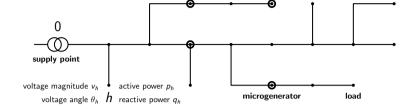


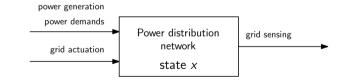
Distribution grid model



- Tap changer / voltage regulators supply point voltage v_0
- **Reactive power compensators** reactive power q_h
 - static compensators
 - power inverters of the microgenerators (when available)
- ► Active power management active power p_h
 - smart building control, storage and deferrable loads
 - generator curtailment and load shedding

An optimization-on-manifold approach to the design of distributed feedback control in smart grids

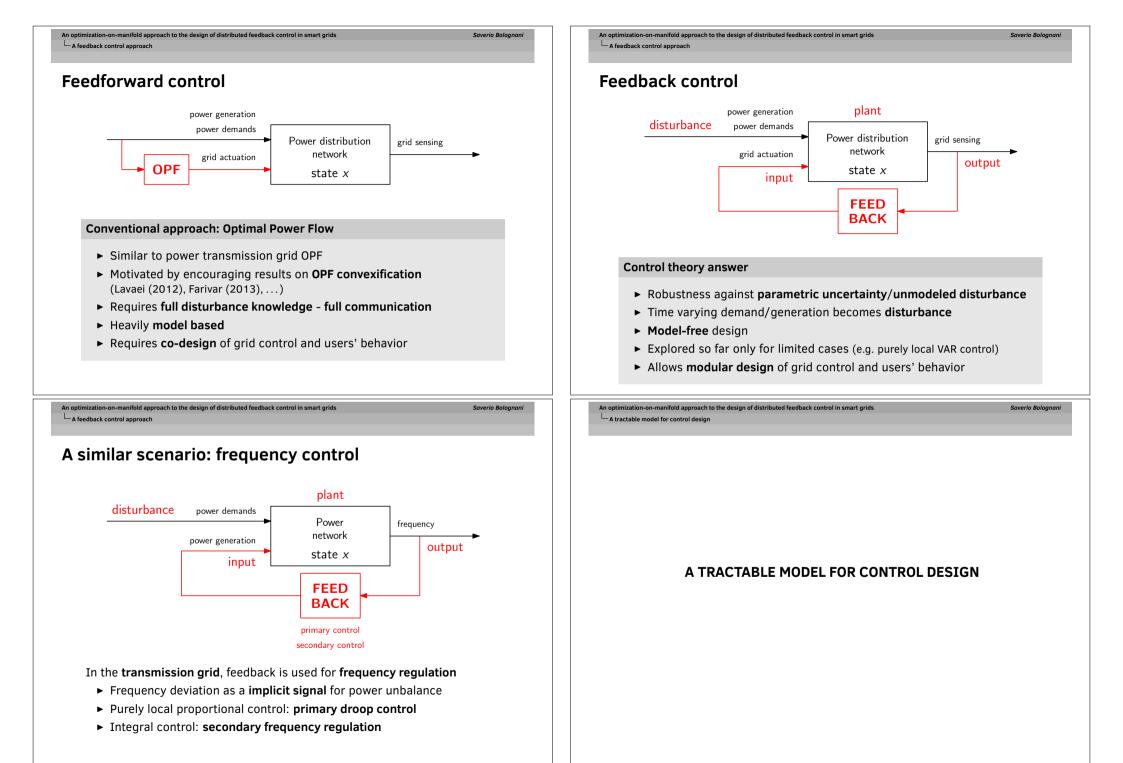
A control framework



Control objective

Drive the system to a state $x^* = \begin{bmatrix} v^* & \theta^* & p^* & q^* \end{bmatrix}$ subject to

- ▶ soft constraints $x^* = \operatorname{argmin}_x J(x)$
- ▶ hard constraints $x \in \mathcal{X}$
- chance constraints $\mathbb{P}[x \notin \mathcal{X}] < \epsilon$



