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Everyday automatic control example
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Feedback — our central paradigm
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Hidden enabling technology
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Our core research focus



Roadmap today

1. Two spotlights on core research
— low-inertia power systems
— online feedback optimization

2. Outlook: quo vadis smart grids ?
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low-inertia power systems



Replacing the system foundation

fuel & synchronous machines renewables & power electronics
= not sustainable <+ sustainable

+ central & dispatchable generation = gistributed & variable generation
=+ large rotational inertia as buffer = almost no energy storage

<+ self-synchronize throughthegrid = no inherent self-synchronization
<+ robust voltage/frequency control = fragile voltage/frequency control

= slow actuation & control =+ fast/flexible/ modular contr06/I27



What do we see here ?




West Berlin re-connecting to Europe

Source: Energie-Museum Berlin

December 7, 1994

ucTe *10 sec
581, sha TG, &ho.

before re-connection: islanded operation based on batteries & boiler
afterwards connected to European grid & synchronous generation
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The concerns are not hypothetical

issues recognized by system operators, device manufacturers, & academia

UPDATE REPORT -
BLACK SYSTEM EVENT
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28 SEPTEMBER 2016
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between the lines:

a conventional system
would have been much
more resilient (?)

bottleneck to renewable
integration: control of
grid-connected converters
in low-inertia power grids
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Power conversion mechanisms
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baseline solution to control grid-connected converters:

— virtual synchronous machine: make converter behave like a flywheel

= cascaded PI tracking control + virtual resistor + tricks + hacks

— neither theoretically sound nor practically robust solution
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Seeking more natural control
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matching energy conversion
+ further energy shaping

— robust control strategy
— theoretical certificates

10ms/div

200W/div

— implementation @IfA




A virtual oscillator perspective

Desirable synchronization mechanism: Converter control specifications:
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——
rotation at w amplitude regulation to v
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synchronization to desired relative angles

— decentralized(!) implementation
using only local measurements &
local set-points (fully autonomous)

— almost global stability certificate

local machine behavior p <> w

d

— experimental validation @NREL
shows robust & agile performance
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System-level optimization

system-level sizing, allocation, & tuning of con-
verter control to minimize amplification of shocks:

f restoration time
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frequency nadir oscillations

\ ROCOF (max rate of change of frequency)

— total inertia/damping has little effect; rather
sizing, tuning, & spatial allocation matters
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online feedback optimization



feedforward planning vs. feedback control

1 d estimate d ld
| Optimization I m I System I Y i@f—»{ Controller |7| System l—o—y>
e complex optimal decision e suboptimal operation
¢ operational constraints ¢ unconstrained operation
¢ highly model-based ¢ robust to model uncertainty
® computationally intensive ¢ fast & agile response

— complementary methods typically combined via time-scale separation

Optimization " + Controller |T>| System |—<»—y>

offline & feedforward | real-time & feedback
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Example: power system balancing

1) offline dispatch: optimization & markets
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[Milano, 2018]

2) online control based on frequency

50Hz + Frequency Power Y Redispatch actions in the German 15 811
7[ Control w'| System transmission grid

in hours

frequency measurement
3) re-dispatch to deal with unforeseen 210 795 2P
load, congestion, & renewables 5030

— ever more uncertainty & fluctuations 1588

— conventional operation architecture
becomes infeasible & inefficient

2010 2011 2012 2013 2014 2015

[Bundesnetzagentur, Monitoringbericht 2016] 15/27



Re-think ancillary control services

Today: partially automated, artificially separated, & hitting limits
Future smart grid paradigm: real-time autonomous operation

E online

| optimization
|  algorithm

E eg.,
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constraints ... .l......
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Proposal: employ online
optimization algorithms for
real-time feedback control

— robust (feedback)

— fast response

— operational constraints
— steady-state optimal

assumption: physics & algorithm well behaved + time-scale separation
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Preview of some technical snippets

graphical illustration of AC power flow

[Hiskens, 2001]

