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Abstract— We explore two different frequency control strate-
gies to ensure stability of power networks and achieve economic
dispatch between generators and controllable loads. We first
show the global asymptotic stability of a completely decentral-
ized frequency integral control. Then we design a distributed
averaging-based integral (DAI) control which operates by local
frequency sensing and neighborhood communication. Equilib-
rium analysis shows that DAI recovers nominal frequency with
minimum total generation cost and user disutility for load
control after a change in generation or load. Local asymptotic
stability of DAI is established with a Lyapunov method. Simu-
lations demonstrate improvement in both transient and steady-
state performance achieved by the proposed control strategies,
compared to droop control.

I. INTRODUCTION

Maintaining frequency tightly around the nominal value
is important for power grids since frequency excursions
degrade power quality and may damage facilities. Frequency
control is traditionally performed by adjusting real power
generation to balance the load. This traditional scheme has
a hierarchical structure composed of three layers working in
concert, i.e., primary (droop control), secondary (automatic
generation control) and tertiary (economic dispatch), from
fast to slow timescales [1], [2].

The integration of distributed renewable generation, like
solar and wind power, introduces larger and faster fluctua-
tions in power supply and frequency. Hence relying purely
on generator-side frequency control requires more fast-acting
generators as spinning reserves, which are expensive and
produce high emissions [3]. As a supplement to generator-
side frequency control, distributed load-side frequency con-
trol has been extensively studied [4]–[8]. These studies
have shown significant performance improvement mainly due
to fast-acting capability of frequency-responsive loads and
reduction in the need for generation reserves. On the other
hand, the distributed energy resources, which generate either
DC or variable frequency AC power, are interfaced with
the main grid via power electronic DC/AC inverters. These
inverters are typically designed to emulate droop control
[1], [9]. Different from bulk generators, the controllable
loads and inverters usually have low or no inertia. Hence, a
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structure preserving model [10] with both positive and zero
inertia buses is suitable for design and stability analysis of
frequency control in a power network with bulk generators,
controllable loads and distributed energy resources interfaced
via inverters.

Previous work on frequency control focuses on two issues.
The first issue is stability of closed-loop power networks,
which has been studied for different generator-side frequency
control schemes [11]–[14], and for networks with linear
frequency dependent loads [10], [15]. All these studies use
network models with nonlinear power flows, which are more
realistic than linearized models. Global asymptotic stability
is usually established with complicated control schemes
which require some physical parameters to be known, which
is hard in practice. Otherwise, simple decentralized droop
control only guarantees local asymptotic stability, and does
not recover frequency to the nominal value [10]. The second
issue is incorporating economic dispatch with frequency
control at a fast (seconds) timescale, which breaks the
traditional hierarchy of frequency control. Existing work on
this issue ranges from generator side [16]–[21] or load side
[22]–[25] to microgrids [1], [26]. A common feature of
these studies is that, while variations of economic dispatch
are solved over the entire network, the control schemes are
decentralized (in that only local sensing and feedback is
required) or distributed (in that moderate communication
between neighboring controlled units is required) to ensure
scalability to future power grids with a large number of
actively controlled endpoints.

In this paper, we explore two different frequency control
strategies, both operating jointly from the generator and load
sides in a network with positive and zero inertia buses, to
address the two issues above. Applying a Lyapunov method
to the structure preserving model with nonlinear power flows,
we first establish the global asymptotic stability of a simple,
completely decentralized frequency integral control. Then,
to achieve economic dispatch, we modify the decentralized
integral control by adding neighborhood communication,
and hence get a distributed averaging-based integral (DAI)
control. The DAI control recovers nominal frequency with
minimum total cost of generation and user disutility for
participating in load control, after a change in generation
or load. Local asymptotic stability of DAI is proved us-
ing a Lyapunov method. Simulations of the IEEE 39-bus
test system demonstrate improvement in both transient and
steady-state performance achieved by using the two proposed
control strategies, compared to the traditional droop control.

