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Abstract— Due to their compatibility with distributed gen-
eration microgrids are a promising operational architecture
for future power systems. Here we consider the operation of
DC microgrids that arise in many applications. We adopt a
linear circuit model and propose a novel decentralized voltage
droop control strategy inspired by frequency droop in AC
networks. In comparison to conventional DC voltage droop
strategies, our novel droop controller is able to achieve load
sharing (even in presence of actuation constraints) or an optimal
economic generation dispatch. Similar to AC frequency droop
control, our voltage droop control induces a steady-state voltage
drift as global signal depending on load/generation imbalance.
Thus, we augment the primary droop controller with additional
secondary regulation and investigate two strategies: a fully
decentralized secondary integral control strategy successfully
compensates for the steady-state voltage drifts yet it fails to
achieve the desired optimal steady-state injections. Next, we
propose a consensus filter that requires communication among
the controllers, that regulates the voltage drift, and that recov-
ers the optimal injections. The performance and robustness of
our controllers are illustrated through simulations.

I. INTRODUCTION

Driven by environmental concerns, renewable energy
sources are rapidly deployed, such as photovoltaic and wind
generation. These sources will, for the most part, be deployed
as small-scale sources in low-voltage distribution networks.
As a consequence, the conventional centralized operation of
power grids is advancing towards a distributed architecture.

Microgrids are low-voltage electrical networks that have
been proposed as a conceptual architecture to operate dis-
tributed generations, storages and loads. The advantages of
microgrids are as follows: First, they are capable of connect-
ing to the larger utility grid but also able to island themselves
and operate independently, e.g., in case of an outage. Second,
microgrids can be deployed as stand-alone small-footprint
systems (possibly in remote locations) while providing high
quality power supply, e.g., in third-world villages but also in
hospitals, military bases, or universities. Third and finally,
microgrids are naturally designed to integrate small-scale
distributed generation, that is, power is generated where it is
needed without transmission and distribution losses.

Microgrids have been proposed based on either alternative
current (AC) or direct current (DC). AC power grids have
been in service for many decades, and their components and
operation are well understood. The operational paradigms
from conventional AC power transmission networks have
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been inherited in AC microgrids [1]. However, using DC mi-
crogrids has the following advantages: There is an increasing
number of DC sources and storages (e.g., solar cells and Li-
ion batteries), end-user equipment (e.g., electric vehicles),
and most of the contemporary electronic appliances. In [2]
it is demonstrated that most of the loads supplied by AC
nowadays can operate well with a DC supply. Moreover, the
efficiency is raised, because of the reduction of conversion
losses of inverters between AC and DC. Finally, DC micro-
grids are widely deployed in aircrafts and spacecrafts [3].
In summary, DC microgrids are a promising technology that
has already attracted much research attention.

Literature review: In [4], a modeling method of a single
DC microgrid cluster is described. A hierarchical control lay-
out for DC microgrids is proposed in [1]: a primary controller
rapidly stabilizes the grid, and a secondary controller (on a
slower time scale) corrects for the steady-state error induced
by primary control. An experimental system involving solar-
cell, wind turbine and power storage is designed and con-
structed in [5]. A low-voltage DC distribution system for
sensitive loads is described in [6]. These works focus on
the hardware implementation of DC microgrids. A scenario-
based operation strategy for a DC microgrid is developed in
[7] based on detailed wind turbine and battery models. A
cooperative control paradigm is proposed in [8] to establish
a distributed secondary/primary control framework for DC
microgrid requiring communication capabilties. Distributed
controllers have been studied to regulate multi-terminal DC
transmission systems which share similar problem aspects
with DC microgrids. The controller proposed in [9] achieves
fair power sharing and asymptotically minimizes the cost of
the power injections. In [10] a unified port-Hamitonian sys-
tem model is proposed, and the performance of decentralized
PI control is discussed for a multi-terminal DC transmission
system. For AC microgrids a flat and distributed operation
architecture has been proposed in [11], [12], consisting
simultaneous (without time-scale separation) primary, sec-
ondary, and tertiary control. Inspired by these AC operation
strategies we seek similar solutions for DC microgrids.

