs performance outputs

(implemented as causal PD)

controlled injections measured frequencies

ωu

(e.g., generator frequencies)(e.g., loss of load/generation)

(e.g., at PV,

 batteries, etc.)

(e.g., at AC

voltage bus 

via a PLL)

(detailed & linearized)
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Performance metrics for low-inertia systems

f

nominal frequency

ROCOF (max rate of change of frequency)

frequency nadir

energy unbalance

restoration time

secondary control

System norm quantifying signal amplifications

disturbances: impulse
(fault), step (loss of unit),
white noise (renewables)

systemη y
performance outputs:
integral, peak, ROCOF,
restoration time, . . .

14 / 38



Integral-quadratic coherency performance metric

∫ ∞

0
x(t)TQ x(t) dt

f

nominal frequency

H2 system norm interpretation: systemη y

1 performance output: y = Q1/2x

2 impulsive η (faults) −→ output energy
∫∞
0 y(t)T y(t) dt

3 white noise η (renewables) −→ output variance lim
t→∞

E
(
y(t)T y(t)

)
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Constraints on control inputs

1 energy constraint:
∫∞
0 uTR u dt directly captured in H2 framework

2 power constraint: ui = M̃i ω̇i + D̃i ωi bounded: ‖ui (t)‖`∞ ≤ ui

−0.2−0.15−0.1−0.05 0 0.05 0.1 0.15

−0.01

0

0.01

Frequency deviation [Hz]

Ro
Co

F
[H

z/
s]

100

101

102

103

104

105

European frequency data (source: RTE)

D

0.5 1 1.50

0.5

1

1.5

2

0.2 Hz ˜

0.
01

H
zs

−
1 M̃

corresponding bounds on gains

⇒ ‖(ωi (t), ω̇i (t))‖p, ‖(D̃i , M̃i )‖q bounded ( 1
p + 1

q =1) ⇒ ‖ui (t)‖`∞ bounded

3 budget constraint for finitely many devices:
∑

i ui = const.
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(sub)optimize performance

and see what we learn

Modified Kundur case study: 3 areas & 12 buses
added governors (droop) at generators & PLLs to obtain frequency for inertia emulation
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3 4
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8
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Test case

inertia emulation control

via PLL & batteries:

ui =
[
M̃i D̃i

]
xPLL,i

ẋ = Ax + Bu + Gd

ui =
[
M̃i D̃i

]
xPLL,i

d yperf

u xPLL

dynamics: swing equation, droop via governor & turbine, and PLL
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frequencies, droop
control, & inertia
emulation effort:
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Algorithmic approach to desperate & non-convex problem

structured state-feedback
with constraints on gains

computation H2 norm,
gradient, & projections:

ẋ = Ax + Bu + Gd

ui =
[
M̃i D̃i

]
xPLL,i

d yperf

u xPLL

1 observability and controllability Gramians via Lyapunov equations

(A− BK )>P + P(A− BK ) + Q + K>RK = 0

(A− BK )L + L(A− BK )> + GG> = 0

2 H2 norm J =Trace(G>PG ) and gradient ∇KJ = 2(RK − B>P)L

3 projection on structural constraint: ∇M̃,D̃J = ΠM̃,D̃ [∇KJ ]

⇒ M̃ and D̃ can be optimized by first-order methods, IPM, SQP, etc.
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Results & insights

Optimal allocation:

I location of inertia &
damping matters

I outperforms heuristic
uniform allocation

I need penalty on
droop control effort

I power constraint
results in D̃ ≈ 2M̃

Fault at bus #4:

I strong reduction of
frequency deviation

I much less control
effort than heuristic
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placement & metrics matter!

can we get analytic insights ?



Inertia placement in swing equations

simplified network swing equation model:

mi θ̈i + di θ̇i = pgen,i − pdem,i

generator swing equations

pdem,i ≈
∑

j bij (θi − θj)
linearized DC power flow

τm

θ, ω

τ

M

      
      

      
      

d
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d
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n

            η

likelihood of disturbance at #i : ti ≥ 0 (available from TSO data)

H2 performance metric:

∫ ∞

0

∑
i ,j

aij(θi − θj)2 +
∑

i
si θ̇

2
i dt

decision variable is inertia: mi ∈ [mi , mi ]

(additional nonlinearity: enters as m−1i in constraints & objective)
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Closed-form results for cost of primary control

recall: primary control

di θ̇i effort was crucial
∫ ∞

0
θ̇(t)TD θ̇(t) dt

(computations show that insights

roughly generalize to other costs)

allocation: the primary control effort
H2 optimization reads equivalently as

minimize
mi

∑
i

ti
mi

subject to
∑

imi ≤ mbdg

mi ≤ mi ≤ mi

key take-away is disturbance matching:

I optimal allocation m?
i ∝

√
ti or m?

i = min{mbdg,mi}

⇒ disturbance profile known from historic data, but rare events are crucial

I suggests robust minm maxt allocation to prepare for worst case

⇒ valley-filling solution: t?i /m
?
i = const. (up to constraints)
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Robust min - max allocation for three-area case study

