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Data-driven control

• indirect data-driven control
data → model + uncertainty → control

• growing trend direct data-driven control 
by-passing models… (again) hyped, why?

ID

The direct approach is a viable alternative
• for some applications: model-based approach is too complex to 

be useful → complex processes, sensing modalities, environment

• due to shortcomings of ID → cumbersome, models not identified 
for control, model selection, or incompatible uncertainty estimates

• when sufficient brute force data / compute / storage is available 

• trade-offs 
• (non)modular
• (in)tractable
• (sub)optimal
• data size
• online adaptation

today: 
give 
explicit
answers
for LQR
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LQR
• cornerstone of 

automatic control

•       parameterization
(can be posed as convex SDP,
as differentiable program, as… )

• the benchmark for all data-driven 
control approaches in last decades(!)

II. INDIRECT & DIRECT DATA-DRIVEN LQR

We now review indirect LQR design (formalized as a bi-
level program: least-square SysID followed by model-based
optimal control) as well as a recent direct approach [14]
parameterizing the design by data matrices. The foundation
of both approaches are subspace relations in state-space data.

A. Model-based linear quadratic optimal control

Consider a linear time-invariant (LTI) system
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>>:

x(k + 1) = Ax(k) +Bu(k) + d(k)
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where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d is a disturbance term, and z is the performance signal
of interest. We assume that (A,B) is stabilizable. Finally,
Q � 0 and R � 0 are weighting matrices. Here, � (⌫) and
� (�) denote positive and negative (semi)definiteness.

The problem of interest is linear quadratic regulation

phrased as designing a state-feedback gain K that renders
A+ BK Schur and minimizes the H2-norm of the transfer
function T (K) := d ! z of the closed-loop system1
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where our notation T (K) emphasizes the dependence of the
transfer function on K. When A+BK is Schur, it holds that

kT (K)k22 = trace (QP ) + trace
�
K>RKP

�
, (3)

where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A+BK)P (A+BK)> � P + I = 0.

We refer to [34] for properties and interpretations of the
H2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d is a white process with unit covariance.
Here, we view the LQR problem as a H2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H2-norm of T (K) (henceforth, optimal) is unique
and can be computed by solving a discrete-time Riccati equa-
tion [1]. Alternatively, following [35], this optimal controller
can be determined by solving the following program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (A+BK)P (A+BK)> � P + I � 0 ,
(4)

1Given a stable p ⇥ m transfer function T (�) in the indeterminate �,
the squared H2-norm of T (�) is defined as [34, Section 4.4]:

kT k
2
2 :=

1

2⇡

Z 2⇡

0
trace(T (ej✓)0T (ej✓)) d✓

The LQR problem indeed admits many parameterizations,
and the one in (4) can be turned into a convex semi-definite
program after a change of variables; see [33, Section III.C].

We aim to compute the optimal control in a data-driven
setting when (A,B) are unknown, but we have access to a
T -long stream of noisy data. Here noisy means that the data
collected from (1) are generated with a non-zero disturbance
d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-

square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
series of inputs, disturbances, states, and successor states

U0 :=
⇥
u(0) u(1) . . . u(T � 1)

⇤
2 Rm⇥T ,

D0 :=
⇥
d(0) d(1) . . . d(T � 1)

⇤
2 Rn⇥T ,

X0 :=
⇥
x(0) x(1) . . . x(T � 1)

⇤
2 Rn⇥T ,

X1 :=
⇥
x(1) x(2) . . . x(T )

⇤
2 Rn⇥T

satisfying the dynamics (1), that is,

X1 �D0 =
⇥
B A

⇤ U0

X0

�
. (5)

It is convenient to record the data as consecutive time series,
i.e., column i of X1 coincides with column i+1 of X0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity

W0 :=


U0

X0

�
.

We assume that the data is sufficiently rich, that is,

rankW0 = n+m. (6)

The rank condition (6) is an identifiability condition ensuring
that (B,A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B,A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X0, X1) and under the rank condition (6),
an estimate (B̂, Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem
⇥
B̂ Â

⇤
= argmin

B,A

��X1 �
⇥
B A

⇤
W0

��
F
= X1W

†
0 , (7)

where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),
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Contents

1. regularizations bridging direct & indirect data-driven LQR 
→ story of a model-based pipeline with model-free elements

2. data-enabled policy optimization for online adaptation
→ story of a model-free pipeline with model-based elements

3. case studies: academic & power systems/electronics
→ LQR is academic example but can be made useful
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On the Role of Regularization in Direct Data-Driven LQR Control

Florian Dörfler, Pietro Tesi, and Claudio De Persis

Abstract— The linear quadratic regulator (LQR) problem is a
cornerstone of control theory and a widely studied benchmark
problem. When a system model is not available, the conven-
tional approach to LQR design is indirect, i.e., based on a
model identified from data. Recently a suite of direct data-
driven LQR design approaches has surfaced by-passing explicit
system identification (SysID) and based on ideas from subspace
methods and behavioral systems theory. In either approach, the
data underlying the design can be taken at face value (certainty-
equivalence) or the design is robustified to account for noise. An
emerging topic in direct data-driven LQR design is to regularize
the optimal control objective to account for implicit SysID (in a
least-square or low-rank sense) or to promote robust stability.
These regularized formulations are flexible, computationally
attractive, and theoretically certifiable; they can interpolate
between direct vs. indirect and certainty-equivalent vs. robust
approaches; and they can be blended resulting in remarkable
empirical performance. This manuscript reviews and compares
different approaches to regularized direct data-driven LQR.

I. INTRODUCTION

Linear quadratic regulator (LQR) design for linear time-
invariant (LTI) subject to process noise is a cornerstone of
the field [1]. It is the benchmark to validate and compare
different methods, among others in the context of data-driven

control when no model but only raw data is available. In the
terminology of adaptive control [2], different approaches to
data-driven LQR design can be classified as indirect, i.e.,
based on system identification (SysID) followed by model-
based design, versus direct when by-passing models. Another
distinction is certainty-equivalence (CE) versus robust design
depending on whether uncertainty is taken into account.

A representative (though not exhaustive) list of indirect
LQR approaches are [3]–[6] advocating CE and [7]–[9] in
the robust setting. Exemplary direct approaches are gradient
methods [10]–[12], reinforcement learning [13], behavioral
methods [14], and Riccati-based methods [15] in the CE
setting and [16]–[18] in the robust case. These classifications
are not strict: many approaches have bridged the direct and
indirect paradigms such as identification for control [19],
[20], dual control [21], [22], control-oriented identification
[23], and regularized data-enabled predictive control [24],
[25]. All these approaches advocate that the control anf
SysID objectives should be blendend to regularize each other.

Regularization methods have a long history in regression

F. Dörfler is with Department of Information Technology and Elec-
trical Engineering, ETH Zurich, 8092 Zurich, Switzerland. Email:
dorfler@ethz.ch. P. Tesi is with Department of Information
Engineering, University of Florence, 50139 Florence, Italy. Email:
pietro.tesi@unifi.it. C. De Persis is with ENTEG and the
J. C. Willems Center for Systems and Control, University of Groningen,
8092 Groningen, The Netherlands. Email: c.de.persis@rug.nl.
This work was supported by ETH Zurich and the SNF NCCR Automation.

problems when identifying models from data. They facilitate
finding solutions to optimization problems by rendering them
unique or speeding up algorithms. Aside from such numer-
ical advantages, a Bayesian interpretation of regularizations
is that they condition models on prior knowledge [26], and
they robustify problems to uncertainty [27], [28].

An emergent approach to data-driven control is borne
out of the intersection of behavioral systems theory and
subspace methods [29]. In particular, the so-called Funda-

mental Lemma characterizes the behavior of an LTI system
by the range space of matrix time series data [30]. This
perspective gave rise to direct data-driven predictive and
explicit feedback control formulations [14]–[17], [24], [31],
[32]. Both lines of work emphasize robustness to noisy data.

This manuscript presents a tutorial review of regularized
direct data-driven LQR [16], [33], which touches upon all
of the above. As a baseline, indirect CE data-driven LQR
is formalized as a bi-level optimization problem: SysID
by means of ordinary least-squares followed by model-
based H2-optimal design. Further, we present the direct
certainty-equivalence approach [14] posing LQR design as
semidefinite program parameterized by data matrices.

Following [24], [33], we show that the indirect and direct
approaches are equivalent after augmenting the latter with a
regularizer accounting for the least-square fitting criterion.
We also review the regularizer proposed in [16] promoting
robust closed-loop stability in face of noise. Finally, we
present a novel `1-regularizer accounting for implicit low-
rank pre-processing conditioning noisy data on the set of
finite-dimensional LTI models. Hence, as in regression, reg-
ularizations not only ease the numerics but also condition the
control policy on prior knowledge and robustify the closed
loop. Further, following [16] we present theoretic certificates
for robust closed-loop stability and performance bounds as a
function of the signal-to-noise ratio (SNR) for finite sample
size. The sub-optimality gap scales linearly with the SNR.

Finally, we compare different approaches in a numerical
case study and show that regularized formulations can flexi-
bly interpolate between direct vs. indirect and CE vs. robust
approaches. We show that robustness-promoting regularizers
are superior for low SNR, whereas CE-promoting regulariz-
ers perform extremely well for larger SNR. As a remarkable
empirical result, blending different regularizers yields excel-
lent overall performance with constant hyperparameters.

The paper is organized as follows. Section III poses the
direct and indirect LQR problems. Section III discusses the
regularizations. Certificates are provided in Section IV. Sec-
tion V contains our numerical case study. Finally, Section VI
concludes the paper and presents directions for future work.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 12, DECEMBER 2023 7989

On the Certainty-Equivalence Approach to Direct Data-Driven LQR
Design

Florian Dörfler , Senior Member, IEEE, Pietro Tesi , Member, IEEE,
and Claudio De Persis , Member, IEEE

Abstract—The linear quadratic regulator (LQR) problem is a
cornerstone of automatic control, and it has been widely studied
in the data-driven setting. The various data-driven approaches
can be classified as indirect (i.e., based on an identified model)
versus direct or as robust (i.e., taking uncertainty into account)
versus certainty-equivalence. Here, we show how to bridge these
different formulations and propose a novel, direct, and regularized
formulation. We start from indirect certainty-equivalence LQR, i.e.,
least-square identification of state-space matrices followed by a
nominal model-based design, formalized as a bilevel program. We
show how to transform this problem into a single-level, regularized,
and direct data-driven control formulation, where the regularizer
accounts for the least-square data fitting criterion. For this novel
formulation, we carry out a robustness and performance analysis
in presence of noisy data. In a numerical case study, we compare
regularizers promoting either robustness or certainty-equivalence,
and we demonstrate the remarkable performance when blending
both of them.

Index Terms—Data-driven modeling, linear feedback control
systems, optimal control.

I. INTRODUCTION

This article considers data-driven approaches to linear quadratic
regulator (LQR) control of linear time-invariant (LTI) systems subject
to process noise [1]. Data-driven control methods can be classified into
direct versus indirect methods (depending on whether the control policy
hinges upon an identified model) and certainty-equivalence versus
robust approaches (depending on whether they take uncertainty into
account) [2]. The relative merits of these paradigms are well known, and
we highlight the following tradeoffs: For indirect methods, on the one
hand, it is hard to propagate uncertainty estimates on the data through
the system identification step to the control design. On the other hand,
direct methods are often more sensitive to inexact data and need to be
robustified at the cost of diminishing performance.

For the LQR problem, a representative (though certainly not exhaus-
tive) list of classic and recent indirect approaches (i.e., identification of a
parametric model followed by model-based design) are [3], [4], [5], [6]
in the certainty-equivalence setting and [7], [8], [9] in the robust case.
For the direct approach, we list the adaptive/iterative gradient-based
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methods [10], [11], [12], reinforcement learning [13], behavioral meth-
ods [14], and Riccati-based methods [15] in the certainty-equivalence
setting as well as [16], [17], [18] in the robust setting. We remark
that the world is not black and white: a multitude of approaches have
successfully bridged the direct and indirect paradigms, such as identi-
fication for control [19], [20], dual control [21], [22], control-oriented
identification [23], and regularized data-enabled predictive control [24].
In essence, these approaches all advocate that the identification and
control objectives should be blended to regularize each other.