Contribution and contents: In this article, we pro-
pose a comprehensive operational control strategy for DC
microgrids in order to achieve multiple objectives. Aside
from the importance of DC microgrids in their own right,
we believe that our article also serves as valuable tutorial
that illustrates many power system operational paradigms in
a linear setting that have nonlinear parallels in AC networks.

In Section III, we introduce the considered DC microgrid
model. Here we consider a purely resistive network with
constant current loads, and we refer to [13] for more detailed



network and load models. Inspired by the shortcomings of
conventional DC droop control and the merits of frequency
droop control in AC systems, we propose a novel primary
voltage droop control strategy in Section IV. Our controller is
fully decentralized and capable of stabilizing the grid while
achieving load sharing and avoiding actuator saturation.

In Section V, we consider the optimal economic dispatch
of multiple generating units. We demonstrate that the optimal
injections (according to the economic dispatch) are in one-to-
one correspondence with the steady state injections achieved
by our primary voltage droop control with appropriately
chosen control gains. As a result, we propose a selection
of control gains to achieve economic optimality in a fully
decentralized way and without a model of the microgrid.

In Section VI, we discuss the limitations of droop control
causing steady-state voltage drifts and study secondary con-
trol strategies to compensate for it. First, we consider a fully
decentralized integral control strategy and illustrate its limi-
tations. Next, we propose a distributed consensus filter that
relies on communication between local controllers. We show
that this distributed control strategy is capable of regulating
the voltage drifts while simultaneously achieving tertiary-
level objectives such as load sharing or economic dispatch.

In Section VII, we present simulation results to illustrate
the performance and robustness of our controllers.

Finally Section VIII concludes the paper. Due to space
limitations, we omit most proofs and refer to [13] for details.

II. PRELIMINARIES AND NOTATION

Vectors and matrices: Let 1n and 0n be the n-
dimensional vectors of unit and zero entries, respectively.
Let In ∈ Rn×n be the n-dimensional identity. Let diag(v)
represent a diagonal matrix with the elements of v on the
diagonal. For a symmetric matrix A = AT , the notation
A > 0, A ≥ 0, A < 0, and A ≤ 0 means that A is
positive definite, positive semidefinite, and negative definite
and negative semidefinite, respectively.

Algebraic graph theory: Consider a connected, undi-
rected, and weighted graph G = (V, E ,W ), where V =
{1, ...n} is the set of nodes, E ⊂ V×V is the set of undirected
edges, and W = WT ∈ Rn×n is the adjacency matrix with
entries wij > 0 for (i, j) ∈ E and wij = 0 otherwise.
The degree matrix D ∈ Rn×n is a diagonal matrix with
elements dii =

∑n
j=1,j 6=i wij . The Laplacian matrix L = LT

= D −W ∈ Rn×n satisfies L ≥ 0 and L1n = 0n. For a
connected graph the null space of L is spanned by 1n and
all other n− 1 eigenvalues of L are strictly positive.

III. DC MICROGRID MODEL

For our purposes a microgrid is a linear connected circuit
with associated undirected graph G(V, E ,W ), nodes V =
{1, ..., n}, and edges E ⊂ V × V . We assume that all lines
in the DC microgrid are purely resistive, and refer to [13]
for an extension of our results towards more general line
models. The nonzero entries of the adjacency matrix W are
wij= wji = 1/Rij , where Rij is the resistance of the line
connecting nodes i, j ∈ V . The diagonal degree matrix D ∈
Rn×n has elements dii =

∑n
j=1,j 6=i wij . The admittance

Fig. 1. A DC Microgrid with three sources and five loads. The blue dashed
lines indicate the communication among the controllers (18) in Section VI.

matrix Y is defined as Y = D−W . Thus, Y = Y T ∈ Rn×n
is a real-valued Laplacian matrix satisfying 1TnY = 0Tn .