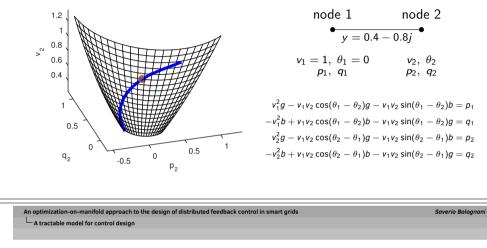
n-on-manifold approach to the design of distributed feedback control in smart grids A tractable model for control design

Power flow manifold

- Grid state $x = \begin{bmatrix} v & \theta & p & q \end{bmatrix}$
- Set of all states that satisfy the **grid equations** diag $(u)\overline{Yu} = s$

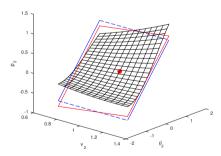
 \rightarrow power flow manifold $\mathcal{M} := \{x \mid F(x) = 0\}$

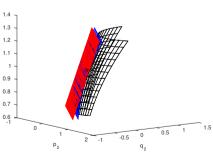
▶ Regular submanifold of dimension 2*n* (6*n* if three-phase)



N

Power flow manifold approximation



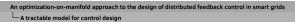


Saverio Boloanani

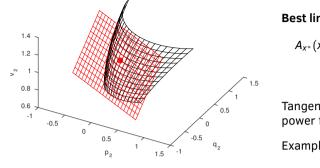
Standard models

Adding assumption one obtains

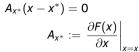
- Inear coupled power flow
- ► DC power flow
- ► rectangular DC flow



Power flow manifold approximation



Best linear approximant



Tangent plane at a nominal power flow solution $x^* \in \mathcal{M}$

Example x*: no-load solution

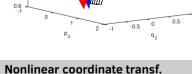
- Implicit No input/outputs (not a disadvantage)
- **•** Sparse The matrix A_{x^*} has the sparsity pattern of the grid graph
- Structure preserving Elements of A_{x^*} depend on local parameters

 \rightarrow Bolognani & Dörfler, Allerton (2015) \rightarrow Source code on github

An optimization-on-manifold approach to the design of distributed feedback control in smart grids Control design examples - Reactive power control for voltage regulatio