An emergent approach to data-driven control is borne out of the
intersection of behavioral systems theory and subspace methods; see
the recent survey [25]. In particular, a result termed the Fundamen-
tal Lemma [26] implies that the behavior of an LTI system can be
characterized by the range space of a matrix containing raw time
series data. This perspective gave rise to implicit formulations (notably
data-enabled predictive control [24], [27], [28]) as well as the design of
explicit feedback policies [14], [15], [16], [17]. Both of these are direct
data-driven control approaches and robustness plays a pivotal role.

In this article, we show how to transition between the direct and
indirect as well as the robust and certainty-equivalence paradigms for
the LQR problem. We begin our investigations with an indirect and
certainty-equivalence data-driven LQR formulation posing it as model-
based H2-optimal design, where the model is identified from noisy
data by means of an ordinary least-square approach. Following [24],
we formalize this indirect approach as a bilevel optimization problem
and show how to equivalently pose it as a single-level and regularized
data-driven control problem. Our final problem formulation equals the
one in [14]—posing the LQR problem as a semidefinite program param-
eterized by data matrices—plus an additional regularizer accounting for
the least-square fitting criterion.

The aforementioned regularizer arising from our analysis takes the
form of an extra penalty term in the LQR objective function, it promotes
a least-square fitting of the data akin to certainty equivalence, and it
can also be interpreted as a stability-promoting term. This explains
why certainty equivalence enjoys some degree of robustness to noise.
With this observation and following methods from [16], we carry out a
nonasymptotic analysis (i.e., involving a finite number of data points)
and give explicit conditions for robust closed-loop stability and perfor-
mance bounds as a function of the signal-to-noise ratio (SNR). Different
from the works in [6] and [7], our analysis is not restricted to Gaussian
noise. In fact, we show that the certainty-equivalence approach results
in stabilizing controllers whenever the SNR is sufficiently large,
irrespective of the noise statistics. Furthermore, for sufficiently large
SNR, we show that the suboptimality gap scales linearly with the SNR.
This latter result is in line with [6], [7], which observe that certainty
equivalence performs extremely well in regimes of small uncertainty.
Our direct and regularized formulation of certainty-equivalence LQR
has its own merits over hard-coding the least-squares objective as a
constraint. Namely, it is a flexible formulation that permits to modify
the LQR objective in a smooth manner. In particular, we can tradeoff
performance and robustness objectives by blending different
regularizers promoting either certainty equivalence or robust
closed-loop stability.

In a simulation case study, we validate the performance of our
certainty-equivalence LQR formulation as a function of the SNR, and

0018-9286 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d is a disturbance term, and z is the performance signal
of interest. We assume that (A,B) is stabilizable. Finally,
Q � 0 and R � 0 are weighting matrices. Here, � (⌫) and
� (�) denote positive and negative (semi)definiteness.

The problem of interest is linear quadratic regulation

phrased as designing a state-feedback gain K that renders
A+ BK Schur and minimizes the H2-norm of the transfer
function T (K) := d ! z of the closed-loop system1
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where our notation T (K) emphasizes the dependence of the
transfer function on K. When A+BK is Schur, it holds that

kT (K)k22 = trace (QP ) + trace
�
K>RKP

�
, (3)

where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A+BK)P (A+BK)> � P + I = 0.

We refer to [34] for properties and interpretations of the
H2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d is a white process with unit covariance.
Here, we view the LQR problem as a H2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H2-norm of T (K) (henceforth, optimal) is unique
and can be computed by solving a discrete-time Riccati equa-
tion [1]. Alternatively, following [35], this optimal controller
can be determined by solving the following program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (A+BK)P (A+BK)> � P + I � 0 ,
(4)

1Given a stable p ⇥ m transfer function T (�) in the indeterminate �,
the squared H2-norm of T (�) is defined as [34, Section 4.4]:
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The LQR problem indeed admits many parameterizations,
and the one in (4) can be turned into a convex semi-definite
program after a change of variables; see [33, Section III.C].

We aim to compute the optimal control in a data-driven
setting when (A,B) are unknown, but we have access to a
T -long stream of noisy data. Here noisy means that the data
collected from (1) are generated with a non-zero disturbance
d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-

square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
series of inputs, disturbances, states, and successor states

U0 :=
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It is convenient to record the data as consecutive time series,
i.e., column i of X1 coincides with column i+1 of X0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity

W0 :=


U0
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We assume that the data is sufficiently rich, that is,

rankW0 = n+m. (6)

The rank condition (6) is an identifiability condition ensuring
that (B,A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B,A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X0, X1) and under the rank condition (6),
an estimate (B̂, Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem
⇥
B̂ Â

⇤
= argmin

B,A
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B A

⇤
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F
= X1W

†
0 , (7)

where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),
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optimal control) as well as a recent direct approach [14]
parameterizing the design by data matrices. The foundation
of both approaches are subspace relations in state-space data.
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where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d is a disturbance term, and z is the performance signal
of interest. We assume that (A,B) is stabilizable. Finally,
Q � 0 and R � 0 are weighting matrices. Here, � (⌫) and
� (�) denote positive and negative (semi)definiteness.

The problem of interest is linear quadratic regulation

phrased as designing a state-feedback gain K that renders
A+ BK Schur and minimizes the H2-norm of the transfer
function T (K) := d ! z of the closed-loop system1


x(k + 1)
z(k)

�
=

2

4
A+BK I
Q1/2

R1/2K

�
0

3

5


x(k)
d(k)

�
, (2)

where our notation T (K) emphasizes the dependence of the
transfer function on K. When A+BK is Schur, it holds that

kT (K)k22 = trace (QP ) + trace
�
K>RKP

�
, (3)

where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A+BK)P (A+BK)> � P + I = 0.

We refer to [34] for properties and interpretations of the
H2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d is a white process with unit covariance.
Here, we view the LQR problem as a H2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H2-norm of T (K) (henceforth, optimal) is unique
and can be computed by solving a discrete-time Riccati equa-
tion [1]. Alternatively, following [35], this optimal controller
can be determined by solving the following program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
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subject to (A+BK)P (A+BK)> � P + I � 0 ,
(4)

1Given a stable p ⇥ m transfer function T (�) in the indeterminate �,
the squared H2-norm of T (�) is defined as [34, Section 4.4]:
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The LQR problem indeed admits many parameterizations,
and the one in (4) can be turned into a convex semi-definite
program after a change of variables; see [33, Section III.C].

We aim to compute the optimal control in a data-driven
setting when (A,B) are unknown, but we have access to a
T -long stream of noisy data. Here noisy means that the data
collected from (1) are generated with a non-zero disturbance
d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-

square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
series of inputs, disturbances, states, and successor states
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It is convenient to record the data as consecutive time series,
i.e., column i of X1 coincides with column i+1 of X0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity

W0 :=


U0

X0

�
.

We assume that the data is sufficiently rich, that is,

rankW0 = n+m. (6)

The rank condition (6) is an identifiability condition ensuring
that (B,A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B,A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X0, X1) and under the rank condition (6),
an estimate (B̂, Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem
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the matrices (B,A) are replaced by their estimates (7). This
approach can be formalized as a bi-level program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (Â+ B̂K)P (Â+ B̂K)> � P + I � 0
⇥
B̂ Â

⇤
= argmin

B,A

��X1 �
⇥
B A

⇤
W0

��
F
.

(8)

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (Â+ B̂K)P (Â+ B̂K)> � P + I � 0

⇥
B̂ Â

⇤
= argmin

B,A

����X1 �
⇥
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Following classic terminology [2], we term problem (8)
a certainty-equivalence and indirect data-driven control ap-
proach and its solution K a certainty-equivalence controller.

Note that under the identifiability condition (6) and with
noise-free data, (8) is feasible and returns the optimal control.
This is because, under these circumstances, B̂ = B and Â =
A so that (8) coincides with the model-based program (4).

It can be argued that the sequential identification-followed-
by-control approach (8) is optimal in a maximum-likelihood
sense; see [19, Section 4.2]. However, it is also known that
noisy data should not be taken at face value (especially in the
low-data and low SNR limit), and the certainty-equivalence
approach has to be additionally robustified; see [6], [8],

C. Direct design & LQR parameterization by data matrices

Now we review a direct data-driven LQR approach laid
out in [14]. It uses the subspace relations (5) and (6) to
parametrize problem (4) by data matrices. Namely, due to
the rank condition (6), for any K, there is a matrix G so that


K
I

�
= W0G , (9)

and due to the relation (5) the closed-loop matrix A+ BK
can be parametrized directly by data matrices as

A+BK =
⇥
B A

⇤ K
I

�
(9)
=

⇥
B A

⇤
W0G

(5)
= (X1�D0)G .

(10)
This data-based parameterization allows us to replace the
closed-loop matrix A+BK in (4) by (X1 �D0)G subject
to the additional constraint (9). As a result, the LQR problem
(4) can be parametrized by means of data matrices as

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to (X1 �D0)GPG>(X1 �D0)
> � P + I � 0


K
I

�
= W0G

(11)
with optimal control gain K = U0G. This parametrization
is indeed a direct formulation of the LQR problem since no
explicit identification of the system matrices is involved.

With noise-free data (11) can be efficiently implemented
(after a convexification) and returns the optimal controller
[14]. With noisy data, as D0 is unknown, a natural approach
is to disregard D0 which leads to the formulation

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G ,

(12)

which can be posed as convex program; see [14], [16], [33].
In the noiseless case and under condition (6), all problem

formulations (4), (8), and (12) coincide. Further, there is a
considerable nullspace in the direct formulation (12).

Lemma 2.1: (Nullspace in direct data-driven control)
Consider the data-driven LQR problem (12). Assume noise-
less data, i.e., D0 = 0, and that the identifiability condition
(6) holds. Then the set of optimal solutions G? to (12)
coincides with the set of solutions to equation (9), i.e.,

{G? : (P ?,K?, G?) 2 argmin(12)} = W †
0 [KI ]+Ghom , (13)

where Ghom is any matrix in the nullspace of W0.
Proof: Clearly, any optimal solution is feasible and thus

satisfies the constraint equation (9). To prove the converse
inclusion, consider any two solutions G1 and G2 to the
constraint equation (9). Both solutions are of the form (13)
and by (10) lead to the same closed-loop matrix X1G1 =
A + BK = X1G2 and to the same K = U0G1 = U0G2.
Hence, neither the Lyapunov constraint nor the objective are
altered, and thus both solutions achieve an identical cost.

Hence, in case of exact data, the direct data-driven LQR
problem (12) contains a large nullspace, and its solutions are
non-unique. However, in case of noisy data, it will turn out
to be advantageous to bias (or regularize) problem (12) to
single out a solution with favorable noise rejection properties.
Similarly to (8), (12) also enforces some sort of certainty
equivalence since the design does not take noise into account.
In the next section, we show, among others, that a particular
regularized version of (12) is indeed equivalent to (8).

III. REGULARIZED & DIRECT DATA-DRIVEN LQR
This section derives different regularized formulations of

direct data-driven LQR (12) promoting certainty-equivalence
(in a least square or low-rank sense) and robust stability.

A. A direct version of the certainty-equivalence LQR

We first consider a regularized version of direct data-
driven LQR promoting certainty-equivalence, i.e., a least-
square fitting of the data (7). The results rest on [24], [33].

To relate (8) and (12), consider the following program

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

⇣
I �W †

0W0

⌘
G = 0 .

(14)

least
squares 
SysID

certainty-
equivalent
LQR
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B. Subspace relations in state-space data, ordinary least-

square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.
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i.e., column i of X1 coincides with column i+1 of X0, but
this is not strictly needed for our developments: the data may
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We assume that the data is sufficiently rich, that is,

rankW0 = n+m. (6)

The rank condition (6) is an identifiability condition ensuring
that (B,A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B,A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X0, X1) and under the rank condition (6),
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as the unique solution to the ordinary least-squares problem
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where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),
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We now review indirect LQR design (formalized as a bi-
level program: least-square SysID followed by model-based
optimal control) as well as a recent direct approach [14]
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of both approaches are subspace relations in state-space data.