Scenario: fault (impulse) can
occur at any single node

I disturbance set
T ∈ T = {e1 ∪ · · · ∪ e12}

⇒ min/max over convex hull

I inertia capacity constraints

I robust inertia allocation
outperforms heuristic
max-capacity allocation

I results become intuitive:
valley-filling property

I same for uniform allocation
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Outline

Introduction

Optimal Placement of Virtual Inertia
network, disturbances, & performance metrics matter

Proper Virtual Inertia Emulation Strategy
maybe we should not think about frequency and inertia

A Foundational Control Approach
restart from scratch for low-inertia systems

Conclusions



Averaged power converter model

iload

−

+

vx

iαβ R L

ic

C

+

−

vαβidc gdc Cdc

ix
+

−

vdc

DC cap & AC filter equations:

Cdc v̇dc = −Gdcvdc + idc −
1

2
m>iαβ

L ˙iαβ = −Riαβ +
1

2
mvdc − vαβ

Cv̇αβ = −iload + iαβ

modulation: vx = 1
2mvdc , ix = 1

2m
>iαβ passive: (idc , iload)→(vdc , vαβ)

synchronous
generator:

mechanical

+ stator flux

+ AC cap

θ̇ = ω

Mω̇ = −Dω + τm + i>αβLmif

[
− sin(θ)
cos(θ)

]

Ls ˙iαβ = −Riαβ − vαβ − ωLmif
[
− sin(θ)
cos(θ)

]

Cv̇αβ = −iload + iαβ

if

✓
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Standard power electronics control would continue by

iload

−

+

vx

iαβ R L

ic

C

+

−

vαβidc gdc Cdc

ix

+

−

vdc

reference synthesis
(virtual sync gen,
droop/inertia, etc.)

tracking control
(cascaded PIs)

-

1

3 2

44

1 acquiring & processing
of AC measurements

2 synthesis of references
(voltage/current/power)

3 track error signals at
converter terminals

4 actuation via modulation
(inner loop) and/or via
DC source (outer loop)

I guess you can see the problems building up . . .
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Challenges in power converter implementations

Virtual synchronous generators: A survey and new perspectives
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a b s t r a c t

In comparison of the conventional bulk power plants, in which the synchronous machines dominate, the
distributed generator (DG) units have either very small or no rotating mass and damping property. With
growing the penetration level of DGs, the impact of low inertia and damping effect on the grid stability
and dynamic performance increases. A solution towards stability improvement of such a grid is to pro-
vide virtual inertia by virtual synchronous generators (VSGs) that can be established by using short term
energy storage together with a power inverter and a proper control mechanism.

The present paper reviews the fundamentals and main concept of VSGs, and their role to support the
power grid control. Then, a VSG-based frequency control scheme is addressed, and the paper is focused
on the poetical role of VSGs in the grid frequency regulation task. The most important VSG topologies
with a survey on the recent works/achievements are presented. Finally, the relevant key issues, main
technical challenges, further research needs and new perspectives are emphasized.

! 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The capacity of installed inverter-based distributed generators
(DGs) in power system is growing rapidly; and a high penetration
level is targeted for the next two decades. For example only in Ja-
pan, 14.3 GW photovoltaic (PV) electric energy is planned to be
connected to the grid by 2020, and it will be increased to 53 GW
by 2030. In European countries, USA, China, and India significant
targets are also considered for using the DGs and renewable energy
sources (RESs) in their power systems up to next two decades.

Compared to the conventional bulk power plants, in which the
synchronous machine dominate, the DG/RES units have either very
small or no rotating mass (which is the main source of inertia) and
damping property. The intrinsic kinetic energy (rotor inertia) and
damping property (due to mechanical friction and electrical losses
in stator, field and damper windings) of the bulk synchronous gen-
erators play a significant role in the grid stability.

With growing the penetration level of DGs/RESs, the impact of
low inertia and damping effect on the grid dynamic performance
and stability increases. Voltage rise due to reverse power from
PV generations [1], excessive supply of electricity in the grid due
to full generation by the DGs/RESs, power fluctuations due to var-
iable nature of RESs, and degradation of frequency regulation
(especially in the islanded microgrids [2], can be considered as
some negative results of mentioned issue.

A solution towards stabilizing such a grid is to provide addi-
tional inertia, virtually. A virtual inertia can be established for
DGs/RESs by using short term energy storage together with a
power electronics inverter/converter and a proper control mecha-
nism. This concept is known as virtual synchronous generator
(VSG) [3] or virtual synchronous machine (VISMA) [4]. The units will
then operate like a synchronous generator, exhibiting amount of
inertia and damping properties of conventional synchronous ma-
chines for short time intervals (in this work, the notation of
‘‘VSG’’ is used for the mentioned concept). As a result, the virtual
inertia concept may provide a basis for maintaining a large share
of DGs/RESs in future grids without compromising system stability.

The present paper contains the following topics: first the funda-
mentals and main concepts are introduced. Then, the role of VSGs
in microgrids control is explained. In continuation, the most
important VSG topologies with a review on the previous works
and achievements are presented. The application areas for the
VSGs, particularly in the grid frequency control, are mentioned. A
frequency control scheme is addressed, and finally, the main tech-
nical challenges and further research needs are addressed and the
paper is concluded.