The rest of this paper is organized as follows. Section II



describes the structure preserving model, introduces the con-
trol objective of economic dispatch, and connects equilibria
of the system to the solutions of economic dispatch. Section
III shows global asymptotic stability of the completely de-
centralized frequency integral control. Section IV proposes
the DAI control and proves its local stability. Section V is a
simulation-based case study to show the performance of the
proposed control strategies. Section VI concludes the paper
and discusses future work.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

For a set N , let |N | denote its cardinality. A variable with
an underscore and a set as the subscript denotes a vector with
appropriate components, e.g., ωG = (ωj , j ∈ G) ∈ R|G|. A
variable with a set as the subscript but without an underscore
denotes a diagonal matrix with appropriate diagonal entries,
e.g., KG = diag(Kj , j ∈ G) ∈ R|G|×|G|. The subscript may
also be omitted when it denotes the set of all the nodes
or lines in the network. We use 1n or 0n to denote the
n-dimensional vector whose components are all 1 or all 0,
where the subscript n may be omitted when the number of
dimension is clear. Let AT denote the transpose of a matrix
A. The expression A � 0 (A ≺ 0) means the square matrix
A is positive (negative) definite. For a signal ω(t) of time t,
let ω̇ denote its time derivative dω/dt. The time index t is
usually dropped from equations when the meaning is clear.

Our analysis is based on the structure preserving model
[10]. The power network is modeled as an undirected graph
(N , E) where N = {1, . . . , |N |} is the set of buses (nodes)
and E ⊆ N ×N is the set of lines connecting those buses.
We use either (j, k) or (k, j) to denote the line connecting
buses j and k, i.e., if (j, k) ∈ E then (k, j) /∈ E . Notice
that the pair (j, k) ∈ E implicitly assumes a direction from
j to k. However, such orientation is arbitrary and does not
affect the results of this paper. We assume the graph (N , E)
is connected, and make the following assumptions which are
well-justified for transmission networks [27]:
• Bus voltage magnitudes |Vj | = 1 pu for j ∈ N .
• Lines (j, k) ∈ E are lossless and characterized by their

susceptances Bjk = Bkj > 0. Let Bjk = Bkj = 0
when (k, j) /∈ E and (j, k) /∈ E .

• Reactive power flows do not affect bus voltage phase
angles and frequencies.

A subset G ∈ N of the buses are fictitious buses representing
the internal of generators. Hence we call G the set of gener-
ators and L := N \G the set of load buses. We label all the
buses so that G = {1, . . . , |G|} and L = {|G|+ 1, . . . , |N |}.

The voltage phase angle of bus j ∈ N , with respect to the
rotating framework of nominal frequency ω0 = 2π · 60 Hz,
is denoted by θj . Then

θ̇j = ωj j ∈ N (1)

is the frequency deviation from the nominal value on bus j.
The network dynamics are described by the swing equations

Mjω̇j =−Djωj+pj+uj−
∑
k∈N

Bjk sin(θj−θk) j ∈ G (2)

0 =−Djωj+pj+uj−
∑
k∈N

Bjk sin(θj−θk) j ∈ L (3)

where Mj > 0 are moments of inertia of generators, Dj > 0
are droop coefficients of generators when j ∈ G or linear
frequency dependent loads when j ∈ L. The exogenous input
(pj , j ∈ N ) are uncontrollable real power injections from,
e.g., uncontrollable loads and renewable generation. The
control variables (uj , j ∈ N ) are mechanic power injections
to generators for j ∈ G and additive inverses of controllable
loads for j ∈ L. The real power flow from buses j to k
is Bjk sin(θj − θk). Aside from frequency dependent loads,
the dynamics (3) also occur in low-inertia DC or variable
frequency AC power sources that are interfaced with the
network through droop-controlled inverters [1], [26].

We are interested in frequency-synchronized solutions of
the model (1)–(3) satisfying θ̇j = ωj = ω∗ for some ω∗ ∈ R.
Summing over equations (2)(3) and evaluating ωj = ω∗, we
obtain the synchronization frequency

ω∗ =

∑
j∈N pj + uj∑
j∈N Dj

(4)

which implies that there is an equilibrium satisfying ω∗ = 0
only if all power injections are balanced across the entire
network, i.e.,

∑
j∈N pj + uj = 0.