A. Model-based linear quadratic optimal control

Consider a linear time-invariant (LTI) system
8
>><

>>:

x(k + 1) = Ax(k) +Bu(k) + d(k)

z(k) =

"
Q1/2 0

0 R1/2

#"
x(k)

u(k)

#
, (1)

where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d is a disturbance term, and z is the performance signal
of interest. We assume that (A,B) is stabilizable. Finally,
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the matrices (B,A) are replaced by their estimates (7). This
approach can be formalized as a bi-level program:

minimize
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Following classic terminology [2], we term problem (8)
a certainty-equivalence and indirect data-driven control ap-
proach and its solution K a certainty-equivalence controller.

Note that under the identifiability condition (6) and with
noise-free data, (8) is feasible and returns the optimal control.
This is because, under these circumstances, B̂ = B and Â =
A so that (8) coincides with the model-based program (4).

It can be argued that the sequential identification-followed-
by-control approach (8) is optimal in a maximum-likelihood
sense; see [19, Section 4.2]. However, it is also known that
noisy data should not be taken at face value (especially in the
low-data and low SNR limit), and the certainty-equivalence
approach has to be additionally robustified; see [6], [8],

C. Direct design & LQR parameterization by data matrices

Now we review a direct data-driven LQR approach laid
out in [14]. It uses the subspace relations (5) and (6) to
parametrize problem (4) by data matrices. Namely, due to
the rank condition (6), for any K, there is a matrix G so that


K
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�
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and due to the relation (5) the closed-loop matrix A+ BK
can be parametrized directly by data matrices as
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(10)
This data-based parameterization allows us to replace the
closed-loop matrix A+BK in (4) by (X1 �D0)G subject
to the additional constraint (9). As a result, the LQR problem
(4) can be parametrized by means of data matrices as

minimize
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�

subject to (X1 �D0)GPG>(X1 �D0)
> � P + I � 0
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(11)
with optimal control gain K = U0G. This parametrization
is indeed a direct formulation of the LQR problem since no
explicit identification of the system matrices is involved.

With noise-free data (11) can be efficiently implemented
(after a convexification) and returns the optimal controller
[14]. With noisy data, as D0 is unknown, a natural approach
is to disregard D0 which leads to the formulation

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G ,

(12)

which can be posed as convex program; see [14], [16], [33].
In the noiseless case and under condition (6), all problem

formulations (4), (8), and (12) coincide. Further, there is a
considerable nullspace in the direct formulation (12).

Lemma 2.1: (Nullspace in direct data-driven control)
Consider the data-driven LQR problem (12). Assume noise-
less data, i.e., D0 = 0, and that the identifiability condition
(6) holds. Then the set of optimal solutions G? to (12)
coincides with the set of solutions to equation (9), i.e.,

{G? : (P ?,K?, G?) 2 argmin(12)} = W †
0 [KI ]+Ghom , (13)

where Ghom is any matrix in the nullspace of W0.
Proof: Clearly, any optimal solution is feasible and thus

satisfies the constraint equation (9). To prove the converse
inclusion, consider any two solutions G1 and G2 to the
constraint equation (9). Both solutions are of the form (13)
and by (10) lead to the same closed-loop matrix X1G1 =
A + BK = X1G2 and to the same K = U0G1 = U0G2.
Hence, neither the Lyapunov constraint nor the objective are
altered, and thus both solutions achieve an identical cost.

Hence, in case of exact data, the direct data-driven LQR
problem (12) contains a large nullspace, and its solutions are
non-unique. However, in case of noisy data, it will turn out
to be advantageous to bias (or regularize) problem (12) to
single out a solution with favorable noise rejection properties.
Similarly to (8), (12) also enforces some sort of certainty
equivalence since the design does not take noise into account.
In the next section, we show, among others, that a particular
regularized version of (12) is indeed equivalent to (8).

III. REGULARIZED & DIRECT DATA-DRIVEN LQR
This section derives different regularized formulations of

direct data-driven LQR (12) promoting certainty-equivalence
(in a least square or low-rank sense) and robust stability.

A. A direct version of the certainty-equivalence LQR

We first consider a regularized version of direct data-
driven LQR promoting certainty-equivalence, i.e., a least-
square fitting of the data (7). The results rest on [24], [33].
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the matrices (B,A) are replaced by their estimates (7). This
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⇥
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Following classic terminology [2], we term problem (8) a
certainty-equivalence and indirect data-driven control ap-
proach and its solution K a certainty-equivalence controller.

Note that under the identifiability condition (6) and with
noise-free data, (8) is feasible and returns the optimal control.
This is because, under these circumstances, B̂ = B and Â =
A so that (8) coincides with the model-based program (4).

It can be argued that the sequential identification-followed-
by-control approach (8) is optimal in a maximum-likelihood
sense; see [19, Section 4.2]. However, it is also known that
noisy data should not be taken at face value (especially in the
low-data and low SNR limit), and the certainty-equivalence
approach has to be additionally robustified; see [6], [8],

C. Direct design & LQR parameterization by data matrices

Now we review a direct data-driven LQR approach laid
out in [14]. It uses the subspace relations (5) and (6) to
parametrize problem (4) by data matrices. Namely, due to
the rank condition (6), for any K, there is a matrix G so that
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This data-based parameterization allows us to replace the
closed-loop matrix A+BK in (4) by (X1 �D0)G subject
to the additional constraint (9). As a result, the LQR problem
(4) can be parametrized by means of data matrices as
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with optimal control gain K = U0G. This parametrization
is indeed a direct formulation of the LQR problem since no
explicit identification of the system matrices is involved.

With noise-free data (11) can be efficiently implemented
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[14]. With noisy data, as D0 is unknown, a natural approach
is to disregard D0 which leads to the formulation
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which can be posed as convex program; see [14], [16], [33].
In the noiseless case and under condition (6), all problem

formulations (4), (8), and (12) coincide. Further, there is a
considerable nullspace in the direct formulation (12).
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less data, i.e., D0 = 0, and that the identifiability condition
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coincides with the set of solutions to equation (9), i.e.,
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where Ghom is any matrix in the nullspace of W0.
Proof: Clearly, any optimal solution is feasible and thus

satisfies the constraint equation (9). To prove the converse
inclusion, consider any two solutions G1 and G2 to the
constraint equation (9). Both solutions are of the form (13)
and by (10) lead to the same closed-loop matrix X1G1 =
A + BK = X1G2 and to the same K = U0G1 = U0G2.
Hence, neither the Lyapunov constraint nor the objective are
altered, and thus both solutions achieve an identical cost.

Hence, in case of exact data, the direct data-driven LQR
problem (12) contains a large nullspace, and its solutions are
non-unique. However, in case of noisy data, it will turn out
to be advantageous to bias (or regularize) problem (12) to
single out a solution with favorable noise rejection properties.
Similarly to (8), (12) also enforces some sort of certainty
equivalence since the design does not take noise into account.
In the next section, we show, among others, that a particular
regularized version of (12) is indeed equivalent to (8).
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This section derives different regularized formulations of

direct data-driven LQR (12) promoting certainty-equivalence
(in a least square or low-rank sense) and robust stability.

A. A direct version of the certainty-equivalence LQR

We first consider a regularized version of direct data-
driven LQR promoting certainty-equivalence, i.e., a least-
square fitting of the data (7). The results rest on [24], [33].
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⇤
= argmin

B,A

��X1 �
⇥
B A

⇤
W0

��
F
.

(8)

Following classic terminology [2], we term problem (8) a
certainty-equivalence and indirect data-driven control ap-
proach and its solution K a certainty-equivalence controller.

Note that under the identifiability condition (6) and with
noise-free data, (8) is feasible and returns the optimal control.
This is because, under these circumstances, B̂ = B and Â =
A so that (8) coincides with the model-based program (4).
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by-control approach (8) is optimal in a maximum-likelihood
sense; see [19, Section 4.2]. However, it is also known that
noisy data should not be taken at face value (especially in the
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approach has to be additionally robustified; see [6], [8],
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the rank condition (6), for any K, there is a matrix G so that
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with optimal control gain K = U0G. This parametrization
is indeed a direct formulation of the LQR problem since no
explicit identification of the system matrices is involved.
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(after a convexification) and returns the optimal controller
[14]. With noisy data, as D0 is unknown, a natural approach
is to disregard D0 which leads to the formulation
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In the noiseless case and under condition (6), all problem
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considerable nullspace in the direct formulation (12).

Lemma 2.1: (Nullspace in direct data-driven control)
Consider the data-driven LQR problem (12). Assume noise-
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Proof: Clearly, any optimal solution is feasible and thus
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inclusion, consider any two solutions G1 and G2 to the
constraint equation (9). Both solutions are of the form (13)
and by (10) lead to the same closed-loop matrix X1G1 =
A + BK = X1G2 and to the same K = U0G1 = U0G2.
Hence, neither the Lyapunov constraint nor the objective are
altered, and thus both solutions achieve an identical cost.

Hence, in case of exact data, the direct data-driven LQR
problem (12) contains a large nullspace, and its solutions are
non-unique. However, in case of noisy data, it will turn out
to be advantageous to bias (or regularize) problem (12) to
single out a solution with favorable noise rejection properties.
Similarly to (8), (12) also enforces some sort of certainty
equivalence since the design does not take noise into account.
In the next section, we show, among others, that a particular
regularized version of (12) is indeed equivalent to (8).
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A. A direct version of the certainty-equivalence LQR

We first consider a regularized version of direct data-
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square fitting of the data (7). The results rest on [24], [33].
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Regularized, certainty-equivalent, & direct LQR

• orthogonality constraint

lifted to regularizer
(equivalent for    large)

indirect data-driven LQR formulations (8) and (14), respec-

tively. The two formulations are equivalent in the sense that

the cost functions coincide and feasible sets coincide. ⌅
The orthogonal projector on the nullspace of W0 is termed

⇧ := I �W †
0W0 .

By lifting the orthogonality constraint ⇧G = 0 in (14) to
the objective, we get a regularized data-driven LQR problem

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�
+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0
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�
= W0G

(15)
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�
G

where k ·k is any matrix norm. We have the following result.
Theorem 3.2: (Regularized direct data-driven LQR [33,

Theorem 3.3]) Consider the direct data-driven LQR formu-

lation (14) and its regularized version (16) with parameter

� � 0. The two problems coincide for � sufficiently large.

Otherwise, for general � � 0, (16) lower-bounds (14).
For noise-free data it can also be shown that (14) and (16)

coincide for every � � 0. We do not further elaborate on this
point but rather discuss the implications of Theorem 3.2.

Remark 3.3 (Comparison of formulations): The standard
indirect certainty-equivalence LQR problem is formulated
as the bi-level problem (8) consisting of sequential identi-
fication and model-based LQR. Theorem 3.2 shows that (8)
is equivalent to the single-level and multi-criteria problem
(16) simultaneously accounting for identification and control
objectives. This formulation is interesting in its own right,
and we further elaborate on it in Sections V and VI. Given
the equivalence of the formulations (8), (14), or (16), the
latter for � sufficiently large, one may wonder which is the
preferred one. For now we remark that they can all be posed
as convex programs (see [33, Section III.C]) and display sim-
ilar computational performance. We defer a more in-depth
discussion to Sections V and VI after analyzing robustness
and performance properties of certainty-equivalence LQR.⇤
B. Robustness-inducing regularization

The certainty-equivalence LQR problem (8) can be cast
as direct (non-sequential) control design via the single-level
program (16). Further, one can show that the regularization
induced by the certainty-equivalence approach indeed gives a
certain level of robustness to noise. To see this, note that (16)
searches for a solution that satisfies the Lyapunov inequality

X1GPG>X>
1 � P + I � 0 (16)

which amounts to regarding X1G as the closed-loop system
matrix. In view of the relation A+BK = (X1 �D0)G, the
stability constraint that should be met is actually

(X1 �D0)GPG>(X1 �D0)
> � P + I � 0 . (17)

In order for (17) to imply (18) it is sufficient that G has
small norm. In fact, certainty-equivalence regularization � ·
k⇧Gk precisely achieves this: Theorem 3.2 shows that for �
sufficiently large the solution to (16) returns G = W †

0 [KI ],
which is the least Frobenius norm k·kF solution to (9):

minimize
G

kGkF

subject to


K
I

�
= W0G .