2. Fundamentals and concepts

The idea of the VSG is initially based on reproducing the dynamic
properties of a real synchronous generator (SG) for the power
electronics-based DG/RES units, in order to inherit the advantages
of a SG in stability enhancement. The principle of the VSG can be
applied either to a single DG, or to a group of DGs. The first
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Abstract- The method to investigate the interaction between a 

Virtual Synchronous Generator (VSG) and a power system is 
presented here. A VSG is a power-electronics based device that 
emulates the rotational inertia of synchronous generators. The 
development of such a device started in a pure simulation 
environment and extends to the practical realization of a VSG. 
Investigating the interaction between a VSG and a power system 
is a problem, as a power system cannot be manipulated without 
disturbing customers. By replacing the power system with a real 
time simulated one, this problem can be solved. The VSG then 
interacts with the simulated power system through a power 
interface. The advantages of such a laboratory test-setup are 
numerous and should prove beneficial to the further 
development of the VSG concept. 

I.  INTRODUCTION 
 Short term frequency stability in power systems is secured 
mainly by the large rotational inertia of synchronous 
machines which, due to its counteracting nature, smoothes out 
the various disturbances. The increasing growth of dispersed 
generation will cause the so-called inertia constant of the 
power system to decrease. This may result in the power 
system becoming instable [1]-[3]. A promising solution to 
such a development is the Virtual Synchronous Generator 
(VSG) [4]-[8], which replaces the lost inertia with virtual 
inertia. The VSG consists of three distinctive components, 
namely a power processor, an energy storage device and the 
appropriate control algorithm [4] as shown in Fig. 1. This 
system has been tested in a full Matlab/Simulink [21] 
simulation environment with promising results. 

 
Fig. 1.  The VSG Concept. 

                                                           
This work is a part of the VSYNC project funded by the European 

Commission under the FP6 framework with contract No:FP6 – 038584 
(www.vsync.eu). 

 To better study and witness the effects of virtual inertia, the 
hardware of a real VSG should be tested within a power 
system. Investigating the interaction between a real VSG and 
a power system is not easy as a power system cannot be 
manipulated without disturbing customers. Building a real 
power system for testing purposes would be too costly. By 
replacing the power system with a real time simulated one, 
this problem can be solved. In this paper the testing of a real 
hardware VSG in combination with a simulated power system 
is described. 
 The power processor from Fig.1 is built from a Triphase® 
[9], [10] inverter system. The Matlab/simulink VSG 
algorithm is directly implemented on the inverter system 
through a dedicated FPGA interface developed by Triphase®. 
 In order to test the hardware implemented VSG and to 
study its effects within a power system, it is connected with a 
real time digital simulator from RTDS® [17] through a power 
interface (Fig 2). 

 
Fig. 2.  RTDS and Power Interface and VSG in a closed loop. 
 
 The RTDS® simulates power systems in real time and is 
often used in closed loop testing with real external hardware. 
Keeping in mind that the ADCs and DACs, which are the 
inputs and outputs of the RTDS, have a dynamic range of 
±10V max rated at 5mA max and the Triphase® inverter 
system is rated at 16kVA, it is clear that a power interface has 
to come in between to make this union possible as it is shown 
in Fig. 2. 
  The main function of the power interface is to replicate the 
voltage waveform of a bus in a network model to a level of 
400VLL at terminal 1 in Fig. 2. This terminal is loaded by the 
VSG and the current flowing from/to the VSG is fed back to 
the RTDS, to load the bus in the network model with that 
current. 
 The simulated power system is a transfer from the 
Matlab/Simulink environment, in which the system was 
developed initially, to RSCAD [18] format. 
 In section II the requirements for testing a VSG and the 
principle of a VSG are discussed and in section III the test set 
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1 delays in measurement acquisition,

signal processing, & actuation

2 accuracy in AC measurements

(averaging over multiple cycles)

3 constraints on currents,

voltages, power, etc.

4 certificates on stability,
robustness, & performance

Frequency Stability Evaluation 
Criteria for the Synchronous Zone 
of Continental Europe  

– Requirements and impacting factors –  

RG-CE System Protection & Dynamics Sub Group  

However, as these sources are fully controllable, a regulation can be 
added to the inverter to provide “synthetic inertia”. This can also be 
seen as a short term frequency support. On the other hand, these 
sources might be quite restricted with respect to the available 
capacity and possible activation time. The inverters have a very low 
overload capability compared to synchronous machines. 

let’s do something smarter . . .
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See the similarities & the differences ?
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Model matching (6= emulation) as inner control loop
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DC cap & AC filter equations:
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1

2
m>iαβ

L ˙iαβ = −Riαβ +
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mvdc − vαβ

Cv̇αβ = −iload + iαβ

matching control: θ̇ = η · vdc , m = m̂ ·
[
− sin(θ)
cos(θ)

]
with η, m̂ > 0

⇒ matched machine with inertia M = Cdc
η2

, droop/dissipation D = Gdc
η2

,

torque τm = idc
η , field current if = m̂

ηLm
, & imbalance signal ω = η · vdc

⇒ pros: uses physical storage, uses DC measurements, & remains passive
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Further properties of machine matching control

