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Power flow equations

Basic ingredients in an n-bus power system
e complex bus voltage vy, = vyel’» € C
@ injected complex power s, = pp + jgn

@ admittance matrix Y € C"™*"

Underlying nonlinear power flow equations

Kirchhoff's & Ohm's laws

nodal power balances } iag(u) Yu

Bus model specifies variables & fixed parameters
@ PV bus: p, and vy, fixed @ slack bus: vy and 6}, fixed

o PQ bus: pp and gy fixed

= remaining ingredients are variables

2/16

A brief history of power flow approximations

for computational tractability, analytic studies, & control/optimization design
e DC power flow: R(Y) =0, v =1, & linearization

a B. Stott, J. Jardim, & O. Alsac, “DC Power Flow Revisited” IEEE TPS, 2009.J

o LinDistFlow: parameterization in flow & v,% coordinates & linearization

ﬁ M.E. Baran & F.F. Wu, Optimal sizing of capacitors placed on a radial
distribution system. /EEE PES, 1988.

@ rectangular DC power flow: fixed-point ball for small 52/V52|ack

ﬁ S. Bolognani & S. Zampieri, On the existence and linear approximation of the
power flow solution in power distribution networks. I[EEE TPS, 2015.

@ many variations & extensions, sensitivity & Jacobian methods, etc.
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main twist today: separate
power flow & bus model

1) derivation of linear implicit model

2) relation to other approximations
3) accuracy in the three-phase case

4) some direct applications




Linear implicit model & its advantages

e today consider all of x = (v, 6, p, q) as variables
e implicit model for power flow manifold: F(x) =0

e linear approximant at x* is tangent plane: A(x — x*) =0

Advantages of linear implicit model:
> sparsity

= tractable for applications with
high computational burden

» structure-preserving

= prior for distributed control,
optimization, estimation, etc.

» geometric methods

two-bus example

= explicitly require tangent planes
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The power flow manifold & linear tangent approximation

node 1 node 2
o — 0
y=0.4—0.8j

vi =1, 61 = v, O
P11, q1 P2, q2

© power flow manifold: F(x) =0

@ normal space spanned by 8’59) =AT w
X*

© tangent space at x*: A(x — x*) =0

0?F(x)

©Q accuracy depends on curvature —;
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Closer look at implicit formulae A(x — x*) =0
. o - diag(cos 0*) — diag(v*) diag(sin 6*)
[((dmg Yur) + (diag u >N<Y>> ' [diag(sin 0*) diag(v*)diag(cos0*) ”

J/ /
~~ ~~

shunt loads  lossy DC flow

rotation X scaling at operating point

v—v* _[p—p"
-0  |g—¢q'

/

-~

deviation variables

I] is complex conjugate in real coordinates

[%(A) ~3(A)

3(A)  R(A) ] is complex rotation in real coordinates.
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... appears
cumbersome
at first glance




Special cases reveal some old friends |
e flat-voltage/0-injection point: x* = (v*,0*, p*, ¢*) = (1,0,0,0)

o w12

is linear coupled power flow [D. Deka, S. Backhaus, & M. Chertkov, 2015]

= implicit linearization: [

= R(Y) =0 gives DC power flow: —(Y)0 =p and —S(Y)v =g

= 7 IF
14 i e 9 =y 0 B
o power flow manifold |
[T
N 7 / linear coupled power flow ‘
0 7~ &7

DC power flow approximation
(neglects PV coupling)
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Special cases reveal some old friends |l
e flat-voltage/0-injection point: x* = (v*,0* p*, ¢*) = (1,0,0,0)
= rectangular coord. = rectangular DC flow [S. Bolognani & S. Zampieri, 2015]

@ nonlinear change to quadratic coordinates from vy, to vf,

= linearization gives (non-radial) LinDistFlow [M.E. Baran & F.F. Wu, 1988]

power flow manifold |

linear approximation |

linear approximation
in quadratic coordinates

0 1 1.5
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so all standard approximations
are included as special cases

Extensions to more general models

Bus device models, e.g., PQ bus s, = py + jgn = const.

= implicit constraint g(x) = 0 & can be absorbed in F(x) =0

Exponential load models s, = const. - vgo™"

= can be handled analogously

Unbalanced three-phase grids with basic ingredients
o complex voltage up = [u? uf ug]” € C3
@ similar definitions for other quantities

= all previous results can be analogously re-derived

Matlab/Octave code available: https://github.com/saveriob/1ACPF )
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Accuracy illustrated with unbalanced three-phase IEEE13
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O exact solution X linear implicit model
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a glorified & highly accurate
linearization ... so what?

some direct applications

Fast scenario-based decision making under uncertainties

Example: feasible region for distribution network operation

{ Xdec |Prob{ Xexo € Xexo @ F(x)=0 & Wx<w }> 1—5}
~— —_——

—_——— M= =

actuation random loads power flow

constraints chance

Scenario-based approach:

sample Xexo variables & build
deterministic constraints

= decision xgec is feasible
with high probability for
sufficiently many samples

@ S. Bolognani & F. Dorfler. Fast scenario-based decision making in unbalanced
distribution networks. Power Systems Computation Conference (PSCC), June 2016.
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Distributed online optimization on power flow manifold
with Adrian Hauswirth & Gabriela Hug (ETH Ziirich)

gradient of cost Objective Value [$]
T T T

tangent space

new operating poin

power flow manifold

projected gradient step
(distributed algorithm)

measurements injections

I 1 L L I ! ! L I
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new operating point
(physical system)

applied to optimal voltage control in IEEE 30 bus grid
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Cascading failures — more accuracy for similar comp. effort
with Giovanni Sansavini & Bing Li (ETH Ziirich)
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Cascading failures — distinct cascades under naive DC flow
with Giovanni Sansavini & Bing Li (ETH Ziirich)
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single line outage since
e voltage magnitude can

(partially) compensate

for other remaing line

Linear AC power flow
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o blackout
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Monitoring, state estimation, learning, & detection

Consistency equation: Yk = H - xy + ex + dk
~— ~—— ~— ~—
measurement  system model noise attack

Attack detection: collect sol-
measurements yj over time &

look for a consistent low-rank “or
(ID x time space) input dj %307
Results for IEEE 123 model: 20}

harder to trick an operator

relying on a linearized AC model "/
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@ D. Drzajic, S. Bolognani, & F. Dorfler. Energy theft detection using compressive
sensing methods. ETH Ziirich Semester project, August 2015.
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Conclusions

Summary

@ linear, sparse, & structure-preserving model

2\/7777,,,77
@ includes all DC & LinDistFlow approximations T
@ applicable to unbalanced three-phase systems

@ apps: monitoring, control, decision-making, ...

Ongoing & future work

@ theory: error bounds & coord trafos

@ applications: further develop apps
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