This suggests that the certainty-equivalence LQR (8) must
possess a certain degree of robustness to noise. We will give
a formal result on this aspect later in Section IV.

The question when feasibility of (17) implies feasibility
of (18) has been studied extensively in [16] which proposed
to regularize problem (12) with trace(GPG>), namely:

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ ⇢ · trace
�
GPG>�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(18)

where ⇢ > 0 is a design parameter (see [16] for a convex
formulation of (19)). This regularizer accounts for the whole
term GPG> multiplying (18), instead of G alone as done in
(8), making stability easier to achieve. We defer a detailed
comparison of the two regularizers to Sections IV-V.

C. Regularization as surrogate for low-rank approximation

Thus far we have motivated norm-based regularizers by
least-squares SysID or to assure that the stability constraint
(18) is met. In this subsection we motivate an `1-norm-based
regularizer by a prior data pre-processing (de-noising).

To motivate the pre-processing, note that for clean data
the subspace relations (5)-(6) imply a low-rank property:

rank

2

4
U0

X0

X1

3

5 = rank

U0

X0

�
= n+m. (19)

The converse statement holds as well as formalized below:
Lemma 3.4: (Rank condition) Consider the data (U0, X0,

X1), and let condition (6) hold. The following are equivalent:
(i) There exists a unique pair of matrices A 2 Rn⇥n and

B 2 Rn⇥m so that X1 = AX0 +BU0.
(ii) The low-rank condition (20) holds.

Proof: The implication (i) ) (ii) follows since
X1 = [B A]W0, and thus n rows of the stacked matrices
(U0, X0, X1) are linearly dependent. To prove the converse
(ii) ) (i) note that condition (20) implies that n rows of
the stacked matrices (U0, X0, X1) are linearly dependent.
Since (U0, X0) are linearly independent by condition (6),
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matrix. In view of the relation A+BK = (X1 �D0)G, the
stability constraint that should be met is actually
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In order for (16) to imply (17) it is sufficient that G has
small norm. In fact, certainty-equivalence regularization � ·
k⇧Gk precisely achieves this: Theorem 3.2 shows that for �
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which is the least Frobenius norm k·kF solution to (9):
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This suggests that the certainty-equivalence LQR (8) must
possess a certain degree of robustness to noise. We will give
a formal result on this aspect later in Section IV.

The question when feasibility of (16) implies feasibility
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where ⇢ > 0 is a design parameter (see [16] for a convex
formulation of (18)). This regularizer accounts for the whole
term GPG> multiplying (17), instead of G alone as done in
(8), making stability easier to achieve. We defer a detailed
comparison of the two regularizers to Sections IV-V.

C. Regularization as surrogate for low-rank approximation
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To motivate the pre-processing, note that for clean data
the subspace relations (5)-(6) imply a low-rank property:

rank

2

4
U0

X0

X1

3

5 = rank

U0

X0

�
= n+m. (19)

The converse statement holds as well as formalized below:
Lemma 3.4: (Rank condition) Consider the data (U0, X0,

X1), and let condition (6) hold. The following are equivalent:
(i) There exists a unique pair of matrices A 2 Rn⇥n and

B 2 Rn⇥m so that X1 = AX0 +BU0.
(ii) The low-rank condition (19) holds.

Proof: The implication (i) ) (ii) follows since
X1 = [B A]W0, and thus n rows of the stacked matrices
(U0, X0, X1) are linearly dependent. To prove the converse
(ii) ) (i) note that condition (19) implies that n rows of
the stacked matrices (U0, X0, X1) are linearly dependent.
Since (U0, X0) are linearly independent by condition (6),
there exist matrices A and B so that X1 = [B A]

⇥
U0
X0

⇤
.

Uniqueness follows since
⇥
U0
X0

⇤
has full row rank.

… but may not be robust (?)•    interpolates between control & SysID
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• effect of noise entering data:
Lyapunov constraint                                         
becomes

indirect data-driven LQR formulations (8) and (14), respec-

tively. The two formulations are equivalent in the sense that

the cost functions coincide and feasible sets coincide. ⌅
The orthogonal projector on the nullspace of W0 is termed

⇧ := I �W †
0W0 .

By lifting the orthogonality constraint ⇧G = 0 in (14) to
the objective, we get a regularized data-driven LQR problem

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�
+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(15)
where k ·k is any matrix norm. We have the following result.

Theorem 3.2: (Regularized direct data-driven LQR [33,
Theorem 3.3]) Consider the direct data-driven LQR formu-

lation (14) and its regularized version (15) with parameter

� � 0. The two problems coincide for � sufficiently large.

Otherwise, for general � � 0, (15) lower-bounds (14).
For noise-free data it can also be shown that (14) and (15)

coincide for every � � 0. We do not further elaborate on this
point but rather discuss the implications of Theorem 3.2.

Remark 3.3 (Comparison of formulations): The standard
indirect certainty-equivalence LQR problem is formulated
as the bi-level problem (8) consisting of sequential identi-
fication and model-based LQR. Theorem 3.2 shows that (8)
is equivalent to the single-level and multi-criteria problem
(15) simultaneously accounting for identification and control
objectives. This formulation is interesting in its own right,
and we further elaborate on it in Sections V and VI. Given
the equivalence of the formulations (8), (14), or (15), the
latter for � sufficiently large, one may wonder which is the
preferred one. For now we remark that they can all be posed
as convex programs (see [33, Section III.C]) and display sim-
ilar computational performance. We defer a more in-depth
discussion to Sections V and VI after analyzing robustness
and performance properties of certainty-equivalence LQR.⇤

B. Robustness-inducing regularization

The certainty-equivalence LQR problem (8) can be cast
as direct (non-sequential) control design via the single-level
program (15). Further, one can show that the regularization
induced by the certainty-equivalence approach indeed gives a
certain level of robustness to noise. To see this, note that (15)
searches for a solution that satisfies the Lyapunov inequality

X1GPG>X>
1 � P + I � 0 (16)

which amounts to regarding X1G as the closed-loop system
matrix. In view of the relation A+BK = (X1 �D0)G, the
stability constraint that should be met is actually

(X1 �D0)GPG>(X1 �D0)
> � P + I � 0 . (17)

In order for (16) to imply (17) it is sufficient that G has
small norm. In fact, certainty-equivalence regularization � ·
k⇧Gk precisely achieves this: Theorem 3.2 shows that for �
sufficiently large the solution to (15) returns G = W †

0 [KI ],
which is the least Frobenius norm k·kF solution to (9):

minimize
G

kGkF

subject to


K
I

�
= W0G .

This suggests that the certainty-equivalence LQR (8) must
possess a certain degree of robustness to noise. We will give
a formal result on this aspect later in Section IV.

The question when feasibility of (16) implies feasibility
of (17) has been studied extensively in [16] which proposed
to regularize problem (12) with trace(GPG>), namely:

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ ⇢ · trace
�
GPG>�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(18)

where ⇢ > 0 is a design parameter (see [16] for a convex
formulation of (18)). This regularizer accounts for the whole
term GPG> multiplying (17), instead of G alone as done in
(8), making stability easier to achieve. We defer a detailed
comparison of the two regularizers to Sections IV-V.

C. Regularization as surrogate for low-rank approximation

Thus far we have motivated norm-based regularizers by
least-squares SysID or to assure that the stability constraint
(17) is met. In this subsection we motivate an `1-norm-based
regularizer by a prior data pre-processing (de-noising).

To motivate the pre-processing, note that for clean data
the subspace relations (5)-(6) imply a low-rank property:

rank

2

4
U0

X0

X1

3

5 = rank

U0

X0

�
= n+m. (19)

The converse statement holds as well as formalized below:
Lemma 3.4: (Rank condition) Consider the data (U0, X0,

X1), and let condition (6) hold. The following are equivalent:
(i) There exists a unique pair of matrices A 2 Rn⇥n and

B 2 Rn⇥m so that X1 = AX0 +BU0.
(ii) The low-rank condition (19) holds.

Proof: The implication (i) ) (ii) follows since
X1 = [B A]W0, and thus n rows of the stacked matrices
(U0, X0, X1) are linearly dependent. To prove the converse
(ii) ) (i) note that condition (19) implies that n rows of
the stacked matrices (U0, X0, X1) are linearly dependent.
Since (U0, X0) are linearly independent by condition (6),
there exist matrices A and B so that X1 = [B A]

⇥
U0
X0

⇤
.

Uniqueness follows since
⇥
U0
X0

⇤
has full row rank.

indirect data-driven LQR formulations (8) and (14), respec-

tively. The two formulations are equivalent in the sense that

the cost functions coincide and feasible sets coincide. ⌅
The orthogonal projector on the nullspace of W0 is termed

⇧ := I �W †
0W0 .

By lifting the orthogonality constraint ⇧G = 0 in (14) to
the objective, we get a regularized data-driven LQR problem

minimize
P ⌫ I,K,G

trace (QP ) + trace
�
K>RKP

�
+ � · k⇧Gk

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(15)
where k ·k is any matrix norm. We have the following result.

Theorem 3.2: (Regularized direct data-driven LQR [33,
Theorem 3.3]) Consider the direct data-driven LQR formu-

lation (14) and its regularized version (15) with parameter

� � 0. The two problems coincide for � sufficiently large.

Otherwise, for general � � 0, (15) lower-bounds (14).
For noise-free data it can also be shown that (14) and (15)

coincide for every � � 0. We do not further elaborate on this
point but rather discuss the implications of Theorem 3.2.

Remark 3.3 (Comparison of formulations): The standard
indirect certainty-equivalence LQR problem is formulated
as the bi-level problem (8) consisting of sequential identi-
fication and model-based LQR. Theorem 3.2 shows that (8)
is equivalent to the single-level and multi-criteria problem
(15) simultaneously accounting for identification and control
objectives. This formulation is interesting in its own right,
and we further elaborate on it in Sections V and VI. Given
the equivalence of the formulations (8), (14), or (15), the
latter for � sufficiently large, one may wonder which is the
preferred one. For now we remark that they can all be posed
as convex programs (see [33, Section III.C]) and display sim-
ilar computational performance. We defer a more in-depth
discussion to Sections V and VI after analyzing robustness
and performance properties of certainty-equivalence LQR.⇤

B. Robustness-inducing regularization

The certainty-equivalence LQR problem (8) can be cast
as direct (non-sequential) control design via the single-level
program (15). Further, one can show that the regularization
induced by the certainty-equivalence approach indeed gives a
certain level of robustness to noise. To see this, note that (15)
searches for a solution that satisfies the Lyapunov inequality

X1GPG>X>
1 � P + I � 0 (16)

which amounts to regarding X1G as the closed-loop system
matrix. In view of the relation A+BK = (X1 �D0)G, the
stability constraint that should be met is actually

(X1 �D0)GPG>(X1 �D0)
> � P + I � 0 . (17)

In order for (16) to imply (17) it is sufficient that G has
small norm. In fact, certainty-equivalence regularization � ·
k⇧Gk precisely achieves this: Theorem 3.2 shows that for �
sufficiently large the solution to (15) returns G = W †

0 [KI ],
which is the least Frobenius norm k·kF solution to (9):

minimize
G

kGkF

subject to


K
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= W0G .

This suggests that the certainty-equivalence LQR (8) must
possess a certain degree of robustness to noise. We will give
a formal result on this aspect later in Section IV.

The question when feasibility of (16) implies feasibility
of (17) has been studied extensively in [16] which proposed
to regularize problem (12) with trace(GPG>), namely:

minimize
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trace (QP ) + trace
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+ ⇢ · trace
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GPG>�

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(18)

where ⇢ > 0 is a design parameter (see [16] for a convex
formulation of (18)). This regularizer accounts for the whole
term GPG> multiplying (17), instead of G alone as done in
(8), making stability easier to achieve. We defer a detailed
comparison of the two regularizers to Sections IV-V.