1 stationary P vs. (|V |, ω)
nose curves reveal
(P, ω, |V |) droop slopes

2 base for outer loops

⇒ idc = PID(vdc) gives

virtual inertia & damping

3 reformulation as virtual

& adaptive oscillator:

ṁ = η vdc ·
[

0 1
−1 0

]
m

(we’ll later find out that

this is a profound insight)
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Summary: bottlenecks to inertia emulation

power system model on grid level:

M
d

dt
ω = Pgeneration − Pdemand

τm
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inertia emulation on device level:
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+

vx

iαβ R L
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vαβidc gdc Cdc

ix
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vdc

reference synthesis
(virtual sync gen,
droop/inertia, etc.)

tracking control
(cascaded PIs)

-

1

3 2

44

I/O mismatch: none of the converter inputs or outputs are present in
the swing-equation, e.g., frequency is not a state in the converter

inertia emulation à la PD problematic both in theory & practice

⇒ maybe matching control ṁ = η vdc ·
[

0 1
−1 0

]
m was quite clever ?
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Outline

Introduction

Optimal Placement of Virtual Inertia
network, disturbances, & performance metrics matter

Proper Virtual Inertia Emulation Strategy
maybe we should not think about frequency and inertia

A Foundational Control Approach
restart from scratch for low-inertia systems

Conclusions



Low-inertia power system model from first principles

τe,k(λk, θk) =
1

2
λ⊤

k (L−1
θ,k!

⊤ + !L−1
θ,k)λk. (4)

Moreover, the stator current is,k and excitation current

if,k are given by ik = (is,k, if,k) = L−1
θ,kλk ∈ R3.

Interconnection Graph of the Transmission Network:

The AC voltage buses are interconnected by a transmission
network. The topology of the transmission network is
described by the (oriented) incidence matrix E of its
associated graph (see e.g. Fiaz et al. (2013)). In the
remainder, we consider the following partition of the
incidence matrix E ∈ {−1, 1, 0}2nv×2nt :

E = E ⊗ I2 =

⎡
⎢⎣

Eq,1

...
Eq,nv

⎤
⎥⎦ = [ET,1 . . . ET,nt ] . (5)

AC Voltage Bus Dynamics:

The dynamics of the AC voltage bus connected to the
generator with index k ∈ Vg are given by

q̇k = −GkC−1
k qk − [I2 02×1]L−1

θ,kλk − Eq,kL−1
T λT , (6)

with bus capacitance Ck = I2ck, ck ∈ R>0, and bus con-
ductance Gk = I2gk, gk ∈ R>0. The flux of each transmis-
sion line k ∈ T is denoted by λT,k = (λT,α,k, λT,β,k) ∈ R2

and LT,k = I2lT,k, lT,k ∈ R>0 denotes its inductance. For
convenience of notation we define λT = (λT,1, . . . , λT,nt) ∈
R2nt and LT = diag(LT,1, . . . , LT,nt). The dynamics of the
AC voltage bus of an inverter with index k ∈ VI are given
by

q̇k = −GkC−1
k qk − L−1

I,kλI,k − Eq,kL−1
T λT . (7)

The dynamics of the load buses k ∈ Vl are given by

q̇k = −Gq,kC−1
k qk − Eq,kL−1

T λT . (8)

The conductance Gq,k = I2gk(∥qk∥) is used to model static
resistive and more general nonlinear loads and is defined
by a smooth function gk(s) : R≥0 → R>0.

Transmission Line Dynamics:

The dynamics of the transmission lines are given by

λ̇T,k = −RT,kL−1
T,kλT,k + E⊤

T,kC−1q, ∀k ∈ T (9)

where RT,k = I2rT,k, rT,k ∈ R>0, is the line resistance
of the k-th transmission line, C = diag(C1, . . . , Cnv ) is
the capacitance matrix of the voltage buses, and q =
(q1, . . . , qnv ) ∈ R2nv is the vector of voltage bus charges.

State Space Representation:

With the vectors θ = (θ1, . . . , θng ), p = (p1, . . . , png),

λ = (λ1, . . . , λng ), qI = (qI,1, . . . , qI,ni), and λI =
(λI,1, . . . , λI,ni), the states of the overall power sys-
tem model are given by x = (θ, p, λ, qI , λI , q, λT ) ∈
Rnx , nx = 5ng + 3ni + 2nv + 2nt. Using the vectors
τm = (τm,1, . . . , τm,ng ), vf = (vf,1, . . . , vf,ng ), idc =
(idc,1, . . . , idc,ni) and m = (m1, . . . , mni), the inputs are
given by u = (τm, vf , idc, m) ∈ Rnu , nu = 2ng + 3ni.