Our objective is, given exogenous input p ∈ R|N | to
the system (1)–(3), to design control law for u based on
feedback of states (θ, ω), such that the system converges to
an equilibrium (θ∗, ω∗= 0, u∗) which is at the same time a
solution to the following economic dispatch problem:
Economic Dispatch (ED):

min
θ,u

∑
j∈N

1

2
aju

2
j (5)

subject to

pj+uj−
∑
k∈N

Bjk sin(θj−θk) = 0 j ∈ N (6)

|θj − θk| ≤ γjk < π/2 (j, k) ∈ E . (7)

The terms 1
2aju

2
j in (5) are generation cost if j ∈ G and

user disutility for participating in load control if j ∈ L, where
aj > 0 are constant coefficients. Indeed, quadratic generation
cost or user disutility functions are widely used, e.g., in [1],
[2], [16]–[18], [21], [28]. The flow balance constraint (6)
ensures ω∗ = 0 as well as the existence of a synchronized
solution to the system (1)–(3). The thermal limit constraint
(7) restricts the line flows in the network. We shall make the
following assumption on the thermal limit constraint.

Assumption 1 (Strict Feasibility of ED): Any optimal so-
lution (θ∗, u∗) of ED satisfies the constraint (7) strictly, i.e.,

|θ∗j − θ∗k| < γjk <
π

2
(j, k) ∈ E . (8)

Assumption 1 essentially implies that the network is suffi-
ciently meshed, the transfer capacities are sufficiently large,
and generation and load are sufficiently well distributed so
that no line congestion occurs. In this case, the inequality
constraint (7) may be dropped, and (by summing over all



equality constraints (6)) we conclude that if (θ∗, u∗) is an
optimal solution of ED, then u∗ is a feasible solution for the
Reduced Economic Dispatch (RED):

min
u

∑
j∈N

1

2
aju

2
j (9)

subject to ∑
j∈N

pj+uj= 0. (10)

Notice that RED is a quadratic program subject to linear
constraint and thus convex. A comparison of the optimality
conditions for ED and RED leads to the following result for
strictly feasible solutions of ED.

Lemma 1 (Conditions for optimality): Under Assumption
1, any strictly feasible solution (θ∗, u∗) of ED is an optimal
solution of ED, if and only if it has identical marginal costs

aju
∗
j = aku

∗
k j, k ∈ N . (11)

Proof: (=⇒): By Assumption 1, we disregard (7). Let
λj denote the Lagrange multiplier of the equality constraint
(6). Using the necessary Karush-Kuhn-Tucker (KKT) con-
ditions for optimality [29], any primal-dual optimal solution
(θ∗, u∗;λ∗) must satisfy
• Primal feasibility (6) and dual feasibility (λ∗ ∈ R|N |)
• Stationarity:

λ∗T∇θL(θ∗, u∗;λ∗) = 0 (12)

and

∇uL(θ∗, u∗;λ∗) = 0, (13)

where

L(θ, u;λ)=
∑
j∈N

1

2
aju

2
j+λj

(
pj+uj−

∑
k∈N

Bjk sin(θj−θk)

)
is the Lagrangian of ED with constraint (6) and ∇θL (resp.
∇uL) is its gradient with respect to θ (resp. u). Equation
(13) implies

aju
∗
j = λ∗j j ∈ N .

Now using (12) we get λ∗TLB(θ∗) = 0 where

LB(θ) := CB ·diag
(
cos(CT θ)

)
·CT (14)

is the Laplacian matrix of the graph (N , E) with weights
Bjk cos(θ∗j − θ∗k). The function cos : R|E| → R|E| is defined
such that if y = cos(δ) then ye = cos(δe) for e ∈ E . The
incidence matrix C ∈ R|N |×|E| of (N , E) has Cje = 1 if
e = (j, k) ∈ E for some k ∈ N and Cje = −1 if e =
(i, j) ∈ E for some i ∈ N , and Cje = 0 otherwise. The
diagonal matrix B = diag(Bjk, (j, k) ∈ E) ∈ R|E|×|E| has
its diagonal entries arranged in the same order as the columns
of C. Since the graph is connected, using Assumption 1, it
follows that the weights of LB(θ) are strictly positive and
therefore we must have λ∗j = λ∗ for all j ∈ N and some
λ∗ ∈ R. Therefore (12) is necessary for optimality.
(⇐=): By adding (6) over j ∈ N we have (10). It follows that
any feasible solution (θ, u) of ED is also a feasible solution

of RED. If we let opt(ED) and opt(RED) be the optimal
values of ED and RED respectively, it follows that

opt(RED) ≤ opt(ED).