C. Regularization as surrogate for low-rank approximation

Thus far we have motivated norm-based regularizers by
least-squares SysID or to assure that the stability constraint
(17) is met. In this subsection we motivate an `1-norm-based
regularizer by a prior data pre-processing (de-noising).

To motivate the pre-processing, note that for clean data
the subspace relations (5)-(6) imply a low-rank property:
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X1
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5 = rank
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X0

�
= n+m. (19)

The converse statement holds as well as formalized below:
Lemma 3.4: (Rank condition) Consider the data (U0, X0,

X1), and let condition (6) hold. The following are equivalent:
(i) There exists a unique pair of matrices A 2 Rn⇥n and

B 2 Rn⇥m so that X1 = AX0 +BU0.
(ii) The low-rank condition (19) holds.

Proof: The implication (i) ) (ii) follows since
X1 = [B A]W0, and thus n rows of the stacked matrices
(U0, X0, X1) are linearly dependent. To prove the converse
(ii) ) (i) note that condition (19) implies that n rows of
the stacked matrices (U0, X0, X1) are linearly dependent.
Since (U0, X0) are linearly independent by condition (6),
there exist matrices A and B so that X1 = [B A]

⇥
U0
X0

⇤
.

Uniqueness follows since
⇥
U0
X0

⇤
has full row rank.

for robustness
 should be small
→ forced by small 

<latexit sha1_base64="Rmq2qLBwKqk3uLDZcUTkjEg1a+A="></latexit>

} <latexit sha1_base64="drQELzFlSBVfyso0W3TgQWYkj5w="></latexit>

GPG>

<latexit sha1_base64="fpIwZTV9eE+QAqIHtBzlMSzWstM=">AAAD3nicdVLLbtNAFJ3GPIp5tbBkMyKqxAJFdohCuisPAcsgSFsUW2E8HjejzsPMjNOGqbfsEAs2LOBb+A7+hnEeCKfJSCMfnXvuvedeT5Izqk0Q/NlqeFeuXru+fcO/eev2nbs7u/cOtSwUJgMsmVTHCdKEUUEGhhpGjnNFEE8YOUpOX1TxowlRmkrx3kxzEnN0ImhGMTKO+hBdRH0KX0cXo51m0Nrvtbv7HRi0gtmpQLsT9p7AcME0weL0R7uN31EqccGJMJghrYdhkJvYImUoZqT0o0KTHOFTdEKGDgrEiX6cTmiuZzC2M/Ml3HPBFGZSuSsMnLH/J1vEtZ7yxCk5MmO9GqvIdbFhYbJebKnIC0MEnjfKCgaNhNUmYEoVwYZNHUBYUWcb4jFSCBu3r1qXM6SnzkJtJls1NFIyXa53tH6GOo31p0IacrlEtQp9uZ/S2Ro2lavadFagzp1nbrTS9/fgxI0tqxFfEvfnFHnnnEn2ymXYxIG0tINyiXhpRblG+YzlY5QQY6PKwUI8//iRIGdYco5EaiNNec7IeTkMY+vKMINGthmWK6rK0lzyr9wGlVRSuIU57TCeMzYsN5WU6jNRsq4Olmr35JfvGm4Gh+1W2G1133aaB88Xj38bPAAPwSMQgqfgALwBfTAAGHDwHfwEv7yP3hfvq/dtLm1sLXLug9rxfvwFAW9SqA==</latexit>

k⇧Gk

<latexit sha1_base64="Cu3OsCVWUlrnrlcec2iJKPEwJ5Q="></latexit>

�

<latexit sha1_base64="YFjFbSraPAo/6rCydo9DdtwB6q8="></latexit>

A+BK =
�
X1 �D0

�
G



10

Performance & robustness certificates
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{regularized data-driven LQR performance}� {ground-truth performance}

{ground-truth performance}
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realized cost from regularized design with large  
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� if exact system matrices A & B were known

• SNR (signal-to-noise-ratio)
<latexit sha1_base64="sSbjDww+/3GQL+G0vtupxOJLdMQ="></latexit>

�min([X0 U0])

�max(D0)

• relative performance metric

Certificate for sufficiently large SNR: the optimal control problem is 
feasible (robustly stabilizing) with relative performance ~	𝒪 ⁄(1 𝑆𝑁𝑅). 
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Numerical case study

• case study [Dean et al. ‘19]: discrete-time
system with noise variance 𝜎2 = 0.01 &
variable regularization coefficient 𝜆 

sub-optimality gap. Regarding the assumptions, Theorem 4.2
requires kD0k to be sufficiently small, instead of a SNR
sufficiently large. This more restrictive condition is due to the
presence of ⇢. As shown in [16], (25) indeed holds provided
that the SNR is sufficiently large (just like Theorem 4.1) and

kD0k2/⇢ is sufficiently small. As discussed in Section III-
B, the trace regularization favours robustness, and kD0k2/⇢
quantitatively captures this fact: as kD0k increases (data are
more noisy) we need larger values of ⇢ (larger regulariza-
tion), and this is precisely what Theorem 4.2 entails. This
requirement is not present in Theorem 4.1 because certainty
equivalence directly gives a regularizer with large enough
weight (Theorem 3.2). The robust formulation nonetheless
has some advantages. As we previously discussed, for both
(8) and (18) stability follows if the solution satisfies (17).
For certainty-equivalence LQR we have G = W †

0 [KI ], so
the fulfilment of inequality (17) essentially depends on the
product D0W

†
0 , hence on the SNR. In contrast, for the robust

formulation the stability condition can be satisfied even if
the SNR is low as long as GPG> has small norm, and this
condition can be obtained if ⇢ is sufficiently large. Hence, as
far as stabilization is concerned, the robust formulation gives
some advantages, the price paid being a potentially worse
sub-optimality gap. These considerations are fully supported
by numerical evidence, see Section V below.

Regarding the novel norm-based regularizer presented
in Section III-C: as of today, there is no robust stability
certificate, though the authors are confident that the methods
leading up to Theorems 4.1 and 4.2 can be used as well.

V. NUMERICAL CASE STUDY

We exemplify our theoretical findings via a simulation case
study. We consider the system proposed in [7, Section 6]:

A =

2

4
1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

3

5 , B = I .

These dynamics correspond to a discrete-time marginally
unstable Laplacian system. As weight matrices, we select
Q = I and R = 10�3I . Taking the input weight R small
relatively to the state weight Q favours stabilizing solutions
[16, Section 5]. In particular, this choice makes it possible
to find stabilizing controllers even from a single experiment.

A. Need for regularization

First, we discuss the need for regularization. Figure 1
shows the performance of the approach (15) as we vary the
regularization coefficient �. In particular, � = 0 corresponds
to no regularization, while increasing values of � eventually
give certainty equivalence; see Theorem 3.2. For each value
of � we run 100 trials with input u ⇠ N (0, I) and distur-
bance d ⇠ N (0, 0.01I), which corresponds approximately
to SNR 2 [0, 5]dB. For each trial we collect T = 20 state
and input samples. We let K(k) be the controller obtained in
k-th trial and define the relative performance error

Ek :=
kT (K(k))k22 � kT (K?)k22

kT (K?)k22
(26)

Fig. 1. Performance of (15) as we vary �. For each value of � we run 100
trials with Gaussian input u ⇠ N (0, I) and disturbance d ⇠ N (0, 0.01I).
The blue curve displays the percentage S of stabilizing controllers, along
with red curve showing the median percentage error (26). In agreement with
Theorem 3.2, the approach (15) coincides with (8) (equivalently (14)) for
� sufficiently large, which is � � 0.0028 for this particular setting.

whenever K(k) is stabilizing. We denote by S the percentage
of times that we find a stabilizing controller and by M the
median of Ek through all the trials. We consider the median
because it is more robust to outliers (large or small values
of Ek that are due to the a particular instance of the noise).

Figure 1 confirms that regularization is needed and that the
certainty-equivalence approach, is robust to noisy data and
achieves good performance (S = 100% and M = 0.0026)
when the SNR is not too small like in the present setting.

B. Certainty-equivalence approach, robust approach, mixed

regularization, and low-rank approximation / surrogate

Now we compare certainty equivalence approach (15) with
the robust one (18). Specifically, consider the program

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ � · k⇧Gk+ ⇢ · trace(GPG>)

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(27)

with hyperparameters �, ⇢ � 0. For ⇢ = 0 and � sufficiently
large we recover the certainty-equivalence approach, whereas
� = 0 and ⇢ > 0 gives the robust approach (additionally
requiring ⇢ sufficiently large). We carry out simulations with
different values of the noise variance �2, thus different values
of the SNR. For each value of � we run 100 trials with input
u ⇠ N (0, I) and disturbance d ⇠ N (0,�2I). For each trial
we take T = 20 state and input samples.

The simulation results are reported in Table I. In line with
the discussion of Section IV and with the results of [6], [7],
the simulations show that certainty-equivalence controllers
are less robust in general but, when stabilizing, outperform

sub-optimality gap. Regarding the assumptions, Theorem 4.2
requires kD0k to be sufficiently small, instead of a SNR
sufficiently large. This more restrictive condition is due to the
presence of ⇢. As shown in [16], (25) indeed holds provided
that the SNR is sufficiently large (just like Theorem 4.1) and

kD0k2/⇢ is sufficiently small. As discussed in Section III-
B, the trace regularization favours robustness, and kD0k2/⇢
quantitatively captures this fact: as kD0k increases (data are
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tion), and this is precisely what Theorem 4.2 entails. This
requirement is not present in Theorem 4.1 because certainty
equivalence directly gives a regularizer with large enough
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the SNR is low as long as GPG> has small norm, and this
condition can be obtained if ⇢ is sufficiently large. Hence, as
far as stabilization is concerned, the robust formulation gives
some advantages, the price paid being a potentially worse
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certificate, though the authors are confident that the methods
leading up to Theorems 4.1 and 4.2 can be used as well.
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unstable Laplacian system. As weight matrices, we select
Q = I and R = 10�3I . Taking the input weight R small
relatively to the state weight Q favours stabilizing solutions
[16, Section 5]. In particular, this choice makes it possible
to find stabilizing controllers even from a single experiment.

A. Need for regularization

First, we discuss the need for regularization. Figure 1
shows the performance of the approach (15) as we vary the
regularization coefficient �. In particular, � = 0 corresponds
to no regularization, while increasing values of � eventually
give certainty equivalence; see Theorem 3.2. For each value
of � we run 100 trials with input u ⇠ N (0, I) and distur-
bance d ⇠ N (0, 0.01I), which corresponds approximately
to SNR 2 [0, 5]dB. For each trial we collect T = 20 state
and input samples. We let K(k) be the controller obtained in
k-th trial and define the relative performance error

Ek :=
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Fig. 1. Performance of (15) as we vary �. For each value of � we run 100
trials with Gaussian input u ⇠ N (0, I) and disturbance d ⇠ N (0, 0.01I).
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with red curve showing the median percentage error (26). In agreement with
Theorem 3.2, the approach (15) coincides with (8) (equivalently (14)) for
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whenever K(k) is stabilizing. We denote by S the percentage
of times that we find a stabilizing controller and by M the
median of Ek through all the trials. We consider the median
because it is more robust to outliers (large or small values
of Ek that are due to the a particular instance of the noise).

Figure 1 confirms that regularization is needed and that the
certainty-equivalence approach, is robust to noisy data and
achieves good performance (S = 100% and M = 0.0026)
when the SNR is not too small like in the present setting.

B. Certainty-equivalence approach, robust approach, mixed

regularization, and low-rank approximation / surrogate

Now we compare certainty equivalence approach (15) with
the robust one (18). Specifically, consider the program

minimize
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trace (QP ) + trace
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with hyperparameters �, ⇢ � 0. For ⇢ = 0 and � sufficiently
large we recover the certainty-equivalence approach, whereas
� = 0 and ⇢ > 0 gives the robust approach (additionally
requiring ⇢ sufficiently large). We carry out simulations with
different values of the noise variance �2, thus different values
of the SNR. For each value of � we run 100 trials with input
u ⇠ N (0, I) and disturbance d ⇠ N (0,�2I). For each trial
we take T = 20 state and input samples.