Furthermore, we define the rotor speeds ω = M−1p
and rotor field winding currents if = (if,1, . . . , if,ng).
Finally, we let τe(λ, θ) = (τe,1, . . . , τe,ng ), isw(λI , m) =
(isw,1, . . . , isw,ni), and vsw(qI , m) = (vsw,1, . . . , vsw,ni).
To simplify the notation we define the matrices If =
Ing

⊗ (0, 0, 1), as well as I⊤
g = [Is 03ng×2nl+2ni ], I⊤

I =

[02ni×2ng I2ni 02ni×2nl
], and Is = Ing

⊗ [I2 02×1]
⊤. The

entire power system dynamics described by equations (3)
to (9) can be compactly rewritten as ẋ = f(x, u) with

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M−1p
−DM−1p − τe(λ, θ) + τm

−RL−1
θ λ + I⊤

g C−1q + Ifvf

−GIC
−1
I qI + isw(λI , m) + idc

−RIL
−1
I λI + I⊤

I C−1q − vsw(qI , m)
−GqC

−1q − IgL−1
θ λ − IIL

−1
I λI − EL−1

T λT

−RT L−1
T λT + E⊤C−1q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where the matrices M , D, Gq, R, RT , GI , Lθ, LT , LI ,
C, and CI collect the corresponding matrices of the nodes
(e.g., M = diag(M1, . . . , Mng)).

We will predominantly work with the port-Hamiltonian
variables x = (θ, p, λ, λI , qI , q, λT ). For the sake of nota-
tional simplicity and engineering intuition we will some-
times also employ the associated co-energy variables y =
(τe, ω, i, iI , vI , v, iT ), where iI = L−1

I λI the vector of in-

verter output filter currents, vI = C−1
I qI is the vector of

DC voltages, ω = M−1p denotes the vector of rotational
frequencies, i = L−1

θ λ is the vector of stator and rotor
currents, v = C−1q is the vector of AC voltages, and
iT = L−1

T λT is the vector of transmission line currents.
This later set of variables is depicted in Figure 1.

2.3 Desired Steady-State Behavior

We formulate the following dynamics which describe op-
eration of the power system at a synchronous frequency
w ∈ R. The desired steady-state behavior (12) specifies
that DC signals are constant, and all AC signals are
synchronous, balanced, and have constant amplitude.

θ̇k = w, ∀k ∈ G, (11a)
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Fig. 1. Annotated diagrams of the main components of the power system: DC/AC inverter, synchronous machine, and
a transmission line connecting an inverter bus and a load bus.
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Desired steady-state locus & control specifications

τe,k(λk, θk) =
1

2
λ⊤

k (L−1
θ,k!

⊤ + !L−1
θ,k)λk. (4)

Moreover, the stator current is,k and excitation current

if,k are given by ik = (is,k, if,k) = L−1
θ,kλk ∈ R3.

Interconnection Graph of the Transmission Network:

The AC voltage buses are interconnected by a transmission
network. The topology of the transmission network is
described by the (oriented) incidence matrix E of its
associated graph (see e.g. Fiaz et al. (2013)). In the
remainder, we consider the following partition of the
incidence matrix E ∈ {−1, 1, 0}2nv×2nt :

E = E ⊗ I2 =

⎡
⎢⎣

Eq,1

...
Eq,nv

⎤
⎥⎦ = [ET,1 . . . ET,nt ] . (5)

AC Voltage Bus Dynamics:

The dynamics of the AC voltage bus connected to the
generator with index k ∈ Vg are given by

q̇k = −GkC−1
k qk − [I2 02×1]L−1

θ,kλk − Eq,kL−1
T λT , (6)

with bus capacitance Ck = I2ck, ck ∈ R>0, and bus con-
ductance Gk = I2gk, gk ∈ R>0. The flux of each transmis-
sion line k ∈ T is denoted by λT,k = (λT,α,k, λT,β,k) ∈ R2

and LT,k = I2lT,k, lT,k ∈ R>0 denotes its inductance. For
convenience of notation we define λT = (λT,1, . . . , λT,nt) ∈
R2nt and LT = diag(LT,1, . . . , LT,nt). The dynamics of the
AC voltage bus of an inverter with index k ∈ VI are given
by

q̇k = −GkC−1
k qk − L−1

I,kλI,k − Eq,kL−1
T λT . (7)

The dynamics of the load buses k ∈ Vl are given by

q̇k = −Gq,kC−1
k qk − Eq,kL−1

T λT . (8)

The conductance Gq,k = I2gk(∥qk∥) is used to model static
resistive and more general nonlinear loads and is defined
by a smooth function gk(s) : R≥0 → R>0.

Transmission Line Dynamics:

The dynamics of the transmission lines are given by

λ̇T,k = −RT,kL−1
T,kλT,k + E⊤

T,kC−1q, ∀k ∈ T (9)

where RT,k = I2rT,k, rT,k ∈ R>0, is the line resistance
of the k-th transmission line, C = diag(C1, . . . , Cnv ) is
the capacitance matrix of the voltage buses, and q =
(q1, . . . , qnv ) ∈ R2nv is the vector of voltage bus charges.

State Space Representation:

With the vectors θ = (θ1, . . . , θng ), p = (p1, . . . , png),

λ = (λ1, . . . , λng ), qI = (qI,1, . . . , qI,ni), and λI =
(λI,1, . . . , λI,ni), the states of the overall power sys-
tem model are given by x = (θ, p, λ, qI , λI , q, λT ) ∈
Rnx , nx = 5ng + 3ni + 2nv + 2nt. Using the vectors
τm = (τm,1, . . . , τm,ng ), vf = (vf,1, . . . , vf,ng ), idc =
(idc,1, . . . , idc,ni) and m = (m1, . . . , mni), the inputs are
given by u = (τm, vf , idc, m) ∈ Rnu , nu = 2ng + 3ni.