However, since (θ∗, u∗) satisfies (12), it is easy to show (by
invoking the KKT conditions for RED) that u∗ is an optimal
solution of the convex RED problem. We also know that
(θ∗, u∗) is strictly feasible for ED. Therefore (θ∗, u∗) is an
optimal solution of ED.

The next proposition relates the system dynamics (1)–(3)
with the ED problem (5)–(7).

Proposition 1 (Optimality condition of equilibria):
Under Assumption 1, a frequency-synchronized solution
(θ∗, ω∗, u∗) of the system (1)–(3) is optimal for ED if and
only if the following conditions are satisfied:

ω∗j = 0 j ∈ N (15a)

|θ∗j − θ∗k| < γjk <
π

2
(j, k) ∈ E (15b)

aju
∗
j = aku

∗
k j, k ∈ N . (15c)

Proof: (=⇒): Suppose (θ∗, ω∗, u∗) is a frequency-
synchronized solution such that (θ∗, u∗) is an optimal so-
lution of ED. Then the primal feasibility condition (6) holds
for (θ∗, u∗), which implies (15a). Under Assumption 1, we
have (15b). By Lemma 1 we have (15c).
(⇐=): Now suppose there is a frequency-synchronized so-
lution (θ∗, ω∗, u∗) satisfying (15). By (15a), the primal
feasibility condition (6) is satisfied by (θ∗, u∗). This, together
with (15b), guarantees the strict feasibility of (θ∗, u∗). By
Lemma 1, (θ∗, u∗) is optimal for ED since (15c) holds.

The remainder of the paper focuses on the following
question: how to achieve frequency recovery (15a) while
simultaneously achieving economic optimality (15c)?

III. COMPLETELY DECENTRALIZED
FREQUENCY INTEGRAL CONTROL

We first look at frequency integral control

uj = −Kjsj (16a)
ṡj = ωj (16b)

which is completely decentralized in that every generator and
controllable load only needs to take integral of the frequency
deviation measured on its local bus without communication
with other buses. The parameters Kj > 0 for j ∈ N are
constant control gains. Without loss of generality, we take
si(0) = 0, which allows us to rewrite (16) as

uj(t) = −Kj

∫ t

0

ωj(τ)dτ j ∈ N . (17)

We select arbitrary parameters K � 0 and input p, and fix
them in the rest of this section. Define

F (θ) := p−K(θ − θ0)− CBsin(CT θ) (18)

where θ0 := (θj(0), j ∈ N ) is a fixed parameter vector,
the matrices C and B are again the incidence matrix and
the diagonal matrix of Bjk, respectively, and the function
sin : R|E| → R|E| is defined such that if y = sin(δ) then



ye = sin(δe) for e ∈ E . Then the set of equilibria of the
closed-loop system (1)–(3) and (17) is

Θ∗ :=
{

(θ, ω) ∈ R2|N | | ω = 0, F (θ) = 0
}
. (19)

Theorem 1 below states the existence and global convergence
to this set of closed-loop equilibria.

Theorem 1: The set Θ∗ of equilibria is nonempty, and
every trajectory (θ(t), ω(t)) of the closed-loop system (1)–
(3) and (17) globally converges to Θ∗ as t→ +∞.

Proof: By (3)(17)(18) we have

ωL(t) ≡ D−1
L FL(θ(t)), (20)

i.e., ωL(t) is a continuous function of θ(t) for all t. Therefore
we only need to show that

Θ∗G :=
{

(θ, ωG) ∈ R|N |+|G| | ωG = 0, F (θ) = 0
}

(21)

is nonempty and every trajectory (θ(t), ωG(t)) globally con-
verges to Θ∗G as t→ +∞.