The simulation results are reported in Table I. In line with
the discussion of Section IV and with the results of [6], [7],
the simulations show that certainty-equivalence controllers
are less robust in general but, when stabilizing, outperform

• take-home message: regularization is 
needed for robustness & performance

% of stabilizing 
controllers 

median relative
performance error

breaks 
without
regularizer

→ works well … but learning is offline
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Why online, adaptive, & what does it mean anyways ?

• shortcoming of separating offline learning & online control
→ cannot improve policy online  &  cheaply / rapidly adapt to changes

• (elitist) desired adaptive solution: direct, online (non-episodic / batch) 
algorithms, with closed-loop data, & recursive algorithmic implementation
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Adaptive Control:
Towards a Complexity-Based General Theory*

G. ZAMES-

Key Words—H!control; adaptive control; learning control; performance analysis.

Abstract—Two recent developments are pointing the way to-
wards an input—output theory of H!!l" adaptive feedback:
The solution of problems involving: (1) feedback performance
exact optimization under large plant uncertainty on the one
hand (the two-disc problem of H!); and (2) optimally fast identi-
fication in H! on the other. Taken together, these are yielding
adaptive algorithms for slowly varying data in H!!l". At
a conceptual level, these results motivate a general input—output
theory linking identification, adaptation, and control learning.
In such a theory, the definition of adaptation is based on system
performance under uncertainty, and is independent of internal
structure, presence or absence of variable parameters, or even
feedback. ! 1998 IFAC. Published by Elsevier Science Ltd.
All rights reserved.

1. INTRODUCTION

What should the terms ‘‘adaptive’’ and ‘‘learning’’
mean in the context of control? Is it possible to tell
whether or not a black box is adaptive without
knowledge of its internal structure? In design, is it
possible to determine beforehand whether it is ne-
cessary for a controller to adapt and learn in order
to meet performance specifications, or is adapta-
tion a matter of choice? In this overview we shall
describe recent work in the H! framework which
provides a means of computing certain kinds of
adaptive controllers, but which also sheds some
light on these more conceptual questions.

Despite the long history of research on adaptive
control, and the considerable practical success of
adaptive strategies associated with the names of
As ström, Ljung, Goodwin, Caines, etc., a satisfac-
tory definition of adaptation has remained elusive.
One popular notion is that adaptation occurs when
parameters inside a controller vary in response to
changes in the environment. It has been observed,
at least since the 1950s, that this notion presents

*Received 19 August 1997; received in final form 19 August
1997. The original version of this paper appeared in the pre-
prints of the 2nd IFAC Symposium on Robust Control Design,
which was held in Budapest, Hungary, during 25—27 June 1997.
This paper was recommended for publication by Editor-in-Chief
Huibert Kwakernaak.

- Systems and Control Group, Department of Electrical
Engineering, McGill University, 3480 University Street,
Montreal, Que., Canada H3A 2A7. (The author passed away
on August 10, 1997.)

certain difficulties. Controllers with identical
external behavior can have an endless variety
of parametrizations; variable parameters in one
parametrization may be replaced by a fixed para-
meter nonlinearity in another. In most of the recent
control literature there is no clear separation be-
tween the concepts of adaptation and nonlinear
feedback, or between research on adaptive control
and nonlinear stability. This lack of clarity extends
to fields other than control; e.g. in debates as to
whether neural nets do or do not have a learning
capacity; or in the classical 1960s Chomsky vs Skin-
ner argument as to whether children’s language
skills are learned from the environment tabula rasa
style, or to a large extent are ‘‘built in’’. (How could
one tell the difference anyway?). It can be argued
that the lack of a conceptual framework for adap-
tive control has inhibited research in this area and
made it difficult to compare alternative designs.

We would like to re-examine these issues in the
light of recent developments linking the theories of
feedback, identification, complexity and time-vary-
ing optimization. The perspective here is actually
not new, having been outlined by the author on and
off since the 1970s (Zames, 1976, 1979, 1981, 1989).
However, the key mathematical details have been
worked out only recently, notably in joint work
with Lin et al. (Lin et al., 1992; Zames and Wang,
1991; Owen and Zames, 1993). Other results which
have a bearing on this overview have been obtained
by Dahleh (Tse et al., 1991; Helmicki et al., 1991;
Gu and Khargonekar, 1992; Mäkilä and Parting-
ton, 1991; Poolla and Tikku; Tse et al., 1991), to cite
a few representative papers.

The objective then is to re-examine the notions of
adaptation and learning, on two levels: on the con-
ceptual level to obtain a framework of some degree
of generality; on a more concrete level to get a de-
sign methodology for systems in the H!/l" ‘‘slowly
time-varying’’ category. The main ideas of the ap-
proach to be outlined here are that:

! Adaptation and learning involve the acquisi-
tion of information about the plant (i.e., object

1161
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2. data-enabled policy optimization for online adaptation
→ story of a model-free pipeline with model-based elements

Data-enabled Policy Optimization for the Linear Quadratic Regulator

Feiran Zhao, Florian Dörfler, Keyou You

Abstract— Policy optimization (PO), an essential approach

of reinforcement learning for a broad range of system

classes, requires significantly more system data than indi-

rect (identification-followed-by-control) methods or behavioral-

based direct methods even in the simplest linear quadratic

regulator (LQR) problem. In this paper, we take an initial

step towards bridging this gap by proposing the data-enabled

policy optimization (DeePO) method, which requires only a

finite number of sufficiently exciting data to iteratively solve

the LQR problem via PO. Based on a data-driven closed-

loop parameterization, we are able to directly compute the

policy gradient from a batch of persistently exciting data.

Next, we show that the nonconvex PO problem satisfies a

projected gradient dominance property by relating it to an

equivalent convex program, leading to the global convergence

of DeePO. Moreover, we apply regularization methods to

enhance certainty-equivalence and robustness of the resulting

controller and show an implicit regularization property. Finally,

we perform simulations to validate our results.

I. INTRODUCTION

As a cornerstone of modern control theory, the linear
quadratic regulator (LQR) problem has been the benchmark
for data-driven control methods that seek to design a con-
troller from raw system data. The manifold approaches to
data-driven control can be broadly categorized as indirect

(when identifying a dynamical model followed by model-
based control design) versus direct (when bypassing the
identification step). The use of direct data-driven control
is usually motivated when the dynamical model is difficult
to establish, or is too complex for model-based control
design. As an end-to-end approach, the direct methods are
conceptually simple and easy to implement in practice.

A representative instance of direct data-driven control is
policy optimization (PO), an essential approach for applica-
tions of reinforcement learning (RL) [1]–[3]. As an iterative
method, PO directly searches over the policy space to opti-
mize a performance metric of interest. Based on zeroth-order
optimization techniques, it uses multiple system trajectories
to estimate the policy gradient. There has been a resurgent
interest in studying theoretical properties of PO on the LQR
problem such as convergence and sample complexity; see
e.g., [4]–[7] and the comprehensive survey [8]. Even though
global convergence has been shown for the nonconvex PO
problem by a gradient dominance property [4], there exists

Research of F. Zhao and K. You was supported by National Key
R&D Program of China (2022ZD0116700) and National Natural Science
Foundation of China (62033006, 62325305).

F. Zhao and K. You are with the Department of Automation
and BNRist, Tsinghua University, Beijing 100084, China. (e-mail:
zhaofr18@mails.tsinghua.edu.cn, youky@tsinghua.edu.cn.) F. Dörfler is
with the Department of Information Technology and Electrical Engineering,
ETH Zurich, 8092 Zurich, Switzerland. (e-mail: dorfler@control.ee.ethz.ch)

a considerable gap in the sample complexity between PO
and indirect methods, which have proved themselves to be
more sample-efficient [9], [10] for solving the LQR problem.
This gap is due to the exploration or trial-and-error nature
of RL, or more specifically, that the cost used for gradient
estimate can only be evaluated after a whole trajectory is
observed. Thus, the existing PO methods require numerous
system trajectories to find an optimal policy, even in the
simplest LQR setting.

Recent years have witnessed an emerging line of direct
methods inspired by the Fundamental Lemma [11], which
states that the behavior of a linear time-invariant (LTI)
system can be characterized by the range space of raw data
matrices. This result implies a non-parametric representation
of LTI systems, giving rise to a notable implicit design
called data-enabled predictive control (DeePC) [12], which
has seen many successful implementations in different prac-
tical scenarios [13]. The fundamental lemma has also been
utilized to solve various explicit control design and analysis
problems [14]–[16]. In particular, it has been shown in [14]
that using subspace relations, the closed-loop LTI system can
be parameterized by input-state data, leading to a data-based
convex reformulation of the LQR problem. Compared with
PO, this approach is significantly more sample-efficient as
it only requires a batch of persistently exciting (PE) data.
Indeed, the PE condition is equivalent to identifiability for
LTI systems and should be a minimal assumption for most
control design problems [15], [17], e.g., the LQR problem.
There have been many recent works leveraging regularization
methods to promote certainty-equivalence and robustness of
the LQR [18]–[20], and to bridge behavioral-based direct
and indirect methods [21]. All these methods use only a
small batch of PE data compared to data-hungry zeroth-order
PO methods [4]–[6]. This leads to a natural question: does
there exist a data-efficient PO method for solving the LQR
problem?

In this paper, we provide an affirmative answer to the
above question. By leveraging the data-driven closed-loop
parameterization [14], we propose an iterative method called
data-enabled policy optimization (DeePO) to solve the LQR
problem. Instead of estimating the policy gradient from the
cost of observed trajectories, we show that after a change of
optimization variables, the gradient can be directly charac-
terized from a batch of PE data. Even though the resulting
optimization problem is nonconvex, it can be parameterized
as a data-based convex program. By exploiting this relation
and using a recent PO result [22], we further show that the
LQR cost is projected gradient dominated, while it is only
gradient dominated in [4], [5]. By establishing that the cost
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Data-Enabled Policy Optimization for Direct
Adaptive Learning of the LQR

Feiran Zhao, Florian Dörfler, Alessandro Chiuso, Keyou You

Abstract—Direct data-driven design methods for the linear

quadratic regulator (LQR) mainly use offline or episodic data

batches, and their online adaptation has been acknowledged as an

open problem. In this paper, we propose a direct adaptive method

to learn the LQR from online closed-loop data. First, we propose

a new policy parameterization based on the sample covariance

to formulate a direct data-driven LQR problem, which is shown

to be equivalent to the certainty-equivalence LQR with optimal

non-asymptotic guarantees. Second, we design a novel data-

enabled policy optimization (DeePO) method to directly update

the policy, where the gradient is explicitly computed using only

a batch of persistently exciting (PE) data. Third, we establish its

global convergence via a projected gradient dominance property.

Importantly, we efficiently use DeePO to adaptively learn the

LQR by performing only one-step projected gradient descent

per sample of the closed-loop system, which also leads to an

explicit recursive update of the policy. Under PE inputs and for

bounded noise, we show that the average regret of the LQR cost

is upper-bounded by two terms signifying a sublinear decrease

in time O(1/
p
T ) plus a bias scaling inversely with signal-to-

noise ratio (SNR), which are independent of the noise statistics.

Finally, we perform simulations to validate the theoretical results

and demonstrate the computational and sample efficiency of our

method.

Index Terms—Adaptive control, linear quadratic regulator,

policy optimization, direct data-driven control.

I. INTRODUCTION

As a cornerstone of modern control theory, the linear
quadratic regulator (LQR) design has been widely studied
in data-driven control, where no model but only raw data is
available [1]. The manifold approaches to data-driven LQR
design can be broadly categorized as indirect, i.e., based on
offline system identification (SysID) followed by model-based
control design, versus direct when bypassing the identification
step. Another classification is episodic when obtaining the
policy from single or multiple alternating episodes of data
collection and control (see Fig. 1), versus adaptive when
updating the policy from online closed-loop data (see Fig. 2).

