Fast power system analysis via implicit linearization of the power flow manifold

Allerton Conference 2015

Saverio Bolognani

Florian Dörfler

Power flow equations

Basic ingredients in an *n*-bus power system

- complex bus voltage $u_h = v_h e^{\mathrm{j} heta_h} \in \mathbb{C}$
- injected complex power $s_h = p_h + jq_h$
- admittance matrix $Y \in \mathbb{C}^{n imes n}$

Underlying nonlinear power flow equations

Bus model specifies variables & fixed parameters

- PV bus: p_h and v_h fixed slad • PQ bus: p_h and q_h fixed \Rightarrow rem
 - slack bus: v_h and θ_h fixed
 - $\Rightarrow\,$ remaining ingredients are variables

2/16

A brief history of power flow approximations for computational tractability, analytic studies, & control/optimization design

• DC power flow: $\Re(Y) = 0$, v = 1, & linearization

B. Stott, J. Jardim, & O. Alsac, "DC Power Flow Revisited" *IEEE TPS*, 2009.

• LinDistFlow: parameterization in flow & v_h^2 coordinates & linearization

M.E. Baran & F.F. Wu, Optimal sizing of capacitors placed on a radial distribution system. *IEEE PES*, 1988.

• rectangular DC power flow: fixed-point ball for small S^2/V_{slack}^2

S. Bolognani & S. Zampieri, On the existence and linear approximation of the power flow solution in power distribution networks. *IEEE TPS*, 2015.

• many variations & extensions, sensitivity & Jacobian methods, etc.

main twist today: separate power flow & bus model

- 1) derivation of linear implicit model
- 2) relation to other approximations
- 3) accuracy in the three-phase case
- 4) some direct applications

Linear implicit model & its advantages

- today consider all of $x = (v, \theta, p, q)$ as variables
- implicit model for power flow manifold: F(x) = 0
- linear approximant at x^* is tangent plane: $A(x x^*) = 0$

Advantages of linear implicit model:

- ► sparsity
- \Rightarrow tractable for applications with high computational burden
- structure-preserving
- \Rightarrow prior for distributed control, optimization, estimation, etc.
- geometric methods
- \Rightarrow explicitly require tangent planes

The power flow manifold & linear tangent approximation

Closer look at implicit formulae $A(x - x^*) = 0$
$\left[\left(\langle \operatorname{diag} \overline{Yu^*} \rangle + \langle \operatorname{diag} u^* \rangle N \langle Y \rangle \right) \cdot \begin{bmatrix} \operatorname{diag}(\cos \theta^*) & -\operatorname{diag}(v^*) \operatorname{diag}(\sin \theta^*) \\ \operatorname{diag}(\sin \theta^*) & \operatorname{diag}(v^*) \operatorname{diag}(\cos \theta^*) \end{bmatrix} \right]$
shunt loads lossy DC flow rotation \times scaling at operating point
$ imes \underbrace{egin{bmatrix} \mathbf{v} - \mathbf{v}^* \ heta - heta^* \end{bmatrix} = egin{bmatrix} p - p^* \ q - q^* \end{bmatrix}}_{\mathbf{q} - \mathbf{q}^*}$
deviation variables
where $N = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$ is complex conjugate in real coordinates
and $\langle A \rangle = \begin{bmatrix} \Re(A) & -\Im(A) \\ \Im(A) & \Re(A) \end{bmatrix}$ is complex rotation in real coordinates.

Special cases reveal some old friends I

- flat-voltage/0-injection point: $x^* = (v^*, \theta^*, p^*, q^*) = (\mathbb{1}, \mathbb{0}, \mathbb{0}, \mathbb{0})$
- $\Rightarrow \text{ implicit linearization: } \begin{bmatrix} \Re(Y) & -\Im(Y) \\ -\Im(Y) & \Re(Y) \end{bmatrix} \begin{bmatrix} v \\ \theta \end{bmatrix} = \begin{bmatrix} p \\ q \end{bmatrix}$

is linear coupled power flow [D. Deka, S. Backhaus, & M. Chertkov, 2015]

 $\Rightarrow \Re(Y) = 0$ gives **DC** power flow: $-\Im(Y)\theta = p$ and $-\Im(Y)v = q$

Special cases reveal some old friends II

- flat-voltage/0-injection point: $x^* = (v^*, \theta^*, p^*, q^*) = (\mathbb{1}, \mathbb{0}, \mathbb{0}, \mathbb{0})$
- $\Rightarrow \ \text{rectangular coord.} \Rightarrow \text{rectangular DC flow} \text{ [S. Bolognani \& S. Zampieri, 2015]}$
- nonlinear change to quadratic coordinates from v_h to v_h^2
- \Rightarrow linearization gives (non-radial) LinDistFlow [M.E. Baran & F.F. Wu, 1988]

Extensions to more general models

Bus device models, e.g., PQ bus $s_h = p_h + jq_h = const$.

 \Rightarrow implicit constraint g(x) = 0 & can be absorbed in F(x) = 0

Exponential load models $s_h = const. \cdot v_h^{const.}$

 \Rightarrow can be handled analogously

Unbalanced three-phase grids with basic ingredients

- complex voltage $u_h = [u_h^a \ u_h^b \ u_h^c]^T \in \mathbb{C}^3$
- similar definitions for other quantities
- \Rightarrow all previous results can be analogously re-derived

Matlab/Octave code available: https://github.com/saveriob/1ACPF

so all standard approximations are included as special cases

a glorified & highly accurate linearization ... so what?

some direct applications

Distributed online optimization on power flow manifold with Adrian Hauswirth & Gabriela Hug (ETH Zürich)

Cascading failures – more accuracy for similar comp. effort

D. Drzajic, S. Bolognani, & F. Dörfler. Energy theft detection using compressive sensing methods. *ETH Zürich Semester project*, August 2015.

Conclusions

Summary

- linear, sparse, & structure-preserving model
- includes all DC & LinDistFlow approximations
- applicable to unbalanced three-phase systems
- apps: monitoring, control, decision-making, ...

Ongoing & future work

- theory: error bounds & coord trafos
- applications: further develop apps

Acknowledgements

 Sandro Zampieri, Adrian Hauswirth, Gabriela Hug, Dalibor Drzajic, Giovanni Sansavini, & Bing Li

Saverio Bolognani