Furthermore, we define the rotor speeds ω = M−1p
and rotor field winding currents if = (if,1, . . . , if,ng).
Finally, we let τe(λ, θ) = (τe,1, . . . , τe,ng ), isw(λI , m) =
(isw,1, . . . , isw,ni), and vsw(qI , m) = (vsw,1, . . . , vsw,ni).
To simplify the notation we define the matrices If =
Ing

⊗ (0, 0, 1), as well as I⊤
g = [Is 03ng×2nl+2ni ], I⊤

I =

[02ni×2ng I2ni 02ni×2nl
], and Is = Ing

⊗ [I2 02×1]
⊤. The

entire power system dynamics described by equations (3)
to (9) can be compactly rewritten as ẋ = f(x, u) with

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M−1p
−DM−1p − τe(λ, θ) + τm

−RL−1
θ λ + I⊤

g C−1q + Ifvf
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⎤
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, (10)

where the matrices M , D, Gq, R, RT , GI , Lθ, LT , LI ,
C, and CI collect the corresponding matrices of the nodes
(e.g., M = diag(M1, . . . , Mng)).

We will predominantly work with the port-Hamiltonian
variables x = (θ, p, λ, λI , qI , q, λT ). For the sake of nota-
tional simplicity and engineering intuition we will some-
times also employ the associated co-energy variables y =
(τe, ω, i, iI , vI , v, iT ), where iI = L−1

I λI the vector of in-

verter output filter currents, vI = C−1
I qI is the vector of

DC voltages, ω = M−1p denotes the vector of rotational
frequencies, i = L−1

θ λ is the vector of stator and rotor
currents, v = C−1q is the vector of AC voltages, and
iT = L−1

T λT is the vector of transmission line currents.
This later set of variables is depicted in Figure 1.

2.3 Desired Steady-State Behavior

We formulate the following dynamics which describe op-
eration of the power system at a synchronous frequency
w ∈ R. The desired steady-state behavior (12) specifies
that DC signals are constant, and all AC signals are
synchronous, balanced, and have constant amplitude.

θ̇k = w, ∀k ∈ G, (11a)
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Fig. 1. Annotated diagrams of the main components of the power system: DC/AC inverter, synchronous machine, and
a transmission line connecting an inverter bus and a load bus.
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Structural similarities allow model matching 
by adding one integrator 
Feedback relies solely on the DC voltage 
DC capacitor storage is translated into 
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Droop enabled Limit-cycle-oscillator with 
passivity properties in closed loop 
Mechanical equivalent has smaller inertia 
but higher damping compared to a SM

Overview of results

We propose a novel control strategy for grid-forming converters in low-inertia power 
grids. Our strategy is inspired by identifying the structural similarities between the 
three-phase DC/AC converter and the synchronous machine model. We explicitly match 
these models through modulation control so that they become structurally equivalent. 
Compared to standard emulation of virtual synchronous machines, our controller relies 
solely on readily available DC-side measurements and takes into account the natural DC 
and AC storage elements which are usually neglected. As a result, our controller is 
generally faster and less vulnerable to delays and measurement inaccuracies. We provide 
a virtual adaptive oscillator interpretation of our controller various plug-and-play 
properties of the closed loop, such as passivity with respect to the DC and AC ports as 
well as the steady-state droop slopes, which we illustrate in simulations.
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A step in          shows droop and transient behaviorZgrid
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AC quantities v , is , iI , iT :

żαβ = ω0 ·
[

0 −1
1 0

]
zαβ

rotor angles: θ̇ = ω0

DC quantities vdc , vf , ω: ż = 0

desired dynamics: ẋ = fdes(x , ω0)

controls idc ,m, τm, if to be found
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Proving the obvious (?)

steady-state locus: physics & desired closed-loop
vector field coincide (point-wise in time) on set

S :=
{

(x , u, ω0) : fphys(x , u) = fdes(x , ω0)
}

control-invariance: steady-state operation
(x , u, ω0) ∈ S for all time if and only if
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Structural similarities allow model matching 
by adding one integrator 
Feedback relies solely on the DC voltage 
DC capacitor storage is translated into 
physical inertia 
Droop enabled Limit-cycle-oscillator with 
passivity properties in closed loop 
Mechanical equivalent has smaller inertia 
but higher damping compared to a SM

Overview of results

We propose a novel control strategy for grid-forming converters in low-inertia power 
grids. Our strategy is inspired by identifying the structural similarities between the 
three-phase DC/AC converter and the synchronous machine model. We explicitly match 
these models through modulation control so that they become structurally equivalent. 
Compared to standard emulation of virtual synchronous machines, our controller relies 
solely on readily available DC-side measurements and takes into account the natural DC 
and AC storage elements which are usually neglected. As a result, our controller is 
generally faster and less vulnerable to delays and measurement inaccuracies. We provide 
a virtual adaptive oscillator interpretation of our controller various plug-and-play 
properties of the closed loop, such as passivity with respect to the DC and AC ports as 
well as the steady-state droop slopes, which we illustrate in simulations.
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1 synchronous frequency ω0 is constant