The indirect data-driven LQR design has a rich history
and has developed well-understood tools for identification

Research of F. Zhao and K. You was supported by National Key R&D Pro-
gram of China (2022ZD0116700) and National Natural Science Foundation
of China (62033006, 62325305). (Corresponding author: Keyou You)

F. Zhao and K. You are with the Department of Automation and Beijing
National Research Center for Information Science and Technology, Tsinghua
University, Beijing 100084, China. (e-mail: zhaofr18@mails.tsinghua.edu.cn,
youky@tsinghua.edu.cn)

F. Dörfler is with the Department of Information Technology and Elec-
trical Engineering, ETH Zürich, 8092 Zürich, Switzerland. (e-mail: dor-
fler@control.ee.ethz.ch)

A. Chiuso is with the Department of Information Engineering, Univer-
sity of Padova, Via Gradenigo 6/b, 35131 Padova, Italy. (e-mail: alessan-
dro.chiuso@unipd.it)

System (𝐴𝐴,𝐵𝐵)
ℎ𝑖𝑖

𝑥𝑥𝑡𝑡

Controller
𝐾𝐾𝑖𝑖

𝑢𝑢𝑡𝑡

𝑖𝑖: iteration

Policy 
update

Fig. 1. An illustration of episodic approaches, where hi = (x0, u0, . . . , xT i )
denotes the trajectory of the i-th episode.

System (𝐴𝐴,𝐵𝐵)
𝑥𝑥𝑡𝑡

𝐾𝐾𝑡𝑡 = 𝑓𝑓𝑡𝑡(𝐾𝐾𝑡𝑡−1)

𝐾𝐾𝑡𝑡 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐴𝐴𝑡𝑡,𝐵𝐵𝑡𝑡)

SysID
(𝐴𝐴𝑡𝑡,𝐵𝐵𝑡𝑡)

𝑢𝑢𝑡𝑡

Direct

Indirect 𝑡𝑡: time step

Controller

Fig. 2. An illustration of indirect and direct adaptive approaches in closed-
loop, where ft is some explicit function.

and control. Representative approaches include [2] advocating
optimism-in-face-of-uncertainty, [3] in the robust setting, and
[4]–[8] based on certainty-equivalence control. Most of them
are episodic in that they either estimate the system dynamics
from a single episode of offline data, or update their estimate
only after an episode is completed [2]–[5]. This is due to
their requirement of statistically independent data and regret
analysis methods. Notable adaptive methods are [6]–[8] rooted
on certainty-equivalence LQR: a system is first identified
by ordinary least-squares from closed-loop data, and then
a certainty-equivalence LQR problem is solved by treating
the estimated system as the ground-truth [4]. By alternating
identification and certainty-equivalence LQR, they guarantee
convergence to the optimal LQR gain. In particular, the work
[6] takes the first step towards indirect adaptive control with
asymptotic convergence guarantees by regularizing the iden-
tification objective with the LQR cost. Recent works [7], [8]
have shown that certainty-equivalence control with explorative
input ensuring persistency of excitation meets optimal non-
asymptotic guarantees, i.e., the LQR gain converges at a
sublinear rate. However, the indirect adaptive approach re-
quires solving an algebraic Riccati equation per time, which
is computationally demanding and lacks a recursive policy
update.

Instead of solving an algebraic Riccati equation with the
identified model, an emerging line of direct methods obtains
the LQR directly from a single episode of persistently exciting
(PE) data [9]–[13]. It is inspired by subspace methods [14]
and the fundamental lemma [15] in behavioral system theory
[16]–[19]. Using subspace relations, the works [9]–[11] show
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Ingredient 1: policy gradient methods
• LQR viewed as smooth program (many formulations)

 

• 𝐽 𝐾 	is not convex … 

II. INDIRECT & DIRECT DATA-DRIVEN LQR

We now review indirect LQR design (formalized as a bi-
level program: least-square SysID followed by model-based
optimal control) as well as a recent direct approach [14]
parameterizing the design by data matrices. The foundation
of both approaches are subspace relations in state-space data.

A. Model-based linear quadratic optimal control

Consider a linear time-invariant (LTI) system
8
>><

>>:

x(k + 1) = Ax(k) +Bu(k) + d(k)

z(k) =

"
Q1/2 0

0 R1/2

#"
x(k)

u(k)

#
, (1)

where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d is a disturbance term, and z is the performance signal
of interest. We assume that (A,B) is stabilizable. Finally,
Q � 0 and R � 0 are weighting matrices. Here, � (⌫) and
� (�) denote positive and negative (semi)definiteness.

The problem of interest is linear quadratic regulation

phrased as designing a state-feedback gain K that renders
A+ BK Schur and minimizes the H2-norm of the transfer
function T (K) := d ! z of the closed-loop system1


x(k + 1)
z(k)

�
=

2

4
A+BK I
Q1/2

R1/2K

�
0

3

5


x(k)
d(k)

�
, (2)

where our notation T (K) emphasizes the dependence of the
transfer function on K. When A+BK is Schur, it holds that

kT (K)k22 = trace (QP ) + trace
�
K>RKP

�
, (3)

where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A+BK)P (A+BK)> � P + I = 0.

We refer to [34] for properties and interpretations of the
H2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d is a white process with unit covariance.
Here, we view the LQR problem as a H2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H2-norm of T (K) (henceforth, optimal) is unique
and can be computed by solving a discrete-time Riccati equa-
tion [1]. Alternatively, following [35], this optimal controller
can be determined by solving the following program:

minimize
P ⌫ I,K

trace (QP ) + trace
�
K>RKP

�

subject to (A+BK)P (A+BK)> � P + I � 0 ,
(4)

1Given a stable p ⇥ m transfer function T (�) in the indeterminate �,
the squared H2-norm of T (�) is defined as [34, Section 4.4]:

kT k
2
2 :=

1

2⇡

Z 2⇡

0
trace(T (ej✓)0T (ej✓)) d✓

The LQR problem indeed admits many parameterizations,
and the one in (4) can be turned into a convex semi-definite
program after a change of variables; see [33, Section III.C].

We aim to compute the optimal control in a data-driven
setting when (A,B) are unknown, but we have access to a
T -long stream of noisy data. Here noisy means that the data
collected from (1) are generated with a non-zero disturbance
d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-

square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
series of inputs, disturbances, states, and successor states

U0 :=
⇥
u(0) u(1) . . . u(T � 1)

⇤
2 Rm⇥T ,

D0 :=
⇥
d(0) d(1) . . . d(T � 1)

⇤
2 Rn⇥T ,

X0 :=
⇥
x(0) x(1) . . . x(T � 1)

⇤
2 Rn⇥T ,

X1 :=
⇥
x(1) x(2) . . . x(T )

⇤
2 Rn⇥T

satisfying the dynamics (1), that is,

X1 �D0 =
⇥
B A

⇤ U0

X0

�
. (5)

It is convenient to record the data as consecutive time series,
i.e., column i of X1 coincides with column i+1 of X0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity

W0 :=


U0

X0

�
.

We assume that the data is sufficiently rich, that is,

rankW0 = n+m. (6)

The rank condition (6) is an identifiability condition ensuring
that (B,A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B,A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X0, X1) and under the rank condition (6),
an estimate (B̂, Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem
⇥
B̂ Â

⇤
= argmin

B,A

��X1 �
⇥
B A

⇤
W0

��
F
= X1W

†
0 , (7)

where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),

after eliminating 
(unique) P,
denote this
as 𝐽 𝐾

<latexit sha1_base64="Rmq2qLBwKqk3uLDZcUTkjEg1a+A="></latexit>

}
Fact: policy gradient descent 
	 𝐾# = 𝐾 − 𝜂	∇𝐽 𝐾  
initialized from a stabilizing 
policy converges linearly to 𝐾∗.

Annual Review of Control, Robotics, and
Autonomous Systems

Toward a Theoretical
Foundation of Policy
Optimization for Learning
Control Policies
Bin Hu,1 Kaiqing Zhang,2,3 Na Li,4 Mehran Mesbahi,5
Maryam Fazel,6 and Tamer Başar1
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Abstract
Gradient-based methods have been widely used for system design and opti-
mization in diverse application domains. Recently, there has been a renewed
interest in studying theoretical properties of these methods in the context of
control and reinforcement learning. This article surveys some of the recent
developments on policy optimization, a gradient-based iterative approach
for feedback control synthesis that has been popularized by successes of re-
inforcement learning.We take an interdisciplinary perspective in our expo-
sition that connects control theory, reinforcement learning, and large-scale
optimization.We review a number of recently developed theoretical results
on the optimization landscape, global convergence, and sample complexity
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but on the set of stabilizing  gains K	,	it’s 
   • coercive with compact sublevel sets, 
   • smooth with bounded Hessian, & 
   • degree-2 gradient dominated                                  
							 𝐽 𝐾 − 𝐽∗ 	≤ 	𝑐𝑜𝑛𝑠𝑡.	A ∇𝐽 𝐾 %
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Model-free policy gradient methods
• policy gradient 

• model-based setting: explicit Anderson-Moore formula for ∇𝐽 𝐾

• model-free 0th order methods constructing two-point gradient estimate 
from numerous & very long trajectories → extremely sample inefficient

• IMO: policy gradient is a potentially great candidate for direct adaptive 
control but sample-inefficient, episodic, … sadly useless in practice

Fact: gradient descent 𝐾# = 𝐾 − 𝜂	∇𝐽 𝐾  initialized 
from a stabilizing policy converges linearly to 𝐾∗.

relative performance gap 𝜖 = 1 𝜖 = 0.1 𝜖 = 0.01
# trajectories (100 samples) 1414 43850 142865
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Ingredient 2: covariance parameterization

prior parameterization

• PE condition: full row rank 𝑈!
𝑋!

• 𝐴 + 𝐵𝐾 = 𝐵	 𝐴 𝐾
𝐼 	= 𝐵	 𝐴 𝑈!

𝑋!
𝐺 = 𝑋"𝐺

• robustness: 𝐺 = 𝑈!
𝑋!

#
+  ↔ regularization

• dimension of all matrices grows with 𝑡

covariance parameterization

• sample covariance  Λ = "
$
𝑈!
𝑋!

𝑈!
𝑋!

#
≻ 	0	

• 𝐴 + 𝐵𝐾 = 𝐵	𝐴 𝐾
𝐼 = 𝐵	𝐴 Λ𝑉 = "

$
𝑋"

𝑈!
𝑋!

#
𝑉

                                   

• robustness for free without regularization

• dimension of all matrices is constant

<latexit sha1_base64="Kj66Ui4xb5LWB3yTPwz9RwqrQDM="></latexit>

}

= 𝑋!

<latexit sha1_base64="Rubmbi2jBjstsCW57D8UViccO0c="></latexit>

X1 = AX0 +BU0

<latexit sha1_base64="B4wuEh0J7R8ieBaefLQf6RTWC/Y="></latexit>

U0 =
⇥
u(0) u(1) · · · u(t� 1)

⇤
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X1 =
⇥
x(1) x(2) · · · x(t)

⇤

<latexit sha1_base64="fuRdm8viNijCMCoLSf46fxQtuX4="></latexit>

X0 =
⇥
x(0) x(1) · · · x(t� 1)

⇤
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Covariance parameterization of the LQR

• state/input sample covariance Λ = "
&
𝑈!
𝑋!

𝑈!
𝑋!

'
   & 𝑋" =

"
&
𝑋"

𝑈!
𝑋!

'

• closed-loop dynamics expressed with 𝐾
𝐼 = Λ𝑉	 as  𝐴 + 𝐵𝐾 = 𝑋"𝑉 

• covariance parameterization 

• with 𝐾
𝐼 = "

&
𝑈!
𝑋!

𝑈!
𝑋!

'
𝑉	 = 𝑈!