Consider the Lyapunov function1

V (θ, ωG)=
1

2
ωTGMGωG+U(θ)+

∑
j∈N

Kjθj(
θj
2
−θ0,j) (22)

where the open-loop potential energy is

U(θ) :=
∑

(j,k)∈E

Bjk(1− cos(θj − θk))−
∑
j∈N

pjθj . (23)

The derivative of V along any trajectory is

V̇ (θ, ωG) = ωTGMGω̇G+
∑

(j,k)∈E

Bjk sin(θj−θk)(ωj−ωk)

−
∑
j∈N

pjωj +
∑
j∈N

Kj(θj − θ0,j)ωj

= −ωTGDGωG + ωTGFG(θ)− ωTF (θ) (24)

= −ωTGDGωG − ωTL(θ)DLωL(θ) ≤ 0 (25)

where the equalities in (24) and (25) result from (2) and (3)
respectively, and ωL(·) as a function of θ is defined in (20).
Take arbitrary (θ(0), ωG(0)) ∈ R|N |+|G|. Then the set

Ω :=
{

(θ, ωG) | V (θ, ωG) ≤ V (θ(0), ωG(0))
}

(26)

is compact. Indeed Ω is closed due to continuity of V , and
is bounded since V is radially unbounded (thanks to the
dominating quadratic terms in θj and ωj). Also Ω is invariant
since V̇ ≤ 0. Define

E :=
{

(θ, ωG) ∈ R|N |+|G| | V̇ (θ, ωG) = 0
}

=
{

(θ, ωG) ∈ R|N |+|G| | ωG = 0, ωL(θ) = 0
}

(27)

by (25). Let EΩ := E ∩ Ω. Let L+
Ω be the largest invariant

subset of EΩ. Then by LaSalle’s theorem [31, Theorem
4.4], the trajectory starting from (θ(0), ωG(0)) converges to

1We remark that one can construct a strictly decreasing Lyapunov function
(outside equilibria) by applying Chetaev’s trick [30] and adding the cross-
term ε (∇GU(θ)−∇GU(θ∗))T MGωG to V (θ, ωG).

a nonempty, compact, invariant limit set which is a subset of
L+

Ω . Hence it is sufficient to show L+
Ω ⊆ Θ∗G .

Consider any point (θ′, ω′G) ∈ L+
Ω . Due to the invariance

of L+
Ω , the trajectory (θ(τ), ωG(τ)) starting from (θ′, ω′G)

must stay in L+
Ω and hence must stay in EΩ. Therefore,

by (27) we have ωG(τ) ≡ 0 and hence ω̇G(τ) ≡ 0, and
ωL(θ(τ)) ≡ 0. It follows that F (θ(τ)) ≡ 0 and in particular,
(θ′, ω′G) ∈ Θ∗G . Hence L+

Ω ⊆ Θ∗G as we wanted to prove.
Theorem 1 shows that the closed-loop system with con-

troller (17) globally converges to the set Θ∗ even in the
case where the open-loop system (1)–(3) (with u = 0) does
not have an equilibrium. When Θ∗ is composed by a finite
number of isolated equilibria, which occurs with measure one
on the set of system parameters [32], Theorem 1 implies that
the system will always converge to one of them.

Unfortunately, it is in general not possible to control the
final equilibrium to which the system will settle. In the next
theorem, we show that if certain conditions on the gains Kj

and line susceptances Bjk are satisfied, the set Θ∗ contains a
unique equilibrium which is globally asymptotically stable.

Theorem 2: If Kj > 2
∑
k∈N Bjk for all j ∈ N , then

the closed-loop system (1)–(3) and (17) has a unique and
globally asymptotically stable equilibrium.