We partition the set of nodes into m sources and n −
m loads: V = VS ∪ VL. Throughout this paper we denote
sources and loads by the subscripts S and L, respectively.
The sources are assumed to be controllable current sources
with positive current injections ISi ≥ 0 and are assembled
in the vector IS . Each source is constrained by its output
current capacity Īi, i.e., ISi ∈ [0, Īi]. The loads are assumed
to be constant-current loads with negative current injections
ILi ≤ 0 and are assembled in the vector IL.1 Following
Kirchhoff’s and Ohm’s laws, the network model is built as[

IS

IL

]
=

[
YSS YSL
Y TSL YLL

] [
V S

V L

]
(1)

where the admittance matrix Y is partitioned accordingly,
and V S and V L represent the nodal voltages (potentials) of
sources and loads, respectively. Figure 1 shows an example
network of a DC microgrid. Since Y is a Laplacian matrix,
a necessary feasibility condition for equation (1) is

1TmI
S + 1Tn−mI

L = 0, (2)

that is, load and generation need to be balanced. Observe that
this constraint cannot be satisfied since the generation needs
to be scheduled to meet the generally unknown load. This
observation motivates primary control actions akin to AC
systems that instantaneously balance generation and load.

IV. PRIMARY DROOP CONTROL & LOAD SHARING

We briefly review frequency droop control in AC micro-
grids [1] to motivate our proposed control strategy for DC
microgrids. In AC microgrids the active power injection Pi
at source i is controlled to be proportional to its frequency
deviation θ̇i (from a nominal frequency) as

Pi = P ∗i − Ciθ̇i, (3)

1Loads in DC systems are conventionally modeled as constant cur-
rent/impedance/voltage/power loads [2] and often display a combination of
the above properties. Here we focus on constant-current loads which arise
primarily in electronic loads and also in LED lighting. We find that these
loads are the mathematically most challenging linear load models. In [13] we
extend our results to constant-impedance loads and constant-voltage buses.



where the control gain Ci > 0 is referred to as the droop
coefficient, P ∗i ∈ [0, P̄i] is a nominal injection setpoint, and
P̄i is the capacity of source i. For a particular selection
of droop coefficients, it can be shown that frequency droop
control stabilizes the AC microgrid to a synchronous solution
and achieves proportional load sharing at steady state [12],
that is, every source i injects active power Pi according its
capacity P̄i: Pi/P̄i = Pj/P̄j for all sources i, j ∈ VS . A key
feature of AC frequency droop control is that it synthesizes
the synchronous frequency as a global signal indicating the
load/generation imbalance in the microgrid [11], [12].

As for AC systems, a primary control objective in DC
microgrids is to design local decentralized droop controllers
that achieve proportional load sharing in the sense that

ISi /Īi = ISj /Īj for all i, j ∈ VS , (4)

where ISi ∈ [0, Īi] is the current injection of source i ∈ VS
and Īi> 0 is its capacity. The conventional DC voltage-vs-
current droop controller is given by (see, e.g., [10], [8], [4])

ISi = I∗i − CiV Si , (5)

where I∗i ∈ [0, Īi] is an injection setpoint and the gain
Ci > 0 is referred to as droop coefficient. Unless non-local
(distributed or centralized) secondary controllers or carefully
tuned virtual impedance controllers are added, the controller
(5) does generally not achieve load sharing (especially for
non-negligible line impedances); see [8] for a review. From a
mathematical perspective this shortcoming is essentially due
to the absence of a global variable such as the AC frequency.

Here we start from the observation that the conventional
controller (5) can be interpreted as the steady-state of the
following proportional-integral droop controller:

ISi = I∗i − CiV̇ Si − pi , (6a)

Diṗi = V̇ Si . (6b)

Observe that (6a) mimics the AC frequency droop (3) and
(6b) is an integral controller compensating for steady-state
drifts similar to a decentralized secondary frequency integral
controller often added to droop in AC systems. Inspired by
this observation, the success of frequency droop control (3)
in AC systems, and the limitation of conventional DC droop
control (5), we propose the primary voltage droop controller

ISi = I∗i − CiV̇ Si . (7)

Fig. 2 shows a circuit realization of our droop controller (7)
via a constant current source I∗i and a shunt capacitance Ci
reminiscent of standard shunt compensation in DC power
systems [14]. The proposed primary droop control (7) is a
fully decentralized and proportional control strategy.