2 at each generator: constant torque τm & excitation if

3 at each inverter: constant DC current idc & inverter duty cycle with

constant amplitude & synchronous frequency: ṁ = ω0 ·
[

0 −1
1 0

]
m

4 network satisfies power flow equations with impedances R + ω0JL

⇒ explicit feedforward input-to-steady-state map
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Reduction to a tractable model for synthesis

internal oscillator model for inverter duty cycle with inputs ωm, m̂

θ̇I = ωm, m = m̂

[
− sin(θ)
cos(θ)

]

model reduction steps

1 rotating coordinate frame with synchronous frequency ω0

⇒ time scales of AC quantities scaled by 1/ω0

2 DC/AC time-scale separation via singular perturbation arguments

slow DC variables: xr = (θ, ω, if , θI , vdc), ẋr = fz(xr , zα,β , u)

fast AC variables: zα,β = (is , iI , v , iT ), ε żα,β = fα,β(xr , zα,β , u)

3 reformulation via relative angles δ with respect to synchronous motion

4 linearization around unique steady-state
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Insights from reduced model: vdc ∝ power imbalance

nonlinear reduced order model in rotating frame:

θ̇ = ω

Mω̇ = −Dω + τm − τe(xr , u)

Lf i̇f = −Rf if + vf − vEMF (xr , u)

θ̇I = ωm

Cdc v̇dc = −Gdcvdc + idc − isw (xr , u)

interconnection via τe , isw , vEMF

analogies & interpretation:

generator inverter interpretation
1
2Mω2 1

2Cdcv
2
dc energy stored in device

τm idc energy supply
τe isw energy flow to grid
ω vdc power imbalance
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MIMO converter/generator control architecture

decentralized converter/generator controls

ẋ = Ax + Bu + Gd



ωm

idc
m̂


 =




η KI ,1

KD KI ,2

KPSS KAVR



[
vdc
‖v‖

]

[
τm
vf

]
=

[
KD Kg ,1

KPSS KAVR

] [
ω
‖v‖

]

d y

uI xI

uG xG

states: x = (δ, ω, if , vdc , ‖v‖)

included measurement devices for AC voltage magnitude ‖v‖
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Some first results . . . to be continued

test case:

generator & inverter

impedance load

10% load increase at t=0

no inverter control:

ωm and idc constant

power imbalance: ωG , vdc

governor stabilizes ωG

controlled inverter:

reduced peak in ωG

vdc stabilized via idc

ωm and ωG synchronize
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conclusions



Conclusions on virtual inertia emulation

Where to do it?

1 H2-optimal (non-convex) allocation

2 numerical approach via gradient computation

3 closed-form results for cost of primary control

How to do it?

1 down-sides of naive inertia emulation

2 novel machine matching control

3 reveals power imbalance visible in DC voltage

What else to do?

1 first-principle low-inertia system model

2 nonlinear steady-state control specifications

3 reduction to tractable model for synthesis

4 first promising controllers . . . to be continued
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appendix

Low inertia issues have been broadly recognized
by TSOs, device manufacturers, academia, funding agencies, etc.

MIGRATE project: Massive InteGRATion of power Electronic devices

“The question that has to be
examined is: how much power
electronics can the grid cope
with?” (European Commission)

current controls what else?



optimization of practically
relevant power system

engineering metrics

The practical engineering metrics for low-inertia systems

disturbance inputs:

step (loss of load/generation)

impulse (line open-/closing)

noise (renewables & loads)

performance outputs:

overshoot (peak signals after fault)

ROCOF (rate of change of frequency)

spectrum (damping ratio cones)

re-evaluate scenario ?

not practical for
optimization &
control design

metrics & faults
justified only in a
system dominated
by machines

f

nominal frequency

ROCOF (max rate of change of frequency)

frequency nadir

energy unbalance

restoration time

secondary control

post-fault response in a low-inertia system?
f

nominal frequency

Gradient algorithms also scale up to large systems

low-inertia version of
Eastern-Australian grid
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Full order nonlinear vs. reduced order linearized
two generators connected to an impedance load
10% increase in τm,1 at t = 0
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inertia placement

in swing equations

Network swing equation model

mi θ̈i + di θ̇i = pin,i − pe,i

generator swing equations

pe,i ≈
∑

j∈N bij(θi − θj)
linearized power flows

likelihood of disturbance at #i : ti ≥ 0
Pdemand

ω

Pgeneration + η

state space representation:

[
θ̇
ω̇

]
=

[
0 I

−M−1L −M−1D

]

︸ ︷︷ ︸
A

[
θ
ω

]
+

[
0

M−1

]
T 1/2

︸ ︷︷ ︸
B

η

where M, D, & T are diagonal & L = LT (Laplacian)