Proof: The Jacobian matrix of function F is

∂F

∂θ
(θ) = −K − LB(θ) (28)

where LB(θ) is the Laplacian matrix defined in (14). We
drop the argument θ of ∂F

∂θ , and denote the (j, k)-th entry of
∂F
∂θ by

(
∂F
∂θ

)
jk

. By Gershgorin circle theorem [33], for any

eigenvalue λ of ∂F
∂θ , there exists j ∈ N such that∣∣∣∣∣λ−
(
∂F

∂θ

)
jj

∣∣∣∣∣ ≤ ∑
k∈N ,k 6=j

∣∣∣∣∣
(
∂F

∂θ

)
jk

∣∣∣∣∣ . (29)

On the other hand, by assumption we have

Kj>2
∑
k∈N

Bjk≥
∑
k∈N

Bjk(| cos θjk|−cos θjk) j ∈ N

where θjk := θj − θk, which, by (28), implies(
∂F

∂θ

)
jj

+
∑

k∈N ,k 6=j

∣∣∣∣∣
(
∂F

∂θ

)
jk

∣∣∣∣∣ < 0 j ∈ N . (30)

By (29)(30), we have ∂F
∂θ (θ) ≺ 0 for all θ ∈ R|N |.

Now suppose there are θ, θ′ ∈ R|N | such that θ 6= θ′

and F (θ′) = F (θ) = 0. Then we have, by the fundamental
theorem of calculus [34], that

0 = F (θ′)− F (θ)

=

[∫ 1

0

∂F

∂θ
(θ + h∆θ)dh

]
∆θ (31)

where ∆θ := θ′−θ 6= 0. Notice that the integral term in (31),
denoted by intF , is negative definite since ∂F

∂θ (θ+h∆θ) ≺ 0

for all h ∈ [0, 1]. Hence we have ∆θT · intF · ∆θ < 0.
However we have from (31) that ∆θT · intF ·∆θ = 0 which



leads to a contradiction. Therefore, by the nonemptiness of
Θ∗, there is a unique equilibrium (θ∗, ω∗ = 0) ∈ Θ∗.

Using again the function V (θ, ωG) as defined in (22), the
compactness of (26) together with V̇ ≤ 0 implies stability,
and by Theorem 1, the trajectories converge globally to the
unique equilibrium point in Θ∗. Thus this equilibrium is
globally asymptotically stable.

The completely decentralized integral control success-
fully achieves global asymptotic stability without assuming
knowledge of the system parameters in the controller design.
To the best of our knowledge there is no other decentralized
control strategy for structure-preserving power network mod-
els that leads to a globally convergent closed-loop system.

However, the resulting equilibrium may be neither an
optimal nor a feasible solution of ED in Section II. Ad-
ditionally, our theoretical results require controllers at every
bus, and Theorem 2 requires large gains Kj , which may be
impractical and lead to large control actions.

While having ubiquitous controllers is still a limitation
of our design, in the next section we remedy the remaining
disadvantages by introducing a distributed control action that
corrects the steady-state solution and recovers optimality.

IV. DISTRIBUTED AVERAGING-BASED
INTEGRAL CONTROL

To simultaneously address the objectives of frequency
regulation and economic dispatch, we merge the integral
control (17) with a distributed consensus filter. Consider the
following distributed averaging-based integral (DAI) control

uj = −Kjsj −Rjqj j ∈ N (32a)
ṡj = ωj j ∈ N (32b)

q̇j = Qj
∑
k∈N

Yjk(ajuj − akuk) j ∈ N (32c)

where Kj , Rj , Qj > 0 for j ∈ N are control gains, and
the weights Yjk ≥ 0 for j, k ∈ N induce an undirected and
connected communication graph, i.e., Yjk = Ykj > 0 when
the local controllers at buses j and k communicate, otherwise
Yjk = Ykj = 0, and Yjj = 0 for j ∈ N .

It is easy to see that any point (θ∗, ω∗, u∗) ∈ R3|N | is
an equilibrium of the closed-loop system (1)–(3) and (32) if
and only if it satisfies

ω∗ = 0 (33a)
∇U(θ∗) = u∗ (33b)

u∗ = γA−11|N | (33c)

where U is defined in (23) and ∇U is its gradient, γ :=
−
∑
j∈N pj/

∑
j∈N a

−1
j by summing over all the equations

in (33b), and A := diag(aj , j ∈ N ). Hence (ω∗, u∗) exists
and is unique. We make the following assumption regarding
the existence of θ∗ and its strict feasibility for ED.

Assumption 2: Assume that the closed-loop system (1)–
(3) and (32) features a set of equilibria (θ∗, ω∗, u∗) that
satisfy (33) and (8).