Similar to AC droop control (3), our controller (7) induces
a global variable, namely a constant voltage drift, that
depends on the total imbalance in load/generation current
injections:

∑
j∈VS I

∗
j +

∑
j∈VL I

L
j . Of course, this drift has

to be compensated by a secondary controller, which will be
done in Section VI. Before that we will analyze the primary
droop control loop (1) and (7) by itself and show, among
others, that it achieves stable proportional load sharing:

Fig. 2. Realization of droop control (7) as analog circuit

Theorem 4.1: (Primary control & load sharing) Con-
sider the closed-loop droop-controlled microgrid (1) and (7).
Then the following statements hold:
(1) Voltage drifts: all voltages V Si , i ∈ VS converge
exponentially to V (t) = V ∗ + v̇driftt · 1m, where V ∗ ∈ Rm
is a constant vector and the common voltage drift is

v̇drift =

∑
j∈VS I

∗
j +

∑
j∈VL I

L
j∑

j∈VS Cj
. (8)

(2) Proportional load sharing: if the droop coefficients and
nominal injection setpoints are selected proportionally, that
is, for all i, j ∈ VS

Ci/Īi = Cj/Īj and I∗i /Īi = I∗j /Īj , (9)

then at steady state the load is shared proportionally.
Proof: The closed-loop state space model (1), (7) is[

CV̇ S

0

]
=

[
I∗S
IL

]
−
[
YSS YSL
Y TSL YLL

] [
V S

V L

]
, (10)

where C = diag(C1, ..., Cm). Since YLL is invertible [15,
Lemma II.1], we eliminate the variable V L = Y −1LL (IL −
Y TSLV

S). from the second block of (algebraic) equations
in (10). This elimination process, termed Kron-reduction in
circuit theory [15], gives the Kron-reduced system

V̇ S = −C−1L̃V S + C−1Ĩ (11)

where Ĩ = I∗S −YSLY
−1
LL I

L and L̃ = YSS −YSLY −1LL Y
T
SL is

again a positive semidefinite Laplacian [15, Lemma II.1].
By Sylvester’s Law of Inertia [16, Corollary 3], because
C−1 > 0 and L̃ is symmetric, C−1L̃ has the same number of
negative, zero and positive eigenvalues as L̃. Thus, C−1L̃ has
one zero-eigenvalue and all other eigenvalues are positive.
The right eigenvector associated to the zero eigenvalue is 1m.

It follows that all modes in the Kron-reduced system (11)
exponentially decay to zero with exception of the zero mode
with right eigenvector 1m and left eigenvector C1m. Hence,
this zero mode is simply integrated and all components of
the vector V̇S will asymptotically have the same value v̇drift.
We project the differential-algebraic equations (10) onto the
zero mode by summing all equations (10) as 1TmCV̇S =
1TmI

S + 1Tn−mI
L. In steady state for V̇S = v̇drift1m, we

recover the voltage drift (8). This proves statement (1).
At steady state, the closed-loop injections are

ISi = −Civ̇drift + I∗i . (12)



Thus, ISi /Īi = (−Civ̇drift + I∗i )/Īi. The proportional load
sharing objective ISi /Īi = ISj /Īj (for all i, j ∈ VS) can be
achieved by choosing I∗i and Ci proportionally as in (9).
This proves statement (2) of Theorem 4.1.

Theorem 4.1 gives a criterion for stable load sharing of
the closed-loop system (1), (7), namely the droop coefficients
need to be picked proportional to capacity Ci = γĪi, where
γ > 0 is constant. However, Theorem 4.1 does not guarantee
that the injections satisfy the actuation constraint Ii ∈ [0, Īi].
If the control gains are chosen as in (9), then the actuation
constraint is met if and only if the total load

∑
j∈VL I

L
j can

be satisfied by the maximal injections (at capacity)
∑
i∈VS Īi.