CONTROL DESIGN EXAMPLES

REACTIVE POWER CONTROL FOR VOLTAGE REGULATION

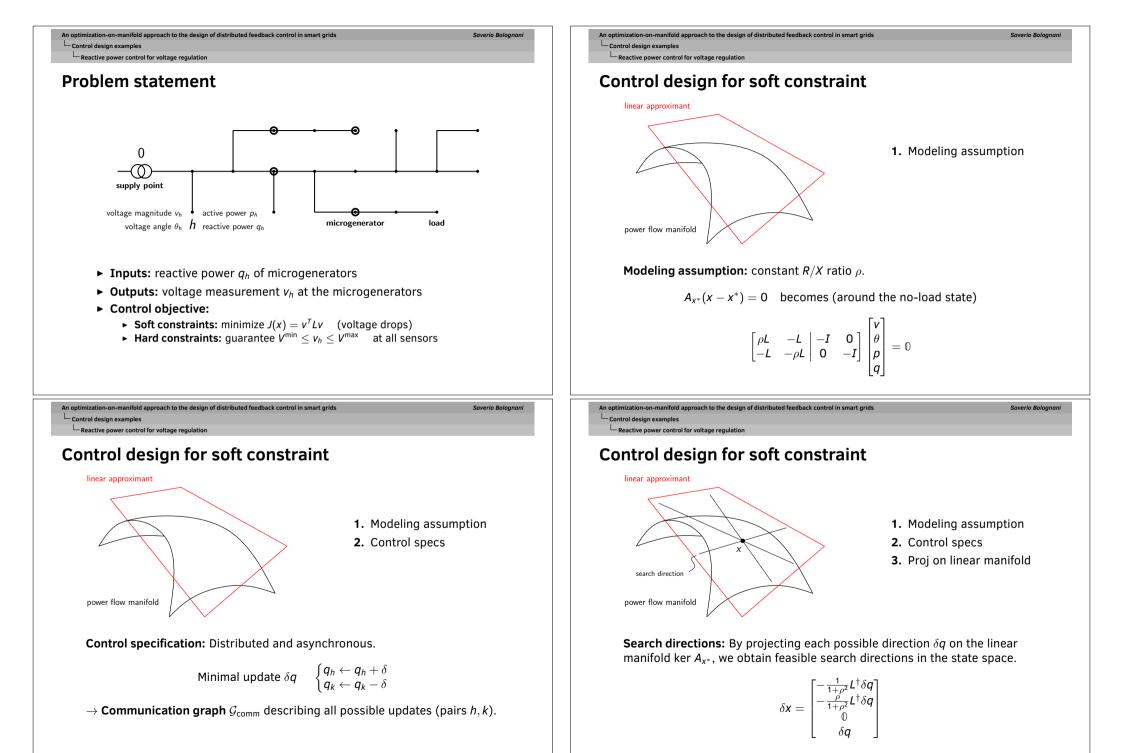


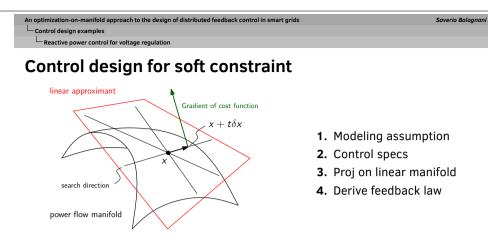
$$ilde{x}_h = ilde{x}_h(x_h), \quad rac{\partial ilde{x}_h}{\partial x_h} = 1$$

Different manifold curvature!

▶ $v_h \rightarrow v_h^2$: LinDistFlow

Saverio Boloan





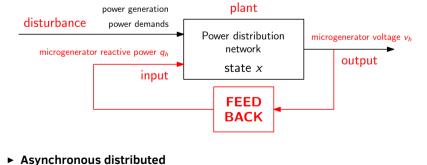
Optimal step length: Given a search direction δx , we determine the step length that minimizes the cost function $J(x) = v^T L v$.

$$\nabla J(x) = \begin{bmatrix} 2Lv \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad \nabla J(x + t\delta x)^T \delta x = 0 \quad \Rightarrow \quad t = (1 + \rho^2) \frac{v^T \delta q}{\delta q^T L^{\dagger} \delta q}$$

An optimization-on-manifold approach to the design of distributed feedback control in smart grids

Reactive power control for voltage regulation

Convergence and performance analysis

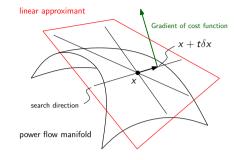


feedback control

- ► no demand or generation measurement
- limited model knowledge
- no power flow solver
- alternation of sensing and actuation.

An optimization-on-manifold approach to the design of distributed feedback control in smart grids
Control design examples
Reactive power control for voltage regulation

Control design for soft constraint



- 1. Modeling assumption
- 2. Control specs
- 3. Proj on linear manifold
- 4. Derive feedback law

Because the model is sparse and structure preserving...

$$t = (1 + \rho^2) \frac{v^T \delta q}{\delta q^T L^{\dagger} \delta q} = (1 + \rho^2) \frac{v_h - v_k}{X_{hk}}$$

Gossip-like feedback law
$$\begin{cases} q_h \leftarrow q_h + (1 + \rho^2) \frac{v_h - v_k}{X_{hk}} \\ q_k \leftarrow q_k - (1 + \rho^2) \frac{v_h - v_k}{X_{hk}} \end{cases}$$

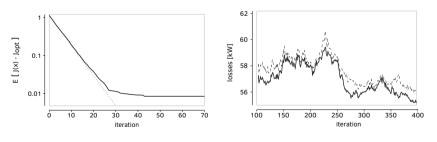
An optimization-on-manifold approach to the design of distributed feedback control in smart grids