Algebraic characterization of the H2 norm

Lemma: H2 norm via observability Gramian

‖G‖22 = Trace(BTPB)

where P is the observability Gramian P =
∫∞
0 eA

TtQeAt dt

I P solves a Lyapunov equation: P A + ATP + Q = 0

I A has a zero eigenvalue → restricts choice of Q

y =

[
Q

1/2
1 0

0 Q
1/2
2

] [
θ
ω

]
Q

1/2
1 1 = 0

I P is unique for P [1 0] = [0 0]



Problem formulation

minimize
P ,mi

Trace(BTPB) → performance metric

subject to P A + ATP + Q = 0 → Lyapunov equation

P [1 0] = [0 0] → uniqueness
∑

i
mi ≤ mbdg → budget constraint

mi ≤ mi ≤ mi , → capacity constraint

1 m appears as m−1 in system matrices A ,B

2 product of B(m) & P in the objective

3 product of A(m) & P in the constraint




⇒ large-scale &

non-convex

where would you place the inertia?

uniform, max capacity, near disturbance?

the more inertia the better?

Building the intuition: results for two-area networks

Fundamental learnings

1 explicit closed-form solution is rational function

2 sufficiently uniform ti/di → strongly convex & fairly flat cost

3 non trivial in the presence of capacity constraints
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optimal inertia allocation

Closed-form results for cost of primary control

P/θ̇ primary droop control

(ωm − ω∗) ∝ (Pi
∗ − Pi (θ))

m
Di θ̇i = Pi

∗ − Pi (θ)

(can also model effect of PSS control) P2P1
P

𝜔

𝜔*

𝜔sync

Primary control effort → accounted for by integral quadratic cost

∫ ∞

0
θ̇(t)TD θ̇(t) dt

which is the H2 performance for the penalties Q
1/2
1 = 0 and Q

1/2
2 = D



Primary control . . . cont’d

Theorem: the primary control effort optimization reads equivalently as

minimize
mi

∑n

i=1

ti
mi

subject to
∑n

i=1
mi ≤ mbdg

mi ≤ mi ≤ mi , i ∈ {1, . . . , n}

Key take-away is disturbance matching:

I optimal allocation ∝ √ti or mi = min{mbdg,mi}
I optimal allocation independent of network topology

Location & strength of disturbance are crucial solution ingredients

Robust inertia allocation
empirical disturbance distributions available but we want to prepare for “rare events”

minimize
P ,mi

maximize
ti

Trace(B(t
1/2
i )

T
PB(t

1/2
i )) → robust performance

subject to T ∈ T → disturbance family

ti ≥ 0 ∀i &
∑n

i=1
ti = 1 → normalization

inertia budget, capacities, & Lyapunov equation

Key insights:

I inner maximization problem is linear in T

⇒ min - max can be converted to minimization by duality

I valley filling solution for primary control metric:

t?i /m
?
i = const. (up to constraints)

numerical method for

the general case

Taylor & power series expansions

Key idea: scalar series expansion at mi in direction µi :

1

mi + δµi
=

1

mi
− δµi

m2
i

+O(δ2)

⇒ expand system matrices via Taylor series in direction µ:

A(m + δµ) = A
(0)
(m,µ) + A

(1)
(m,µ)δ +O(δ2) , B(m + δµ) = . . .

⇒ expand observability Gramian via power series in direction µ:

P(m + δµ) = P
(0)
(m,µ) + P

(1)
(m,µ)δ +O(δ2)

Magic happens: the Lyapunov equation decouples

0 = δ0
(
P(0)A(0) + A(0)>P(0) + Q

)
+

δ1
(
P(1)A(0) + A(0)>P(1) +

(
P(0)A(1) + A(1)>P(0)

))
+O(δ2)



Explicit gradient computation

1 nominal Lyapunov equation for O(δ0):

P(0) = Lyap(A(0) ,Q)

2 perturbed Lyapunov equation for O(δ1) terms:

P(1) = Lyap(A(0) ,P(0)A(1) + A(1)TP(0))

3 expand objective at m in direction µ:

Trace(B(m)TP(m)B(m)) = Trace((. . .) + δ(. . .)) +O(δ2)

4 gradient: Trace(2 ∗ B(1)TP(0)B(0) + B(0)TP(1)B(0))

⇒ use favorite method for reduced optimization problem

with explicit gradient & without Lyapunov constraint

results for a

three-area case study

Modified Kundur case study: 3 areas & 12 buses
transformer reactance 0.15 p.u., line impedance (0.0001+0.001i) p.u./km
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Heuristics outperformed by H2 - optimal allocation

Scenario: disturbance at #4

I locally optimal solution
outperforms heuristic
max/uniform allocation

I optimal allocation ≈
matches disturbance

I inertia emulation at all
undisturbed nodes is
actually detrimental

⇒ location of disturbance &
inertia emulation matters
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Eye candy: time-domain plots of post fault behavior
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Take-home messages:

best oscillation
performance

smallest peak
frequency at #4

undisturbed sites
are irrelevant

minimal control
effort mi · θ̈i

Robust min - max allocation

Scenario: fault (impulse) can
occur at any single node

I disturbance set
T ∈ T = {e1 ∪ · · · ∪ e12}

⇒ min /max over convex hull

I robust inertia allocation
outperforms heuristics

I results become more
intuitive: the more
inertia (capacity &
budget) the better &
valley-filling property
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