In simulations we observe that the DAI control (32) is
stable for an arbitrary positive choice of control gains.
To simplify the following presentation, we choose simple
control gains for stability analysis.

Assumption 3: We choose simple control gains: Q = A
and K = R = T−1A−1 with T being an arbitrary diagonal
and positive definite matrix.

We remark that with this choice of gains, the DAI control
(32) includes with the DAPI control proposed in [1], [26].
The controller in [1], [26] makes the additional parametric
assumption D = A−1 and merges the variables sj + qj .

Theorem 3: Suppose the ED problem in (5)–(7) satisfies
Assumption 1. Suppose the closed-loop system (1)–(3) and
(32) has a nonempty set of equilibria as given in Assumption
2, and the control gains are selected as in Assumption 3.
Then these equilibria are locally asymptotically stable and
optimal for ED.

Proof: We partition the states θ and u as well as the
matrix D of droop coefficients according to N = G ∪ L.
Consider the auxiliary variable

y = −u.

Under Assumptions 2 and 3, we obtain the following state
space model for the incremental closed-loop system:

MGω̇G=−DGωG−(∇GU(θ)−∇GU(θ∗))−(yG−y
∗
G) (34a)

0 = −DLθ̇L−(∇LU(θ)−∇LU(θ∗))−(yL−y
∗
L) (34b)

θ̇G = ωG (34c)
T ẏ = A−1θ̇ − LYA(y − y∗) (34d)

where LY is the Laplacian matrix of the communication
graph. To analyze the system (34) we choose the following
incremental Lyapunov function candidate inspired by [21]:

V (θ, ωG , y) =
1

2
ωTGMGωG + U(θ)− U(θ∗)

−∇U(θ∗)(θ−θ∗) +
1

2
(y−y∗)TAT (y−y∗) (35)

For an equilibrium θ∗ satisfying Assumptions 1, |θ∗j − θ∗k| <
π/2 for all (j, k) ∈ E , the Hessian ∇2U(θ∗) is positive
semidefinite with the only nullspace 1|N | corresponding to
the rotational symmetry of equilibria θ∗. It follows that the
incremental Lyapunov function V (θ, ωG , y) in (35) is locally
positive definite with respect to the equilibrium subspace.

The derivative of V (θ, ωG , y) along trajectories of (34) is

V̇ (θ, ωG , y)

= ωTGMGω̇G + (∇LU −∇LU∗)T θ̇L
+ (∇GU −∇GU∗)T θ̇G + (y − y∗)TAT ẏ

= −ωTGDGωG − ωTG (∇GU −∇GU∗)− ωTG (yG − y
∗
G)

− (∇LU −∇LU∗)T D−1
L (∇LU −∇LU∗)

− (∇LU −∇LU∗)T D−1
L (yL − y

∗
L)

+ (∇GU −∇GU∗)T ωG + (yG − y
∗
G)TωG

−(yL − y
∗
L)TD−1

L (∇LU −∇LU∗)



−(yL−y
∗
L)TD−1

L (yL−y
∗
L)−(y−y∗)TALYA(y−y∗)

= −ωTGDGωG − (y − y∗)TALYA(y − y∗)

−
(
∇LU −∇LU∗ + yL − y

∗
L

)T
D−1
L

·
(
∇LU −∇LU∗ + yL − y

∗
L

)
(36)

where ∇U and ∇U∗ denote ∇U(θ) and ∇U(θ∗) respec-
tively. Hence, the Lyapunov function V (θ, ωG , y) is non-
increasing. We construct a strictly decreasing Lyapunov
function by applying Chetaev’s trick [30] and adding the
cross-term ε (∇GU(θ)−∇GU(θ∗))

T
MGωG to the Lya-

punov function for some sufficiently small ε > 0.
Some straightforward calculations give the following ex-

pression for the time-derivative of the additional cross-term:

d

dt
ε (∇GU −∇GU∗)T MGωG

= ε
(
∇GU−∇GU∗

)T(−DGωG−(∇GU −∇GU∗)

−(yG − y
∗
G)
)

+ εωTGLGωG .