Reactive power control for voltage regulation

Saverio Bolognani

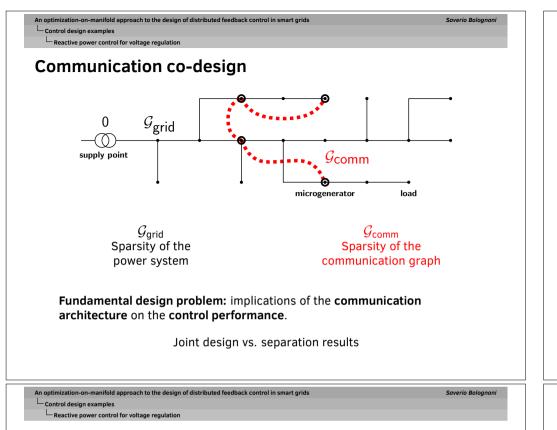
 $\begin{cases} q_h \leftarrow q_h + (1+\rho^2) \frac{v_h - v_k}{X_{hk}} \\ q_k \leftarrow q_k - (1+\rho^2) \frac{v_h - v_k}{X_{kk}} \end{cases}$

Convergence and performance analysis

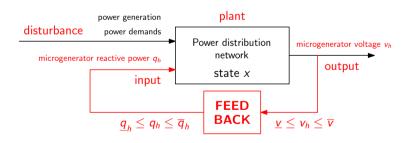


ightarrow Bolognani & Zampieri, IEEE TAC (2013)

- Extension to $J(x) = \overline{u}^T Lu$ (power losses), if θ can be measured (PMUs).
- ► Proof of **mean square convergence** (with randomized async updates).
- Explicit bound on the exponential rate of convergence.
- Analysis of the **dynamic performance** (disturbance rejection).
- Optimal communication graph: $\mathcal{G}_{comm} \approx \mathcal{G}_{grid}$.



Control design with hard constraints



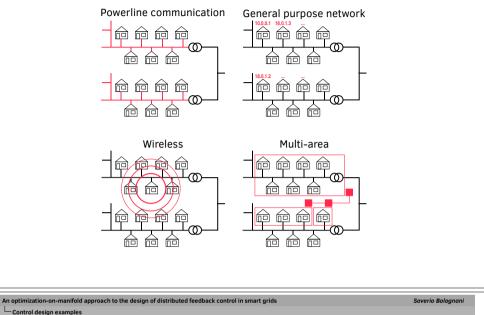
- Power losses minimization
- Hard constraints on inputs and outputs.
- $\blacktriangleright \ \ Construct \ \textbf{Lagrangian} \rightarrow \textbf{Saddle point algorithm}$

$$\mathcal{L}(\boldsymbol{q},\lambda,\eta) = J(\boldsymbol{q}) + \lambda^{\mathsf{T}}(\boldsymbol{v}-\overline{\boldsymbol{v}}) + \eta^{\mathsf{T}}(\underline{\boldsymbol{q}_h}-\boldsymbol{q})$$

An optimization-on-manifold approach to the design of distributed feedback control in smart grids

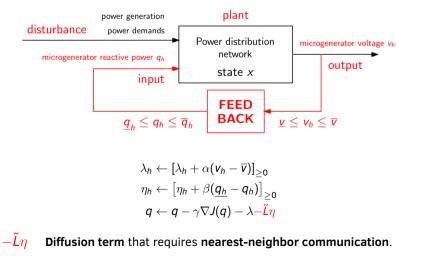
Reactive power control for voltage regulation