® imagine constraints slicing this set
— nonlinear, non-convex, disconnected

e additional +20% parameter uncertainty

¢ ...steady state of nonlinear dynamics

Ohm’s Law Current Law
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[Molzahn, 2016]
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Insights about AC power flow

—

AC power flow is complex but it
defines a smooth manifold

linear approximations, local
invertibility, & generic duality

regularity (algorithmic flexibility)

AC power flow is steady state
and locally attractive for
ambient physical dynamics

physics enforce feasibility even
for non-exact algorithmic steps

robustness (algorithm & model)
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Preview of algorithmic snippets

prototype real-time power flow

minimize  ¢(z)
T, U X
subjectto zxe MnNX \v@ /\‘ (M

x €R" decision variables M
¢ : R™ — R objective function
M CR" power flow manifold

X CR” operational constraints . S .
trajectory projection in feasible cone

challenges: algorithms are projected dynamical
systems on complex domains: non-linear, non-
convex, non-Euclidean, disconnected, time-varying

analysis strives for certificates for convergence,
regularity, & stability interconnected with physics
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Transient performance & robustness
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Optimality and robustness

e practically exact tracking of I e W |

s500 = |- - - ground truth optimum

ground truth solution (omniscient)
e transient trajectory feasibility
® robustness to model mismatch

. . . oL
(asymptotic optimality under wrong model) 0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24

e [hs]

offline optimization | feedback optimization

model uncertainty | feasible ‘ ¢ — ¢* | feasible ‘ ¢ —¢F
loads +40% no —_ yes 0.0
line params +20% yes 0.19 yes 0.01

— conclusion: simple algorithm performs extremely well & robust
— winning(?) philosophy: offline planning vs. real-time control
— more work to do: theory & implementation @EMPA/RTE



outlook



End-to-end automated power grids

make it work | makeitbig | make it sustainable
N—————
physical design & redundancy organically grown control towards pervasive automation
Tesla / Edison | P time

Main obstacles to end-to-end automation: scalability & resilience
Conceptual solution: distributed control for distributed ressources

) ) Voltage Magnitudes Reactive Power Injections
Peer-to-peer distributed control 25 e
and optimization experiments: S S
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Ensemble control & virtual plant

Distributed control faces no major obstacles (theory & implementation)
— why are there so few distributed controllers in real-world action?

— system operators have control monopoly ... “fo keep the lights on”

A more compatible approach: o i
_ p pp >0
virtual power plant -
= ensemble control of highly &
heterogeneous devices with population 'Cl' + ¥ aggregate
aggregate specifications on control signal control system 1 1A * A output
the system level : 118
113
. Y |
— methodological challenges: i
resilience & decentralization > ‘i\

— implementation challenges due
to spatially dispersed resources

—>0

Q{}

control system n 28/27




Control in a data-rich world

¢ ever-growing trend in CS and robotics:
data-driven control by-passing models

¢ canonical problem: black/gray-box
system control based on I/O samples

Q: Why give up physical modeling and
reliable model-based algorithms ?

data-driven
control

Central promise: /t
is often easier to learn
o first-principle models are not conceivable control policies directly
(e.g., human-in-the-loop & demand response) from data, rather than
learning a model.

Data-driven control is viable alternative when

® models are too complex to be useful
(e.g., fluid dynamics & building automation)

® modeling and system ID is too costly
(e.g., robotics & converter applications) Example: PID
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Automating the automation engineer

Meta theorem: (yi) (32) (¥
- (v2) (o3) (o)
z(t+1) =Az(t) + Bu(t) colspan (’uli | (fuj;i ) (zﬁ )
(1) =Ca(t)+ Dult)
parametric state-space model non-parametric model from raw data

Application: fully automated data-enabled pred|ct|ve control (DeePC)
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Research bridging community gaps

power power
electronics systems

control systems
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Our research agenda

device-level (power electronics) system-level (power system)
— decentralized nonlinear power — (low-inertia) power system operation:
converter control strategies stability, control, & optimization

bridging the gap: device <+ system & theory <+ experiment
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my collaborators