Theorem 4.2 (Actuation constraints): Consider a sta-
tionary solution of the closed-loop system (1) and (7) with
droop coefficients and setpoints chosen proportionally as in
(9). The following statements are equivalent:
(1) Injection constraints: 0 ≤ ISi ≤ Īi for all i ∈ VS;
(2) Load satisfiability:

∑
i∈VS Īi ≥ −

∑
j∈VL I

L
j ≥ 0.

Proof: The steady-state injection is given by (8) and
(12). The condition ISi ≥ 0 for each i ∈ VS translates to

ISi = I∗i − Ci

∑
j∈VS I

∗
j +

∑
k∈VL I

L
k∑

j∈VS Cj
≥ 0.

For proportional coefficients (9), we have Ci/I∗i = Cj/I
∗
j

and the previous inequality equivalently reads as∑
k∈VL

ILk ≤ −
∑

j∈VS

(
I∗j − Cj

I∗i
Ci

)
= 0.

A similar calculation, for ISi ≤ Īi, for i ∈ VS , yields

ISi = I∗i − Ci

∑
j∈VS I

∗
j +

∑
k∈VL I

L
k∑

j∈VS Cj
≤ Īi.

The coefficients satisfy Ci/(
∑
j∈Vj Cj) = Īi/(

∑
j∈Vj Īj) =

I∗i /(
∑
j∈Vj I

∗
j ), thus the previous inequality also reads as

∑
k∈VL

ILk ≥ (I∗i − Īi)
∑
j∈Vj Cj

Ci
−
∑
j∈Vj

I∗j = −
∑
j∈VS

Īj .

These inequalities complete the proof of Theorem 4.2.
We conclude that our primary droop controller (7) achieves

stable proportional load sharing in a fully decentralized way
and while respecting actuation constraints. However, as in
AC systems, the droop controller (7) induces a steady-state
voltage drift (8) which is proportional to the total injection
imbalance

∑
j∈VS I

∗
j +

∑
j∈VL I

L
j . This imbalance is zero

only if a precise forecast of the total load
∑
j∈VL I

L
j is

known and the nominal injections I∗i can be scheduled ac-
cordingly. Such a precise forecast is generally not available,
the nominal injections are fixed (typically to 0 or Īi), and
the loads are changing with time. Another way to reduce the
voltage drift v̇drift in (8) is to choose large droop coefficients
Ci � 1. The latter choice is not viable since it results in a
slow sluggish control response. We will address the issue of
regulating the voltage drift in Section VI. Before that we will
address the tertiary control (or energy management) problem.

V. OPTIMAL ECONOMIC DISPATCH & DROOP CONTROL

The proportional droop coefficients (9) lead to fair load
sharing (4) among the sources proportional to their capacity.
However, this objective may not be desirable when sources
rely on different energy generation and conversion mecha-
nisms, e.g., solar cells have lower capacities compared with
diesel generators, but they may be preferred for economic
and environmental reasons. In the following, we consider
an alternative generation dispatch criterion, namely the eco-
nomic dispatch formalized as an optimization problem:

minimize
{u, V S , V L}

f(u) =
∑m

i=1

1

2
αiu

2
i (13a)

subject to
[
I∗S + u
IL

]
= Y

[
V S

V L

]
(13b)

The optimization problem (13) is convex with quadratic
objective and linear constraints. The coefficients αi > 0 are
reflecting the fuel and operation costs of of power source i
, its capacity, or other preferences. In case that the nominal
injection setpoints I∗i are zero, the decision variable ui equals
the total generation of source i. For nonzero setpoints I∗i > 0,
ui is the reserve generation to meet the real-time demand.

Theorem 5.1 (Economic dispatch): Consider the opti-
mization problem (13). The optimal injections are

u∗i = −c/αi, i ∈ Vs , (14)

where c =
1T
mI

∗
S+1T

n−mI
L∑

i 1/αi
is a constant.