𝑋!
𝑉

min
!,#,$≻&

	 trace 𝑄Σ + trace 𝐾'𝑅𝐾Σ

	 s. t. 	Σ = 𝐼 + 𝑋(𝑉	Σ	𝑉'𝑋(
'
	 , 𝐾𝐼 = Λ𝑉

min
!,$≻&

	 trace 𝑄Σ + trace 𝑉'𝑈&
'
𝑅𝑈&𝑉Σ

	 s. t. 	Σ = 𝐼 + 𝑋(𝑉	Σ	𝑉'𝑋(
'
, 𝐼 = 𝑋&𝑉
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Policy gradient with covariance parameterization
• warm-up scenario: offline PE data (𝑋!, 𝑈!, 𝑋") without disturbances 𝑑(𝑡)

• parameterization:

• data-enabled policy optimization (DeePO) via projected gradient

	
where Π(! projects on 𝐼 = 𝑋!𝑉 & gradient ∇𝐽 𝑉 = is computed from data:

∇𝐽 𝑉 = 2 𝑈!
)
𝑅𝑈! + 𝑋"

)
𝑃𝑋" 𝑉	Σ    with  𝑃 = 𝑄 + 𝑉)𝑈!

)
𝑅𝑈!𝑉 + 𝑉)𝑋"

)
𝑃𝑋"𝑉

after eliminating 
(unique) Σ, we
denote blue part
by 𝐽(𝑉)

min
!,$≻&

	 trace 𝑄Σ + trace 𝑉'𝑈&
'
𝑅𝑈&𝑉Σ

	 s. t. 	Σ = 𝐼 + 𝑋(𝑉	Σ	𝑉'𝑋(
'
, 𝐼 = 𝑋&𝑉

<latexit sha1_base64="Kj66Ui4xb5LWB3yTPwz9RwqrQDM="></latexit>

}
𝑉# = 𝑉 − 𝜂	Π(!(∇𝐽 𝑉 )
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Features of data-enabled policy optimization (DeePO)
• optimization landscape: for any feasible 𝑉 ∈ 𝒮 𝑎 = 	 {𝑉	|	𝐽 𝑉 ≤ 𝑎}  

• projected gradient dominance of degree 1: 𝐽 𝑉 − 𝐽∗ ≤ 𝜇 𝑎 Π.!(∇𝐽 𝑉 )

• smoothness with a bounded Hessian: ∇/𝐽 𝑉 ≤ 𝑙(𝑎)

• simulation: 4th order system, 8 samples 

Sublinear convergence for a 
feasible initialization 𝑉! ∈ 𝒮 𝑎
& step size 𝜂 ∈ (0, 1/𝑙(𝑎)]. Then 
∀	𝜖 > 0,  𝐽 𝑉* − 𝐽∗ ≤ 𝜖,  where

	𝑘 ≥ %+(-)"

/0 %123(-)01"
 . note: empirically

observe linear rate
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Online & adaptive DeePO
• features: direct, online, closed-loop data, & recursive implementation

    where 𝑋!,&#" = 𝑥 0 , 𝑥 1 , … 𝑥 𝑡 , 𝑥(𝑡 + 1)  & similar for other matrices
  

• cheap & recursive implementation: rank-1 update of sample   
covariances, cheap computation, & no memory needed for old data

(𝐴, 𝐵)
𝑥(𝑡 + 1)

𝑢(𝑡)

controller

① 𝑉!"# = Λ!"#$# 𝐾!
𝐼%

②  𝑉!"#& = 𝑉!"# − 𝜂Π ‾(!,#$%(∇𝐽!"# 𝑉!"# )

③ 𝐾!"# = I𝑈),!"#𝑉!"#&

Policy update
Input: (𝑋),!"#, 𝑈),!"#, 𝑋#,!"#), 𝐾!

Output: 𝐾!"#

𝑑(𝑡)



21

Underlying assumption for theoretic certificates

• initially stabilizing controller: the LQR problem parameterized by 
offline data 𝑋!,&! , 𝑈!,&! , 𝑋",&! is feasible with stabilizing gain 𝐾&!.

• BIBO: there are �̂�, �̅� such that 𝑢(𝑡) ≤ �̂�	 &	 𝑥 𝑡 ≤ �̅� .

• persistency of excitation due to process noise or probing:       
𝜎 ℋM#" 𝑈!,& ≥ 𝛾	 A 𝑡	 with Hankel matrix ℋM#" 𝑈!,&

• bounded noise: 𝑑(𝑡) ≤ 𝛿	 ∀	𝑡	 →	 signal-to-noise ratio 𝑆𝑁𝑅 ≔ ⁄𝛾 𝛿
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Bounded regret of DeePO in adaptive setting

• average regret performance metric  Regret) 	≔ 	 "
)
∑&N&!
&!#)2" 	𝐽 𝐾& − 𝐽∗	

• comments on the qualitatively expected result:
• analysis is independent of the noise statistics & Regret0→2 → 0
• favorable sample complexity: sublinear decrease term matches best

rate 𝒪(1/ 𝑇) of first-order methods in online convex optimization

Sublinear regret: Under the assumptions, there are 𝜈", 𝜈%, 𝜈O, 𝜈P > 0
such that for 𝜂 ∈ (0, 𝜈"] & 𝑆𝑁𝑅 ≥ 𝜈%, it holds that 𝐾& is stabilizing &

Regret) 	≤
𝜈O
𝑇
	+

𝜈P
𝑆𝑁𝑅

	 .
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Numerical case study
• setup: random controllable & stable system of order 4 subject to 

uniform process noise with variance 𝜎, 2 inputs, 𝑄 = 𝐼P, & 𝑅 = 𝐼%

• adaptive DeePO implementation

• theoretical certificate
      Regret) ≤

Q#
)
+ Q$

RST

• empirically observe
      Regret) ≤

Q#
)
+ Q$

RST"

⁄Regret$	 𝐽∗
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Comparison case study

• case study [Dean et al. ‘19]: discrete-time
system with noise variance 𝜎2 = 0.01 

sub-optimality gap. Regarding the assumptions, Theorem 4.2
requires kD0k to be sufficiently small, instead of a SNR
sufficiently large. This more restrictive condition is due to the
presence of ⇢. As shown in [16], (25) indeed holds provided
that the SNR is sufficiently large (just like Theorem 4.1) and

kD0k2/⇢ is sufficiently small. As discussed in Section III-
B, the trace regularization favours robustness, and kD0k2/⇢
quantitatively captures this fact: as kD0k increases (data are
more noisy) we need larger values of ⇢ (larger regulariza-
tion), and this is precisely what Theorem 4.2 entails. This
requirement is not present in Theorem 4.1 because certainty
equivalence directly gives a regularizer with large enough
weight (Theorem 3.2). The robust formulation nonetheless
has some advantages. As we previously discussed, for both
(8) and (18) stability follows if the solution satisfies (17).
For certainty-equivalence LQR we have G = W †

0 [KI ], so
the fulfilment of inequality (17) essentially depends on the
product D0W

†
0 , hence on the SNR. In contrast, for the robust

formulation the stability condition can be satisfied even if
the SNR is low as long as GPG> has small norm, and this
condition can be obtained if ⇢ is sufficiently large. Hence, as
far as stabilization is concerned, the robust formulation gives
some advantages, the price paid being a potentially worse
sub-optimality gap. These considerations are fully supported
by numerical evidence, see Section V below.

Regarding the novel norm-based regularizer presented
in Section III-C: as of today, there is no robust stability
certificate, though the authors are confident that the methods
leading up to Theorems 4.1 and 4.2 can be used as well.

V. NUMERICAL CASE STUDY

We exemplify our theoretical findings via a simulation case
study. We consider the system proposed in [7, Section 6]:

A =

2

4
1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

3

5 , B = I .

These dynamics correspond to a discrete-time marginally
unstable Laplacian system. As weight matrices, we select
Q = I and R = 10�3I . Taking the input weight R small
relatively to the state weight Q favours stabilizing solutions
[16, Section 5]. In particular, this choice makes it possible
to find stabilizing controllers even from a single experiment.

A. Need for regularization

First, we discuss the need for regularization. Figure 1
shows the performance of the approach (15) as we vary the
regularization coefficient �. In particular, � = 0 corresponds
to no regularization, while increasing values of � eventually
give certainty equivalence; see Theorem 3.2. For each value
of � we run 100 trials with input u ⇠ N (0, I) and distur-
bance d ⇠ N (0, 0.01I), which corresponds approximately
to SNR 2 [0, 5]dB. For each trial we collect T = 20 state
and input samples. We let K(k) be the controller obtained in
k-th trial and define the relative performance error

Ek :=
kT (K(k))k22 � kT (K?)k22

kT (K?)k22
(26)

Fig. 1. Performance of (15) as we vary �. For each value of � we run 100
trials with Gaussian input u ⇠ N (0, I) and disturbance d ⇠ N (0, 0.01I).
The blue curve displays the percentage S of stabilizing controllers, along
with red curve showing the median percentage error (26). In agreement with
Theorem 3.2, the approach (15) coincides with (8) (equivalently (14)) for
� sufficiently large, which is � � 0.0028 for this particular setting.

whenever K(k) is stabilizing. We denote by S the percentage
of times that we find a stabilizing controller and by M the
median of Ek through all the trials. We consider the median
because it is more robust to outliers (large or small values
of Ek that are due to the a particular instance of the noise).

Figure 1 confirms that regularization is needed and that the
certainty-equivalence approach, is robust to noisy data and
achieves good performance (S = 100% and M = 0.0026)
when the SNR is not too small like in the present setting.

B. Certainty-equivalence approach, robust approach, mixed

regularization, and low-rank approximation / surrogate

Now we compare certainty equivalence approach (15) with
the robust one (18). Specifically, consider the program

minimize
P⌫I,K,G

trace (QP ) + trace
�
K>RKP

�

+ � · k⇧Gk+ ⇢ · trace(GPG>)

subject to X1GPG>X>
1 � P + I � 0


K
I

�
= W0G

(27)

with hyperparameters �, ⇢ � 0. For ⇢ = 0 and � sufficiently
large we recover the certainty-equivalence approach, whereas
� = 0 and ⇢ > 0 gives the robust approach (additionally
requiring ⇢ sufficiently large). We carry out simulations with
different values of the noise variance �2, thus different values
of the SNR. For each value of � we run 100 trials with input
u ⇠ N (0, I) and disturbance d ⇠ N (0,�2I). For each trial
we take T = 20 state and input samples.

The simulation results are reported in Table I. In line with
the discussion of Section IV and with the results of [6], [7],
the simulations show that certainty-equivalence controllers
are less robust in general but, when stabilizing, outperform

• comparison: DeePO vs offline LQR 
design vs indirect adaptive approach 
(rls + dlqr) [Wang et al. ’21, Lu et al. ’23]

𝐽 𝐾" − 𝐽∗

𝐽∗
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Comparison of computational & sample complexity
time to reach desired accuracy 𝜖

time for increasing state dimension 𝑛

relative performance gap 𝜖 = 1 𝜖 = 0.1 𝜖 = 0.01
# long trajectories (100 

samples) for 0"$ order LQR 1414 43850 142865

DeePO (# I/O samples) 10 24 48

←	 direct DeePO significantly 
outperforms indirect adaptive 
design in computational effort

↓	 DeePO requires significantly
fewer data samples than model-
free 0&U 	order gradient methods

𝜖

𝑛
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Power systems case study
• wind turbine becomes 

unstable in weak grids 
with nonlinear oscillations

• converter, turbine, & grid 
are a black box for the 
commissioning engineer

• construct state from time 
shifts (5ms sampling) of 
𝑦 𝑡 , 𝑢(𝑡)  & use DeePO

synchronous generator & full-scale converter 
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Power systems case study
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Power systems case study
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Conclusions
• Summary

• model-based pipeline with model-free block: data-driven LQR parametrization
→  works well when regularized (note: further flexible regularizations available)

• model-free pipeline with model-based block: policy gradient with sample covariance 
→  DeePO is adaptive, online, with closed-loop data, & recursive implementation 

• academic case studies & can be made useful in power systems

• Future work
• technicalities: weaken assumptions & improve rates
• control: based on output feedback & for other objectives
• adaptivity: sliding data window &/or forgetting factor
• further system classes: stochastic & time-varying