Communication co-design

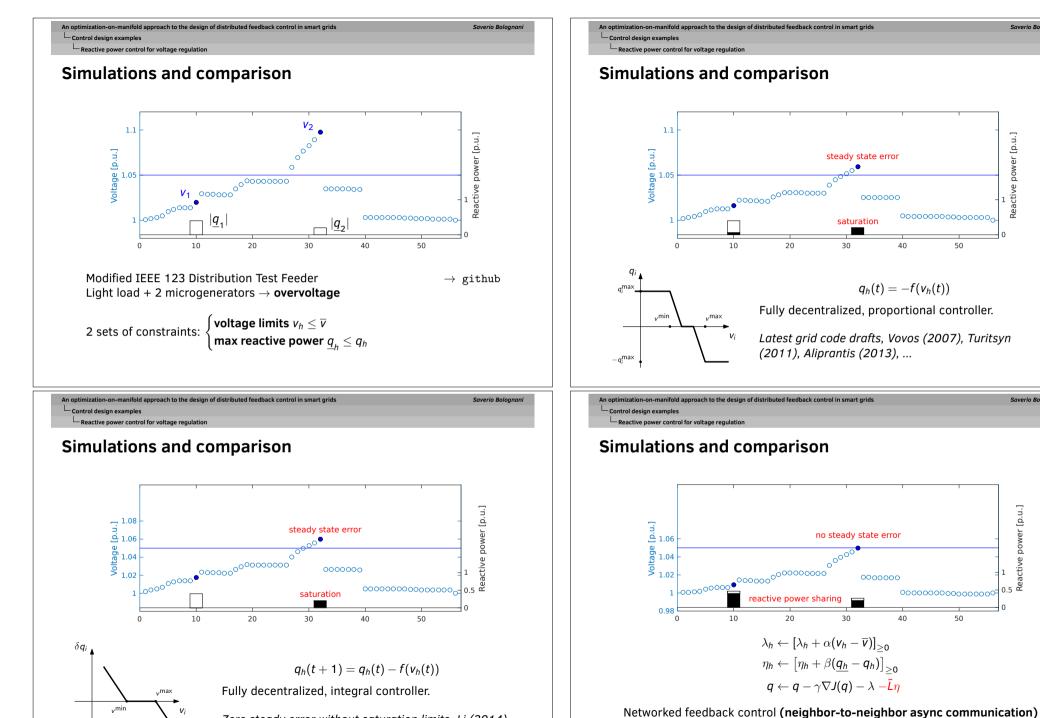


Reactive power control for voltage regulation

Control design with hard constraints



 \rightarrow Bolognani, Carli, Cavraro & Zampieri, IEEE TAC (2015)



Zero steady error without saturation limits. Li (2014)

 \rightarrow Cavraro, Bolognani, Carli & Zampieri, IEEE CDC (2016)

Saverio Bolognan

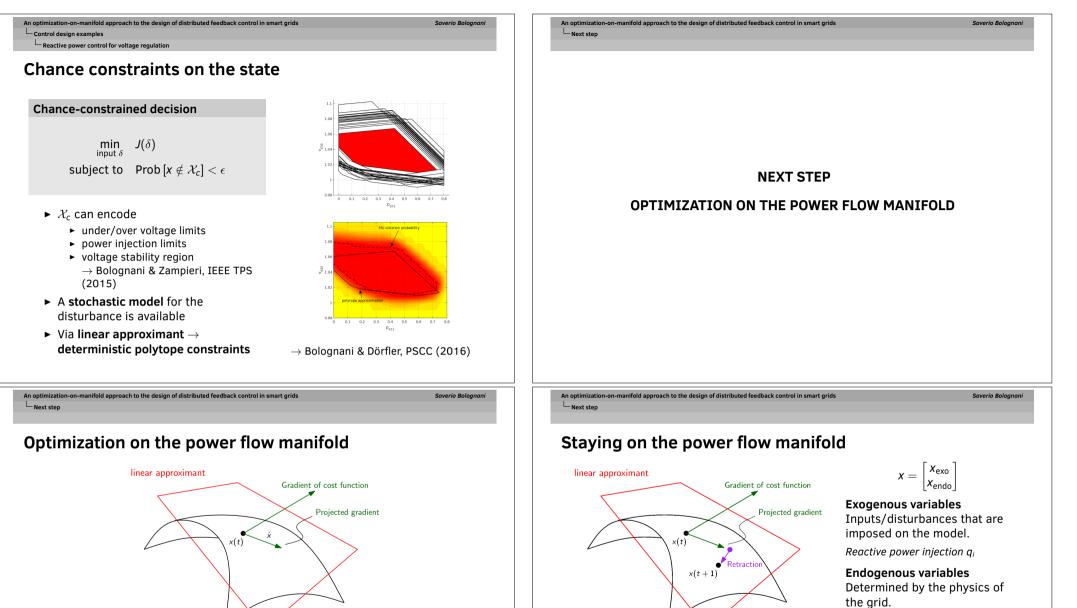
Reactive power [p.u.]