Proof: The Lagrangian associated to (13) is

L(u, V, λ) =
∑m

i=1

1

2
αiu

2
i + λT

([
I∗S + u
IL

]
− Y V

)
where V =

[
V S V L

]T
and λ =

[
λS λL

]T ∈ Rn.
The KKT conditions ∂L/∂V = 0, ∂L/∂λ = 0 and

∂L
∂u = 0 are necessary and sufficient for optimality due to
the convexity of (13) [17] . The first condition is ∂L/∂V =
−λTY = 0. Since Y is a Laplacian matrix, null(Y ) =
span(1n). Thus, we have that λ = c1n, where c ∈ R is a
constant. The second condition is ∂L

∂u = uTdiag(αi)+λTS =
0. It follows that u∗i = −c/αi. The constraint (13b) implies

1Tn

[
I∗S + u
IL

]
= 1TmI

∗
S + 1Tn−mI

L + 1Tmu = 1TnY V = 0.

Since u∗i = −c/αi, then c
∑

1/αi = (1TmI
∗
S + 1TmI

L).
Theorem 5.1 gives the optimal economic dispatch ui

as a function of the nominal injections I∗S , the (possibly
unknown) loads IL, and the cost coefficients αi. Observe
from (14) that at optimality all marginal costs are identical:

αiu
∗
i = αju

∗
j i ∈ Vs . (15)

Note the similarity between the optimal injections (14) and
the steady-state injections of droop-controlled microgrid (8)
and (12). Based on this observation, we present the following
result: the optimal solution of the economic dispatch (14)
can be achieved by an appropriately designed droop control
(7). Conversely, any steady state of the droop-controlled



microgrid (1) and (7) is the optimal solution of the economic
dispatch (14) with appropriately chosen parameters.

Corollary 5.1: (Droop control & economic dispatch)
Consider the following two injections:
(1) The optimal injection I∗i + u∗i of the economic dispatch
problem (13) with cost coefficients αi; and
(2) The steady-state injections I∗i − Civ̇drift of the droop-
controlled microgrid (1) and (7) with droop coefficients Ci.

These two injections are identical if and only if

αiCi = αjCj for all i, j ∈ VS . (16)
Notice that the optimal injection (in the sense of the eco-

nomic dispatch (13)) can be achieved in a fully decentralized
manner, without any communication or a knowledge of the
microgrid and the loads when the droop gains are chosen
as Ci = β/αi for some constant β > 0. In general, the
optimal droop gain Di = β/αi and the droop gain Di = γĪi
for proportional load sharing (satisfying the conditions (9))
are not identical unless αi = c/Īi for some constant c ∈
R. Hence, the economic dispatch (13) is a more versatile
objective that includes load sharing (4) as a special case.

VI. SECONDARY INTEGRAL CONTROL

The primary droop control (7) results in a generally non-
zero steady-state voltage drift given in (8) which has to
be compensated by means of a secondary controller. In
the following we investigate two secondary integral control
strategies: a fully decentralized one and a distributed one.

A. Decentralized Integral Control

To compensate the steady-state voltage drift (8), we aug-
ment every droop controller (7) with a local integral control
penalizing voltage drifts. The resulting PI droop control is

ISi = I∗i − CiV̇ Si − pi (17a)

Diṗi = V̇ Si (17b)

where pi is an integral control variable, and Di > 0 is a gain.
Notice that (17) is identical to (6), which in steady-state gives
the conventional DC droop control (5). The decentralized
integral controller (17) (and equivalently conventional DC
droop control (5)) successfully corrects for the steady-state
voltage drifts but fails to recover the desired injections for
proportional load sharing and economic optimality.

Theorem 6.1: (Performance of decentralized integral
control) Consider the closed-loop secondary-controlled mi-
crogrid (1) with the decentralized integral controller (17).
Then the following statements hold:
(1) All source voltages V Si (t) converge to stationary values
without drift.
(2) The steady-state source injections do generally not
achieve proportional load sharing (4).
(3) The steady-state source injections are generally not
optimal with respect to the economic dispatch problem (13).

B. Distributed Consensus Filter

Since the decentralized proportional controller (7) as well
as the decentralized integral controller (17) cannot simulta-
neously achieve the desired injections while regulating the

voltage drifts, we now focus on distributed secondary integral
control strategies that are able to achieve the desired optimal
injections at the requirement of communication.