Saverio Bolognani

60 I Reactive power [p.u.]

50

50



power flow manifold

Iterative algorithm: at each step

3. Retraction step $x(t + 1) = R_{x(t)}(\delta x)$

power flow manifold

Continuous time trajectory on the manifold:

- **1.** $\nabla J(x)$: gradient of the cost function (soft constraints) in ambient space
- **2.** $\Pi_x \nabla J(x)$: projection of the gradient on the linear approximant in *x*
- **3.** Evolve according to $\dot{x} = -\gamma \Pi_x \nabla J(x)$

From iterative optimization algorithm to feedback control on manifolds.

2. Actuate system based on $\delta x = -\gamma \Pi_x \nabla J$ (exogeneous variables / inputs)

1. Compute $\prod_x \nabla J(x)$ (sparse $A_{x(t)} \Rightarrow$ distributed algorithm)

Voltage v_i

 $\Rightarrow x(t+1) \in \mathcal{M}.$

Hard constraints on exogenous variables

Feasible input region

- Can be enforced via saturation of the corresponding coordinates
- Primal feasibility at all times
- The resulting feasible input region is invariant with respect to the retraction.
 - We can saturate $\delta x = -\gamma \Pi_x \nabla J(x)$ because

$$x + \delta(x) \in \mathcal{F} \quad \Rightarrow \quad x(t+1) = R_{x(t)}(\delta x) \in \mathcal{F}$$

- ightarrow Geometric Projected Dynamical Systems
- Extension of results on existence and uniqueness of executions for hybrid automata to manifolds
- Guarantees of no Zeno execution

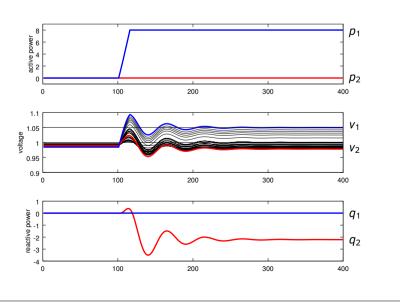
Ongoing work with Adrian Hauswirth, Gabriela Hug, Florian Dörfler.

An optimization-on-manifold approach to the design of distributed feedback control in smart grids

Saverio Bolognani

Saverio Bolognani

Optimization on the power flow manifold



An optimization-on-manifold approach to the design of distributed feedback control in smart grids

Hard constraints on endogeneous variables

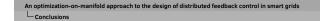
Operational constraints

- Barrier functions not suitable:
 - Backtracking line search is not possible in closed loop
 - Primal feasibility cannot be guaranteed during tracking
- ► Time-varying penalty functions not suitable:
 - Persistent feedback control for tracking
- Can be tackled via **dualization** / Lagrangian approach.
- The corresponding operational constraints are satisfied at steady state, despite model uncertainty.
- \rightarrow Saddle/primal-dual algorithm on manifolds

Ongoing work with Adrian Hauswirth, Gabriela Hug, Florian Dörfler.

An optimization-on-manifold approach to the design of distributed feedback control in smart grids

CONCLUSIONS



Saverio Bolognani

An optimization-on-manifold approach to the design of distributed feedback control in smart grids

Saverio Bolognani

Conclusions

A power system problem for control theory tools!

- ► A tractable model
 - implicit linear
 - sparse
 - structure preserving
- Output feedback in power systems

 - ► model-free
 - robust
 - Imited measurement
- Networked control
 - co-design?
- Feedback control on the power flow manifold
 - exploit the physics of the system in the loop