The previous decentralized integral controller (17) results
in the stationary injection ISi = I∗i − pi(t → ∞) which
generally depend on initial values, expogeneous disturbances,
and unknown load parameters and do not necessarily satisfy
the optimality condition (15) of identical marginal costs.
Hence, we propose the following distributed consensus filter
to force an alignment of the marginal injection costs αipi:

ISi = I∗i − CiV̇ Si − pi
Diṗi = CiV̇

S −
∑m

j=1
Bij (αipi − αjpj)

(18a)

(18b)

where Di > 0 and the terms Bij = Bji ≥ 0 induce
an undirected and connected communication graph among
the sources Vs. The consensus filter (18) resembles the
distributed averaging PI (DAPI) controller proposed in [12]
and combines the integral action (17) together with a con-
sensus flow [18]. Given a communication network among
the sources, the distributed consensus filter (18) regulates of
the voltage drifts while recovering the desired injections for
proportional load sharing or economic optimality.

Theorem 6.2: (Performance of distributed consensus
filter) Consider the closed-loop secondary-controlled micro-
grid (1) with the distributed consensus filter (18). Then the
following statements hold:
(1) All source voltages V Si (t) converge to stationary values
without drift.
(2) The steady-state source injections achieve proportional
load sharing (4) if the controller gains are chosen as in (9).
(3) The steady-state source injections are optimal with re-
spect to the economic dispatch problem (13) if the controller
gains are chosen as in (16).

VII. SIMULATION RESULTS

We illustrate the performance of our proposed controllers
in a simulation scenario. We consider the microgrid displayed
in Fig. 1, where VS = {a, b, c} and VL = {d, e, f, g, h}.
The microgrid is operating in islanded mode, and the dashed
blue lines indicate the communication topology among the
controllers in the distributed consensus filter (18). To achieve
proportional load sharing, the droop coefficients Ci are cho-
sen proportional to the source capacities Ī as in (9). At t =
10s the initial load demand IL = [−1, −2, −3, −3, −2]T

changes instantaneously to IL = [−4, −0.5, −1.5, −5, −
0.5]T . We investigate the transient and stationary behavior of
the closed loop using different control strategies; see Fig. 3.

The simulation results using primary droop control (7) are
shown in Fig. 3(a). The constant voltage drifts (v̇drift) are vis-
ible as nonzero and identical (in steady state) slopes in Fig.
3(a), and the load sharing ratios (ISi /Īi) converge to the same
steady-state value, i.e., the load is shared proportionally. Fig.
3(b) shows the simulation results using decentralized integral
control (17).The source voltages converge to constant values
without drifts, but the load sharing ratios do not converge to
the same steady-state values. Additionally, the red injection
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(a) Primary droop control (7).
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(b) Decentralized integral control (17).
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(c) Distributed consensus filter (18).
Fig. 3. Closed-loop performance of the microgrid under different control strategies

in Fig. 3(b) exceeds the value 1, that is, the associated source
injection exceeds its capacity. Moreover, the blue injection
in Fig. 3(b) shows that, the current injection is negative
at steady state, that is, the associated source is absorbing
(instead of supplying) current, which reveals another dis-
advantage of decentralized integral control. The simulation
results using the distributed consensus filter (18) are shown
in Fig. 3(c). Observe that the source voltages converge to
constant values without drifts, and the load sharing ratios
converge to the same values. Hence, the voltage drifts are
regulated and proportional load sharing is achieved. Finally,
note the different scales in the plots which indicate a superior
transient performance of the distributed consensus filter (18).

VIII. CONCLUSIONS

Starting from the conventional DC voltage droop con-
troller, we proposed novel decentralized and distributed
primary droop and secondary integral control strategies for
DC microgrids. We analyzed the properties and limitations
of these control strategies, and investigated their consisten-
cies with tertiary-level objectives such as proportional load
sharing and an economic dispatch among the generating
units. This work is a first step towards establishing an
operation architecture for DC microgrids. In our initial setup,
we assumed the loads to draw a constant current, and
we considered purely resistive networks or networks with
lines modeled by the resistive-capacitive Π-model. In future
work we plan to study different network models including
resistive-inductive-capacitive lines and ZIP load models.
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