Here LG is a non-symmetric Laplacian matrix associated to
the graph with state-dependent weights MjBjk cos(θj−θk).
Note that the weights are strictly lower and upper bounded.
Consider now the augmented incremental Lyapunov function

Ṽ (θ, ωG , y) = V (θ, ωG , y) + ε (∇GU −∇GU∗)T MGωG .

Its time-derivative along trajectories of (34) is

˙̃V (θ, ωG , y) = −


ωG

∇GU −∇GU∗
y − y∗

∇LU −∇LU∗


T

Q


ωG

∇GU −∇GU∗
y − y∗

∇LU −∇LU∗


where the matrix Q is defined in (37).

To verify that the Lyapunov function is strictly decreasing
outside equilibria, observe the following: (i) The diagonal
upper-left block of Q is positive definite for ε > 0 suffi-
ciently small. Indeed, εI is positive definite, and the Schur
complement DG − ε2D2

G/8(LG +LTG ) is positive definite as
well for ε > 0 sufficiently small and any θ ∈ R|N |. (ii)
The Lyapunov function is decreasing for ε > 0 sufficiently
small if it is decreasing with the off-diagonal (upper-right and
lower-left) blocks of Q set to zero. (iii) Finally, the diagonal
lower-right block of Q is positive semidefinite with nullspace yG − y

∗
G

yL − y
∗
L

∇LU −∇LU∗

 ∈ span

 0|G|
A−11|L|
−A−11|L|

 . (38)

Fig. 1. IEEE New England test system [35]. The red dashed lines represent
communication links between generators and controllable loads.

We conclude that Ṽ (θ, ωG , y) is non-increasing, and its
derivative is zero for (38) and for the equilibria[

ωG
∇GU −∇GU∗

]
=

[
0|G|
0|G|

]
. (39)

However, since ∇U −∇U∗ is orthogonal to 1|N | conditions
(38) and (39) can be true simultaneously only if ∇LU −
∇LU∗ = 0|L| and yL − y

∗
L = 0|L|. We conclude that the

Lyapunov function Ṽ is strictly decreasing outside equilibria.
Since the Lyapunov function Ṽ is also locally positive

definite with respect to equilibrium set satisfying |θ∗j −θ∗k| <
π/2 for all (j, k) ∈ E , it follows that these equilibria are lo-
cally asymptotically stable. By Assumptions 1–2, (θ∗, u∗) is
strictly feasible for ED and satisfies the optimality condition
(12). Invoking Lemma 1, (θ∗, u∗) is optimal for ED.

V. SIMULATION CASE STUDY

In this section we evaluate the performance of the pro-
posed controllers using the IEEE New England test system
shown in Fig. 1. This system has 10 generators and 39 buses,
and serves a total load of about 6 GW. The generator inertia
moments Mj and line susceptances Bjk are obtained from
Power System Toolbox [35]. We choose uniform droop coef-
ficients Dj = 1 pu for all the buses. Although the theoretical
analysis requires controllers at every bus of the network, here
we only control the generators and the loads on buses 3, 4, 7,
15, 16, 21, 23, 24, 26, 28, using uniform gains Kj = 60 pu
and Rj = 1 pu. For the DAI control, a communication

Q =


DG − ε(LG + LTG )/2 ε/2 ·DG 0 0

ε/2 ·DG εI ε/2 · [ I0 ] 0

0 ε/2 · [ I 0 ] ALYA+
[

0 0
0 D−1
L

] [
0

D−1
L

]
0 0 [ 0 D−1

L ] D−1
L

 (37)
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Fig. 2. Frequencies of generators 2, 4, 6, 8, 10, under droop control, the
completely decentralized integral control, and DAI.
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Fig. 3. Marginal costs ajuj for generators 2, 4, 6, 8, 10 and controllable
loads on buses 4, 15, 21, 24, 28, under the completely decentralized integral
control in (a) and the DAI control in (b).

graph connecting generators and controllable loads is shown
in Fig. 1, with Yjk = 1 for all connected pairs (j, k). We
select controller gains Qj = 50/degree(j) where degree(j)
denotes the degree of bus j in the communication graph. The
coefficients aj of economic dispatch are generated uniformly
randomly from [0, 1].

In the simulation, the system is initially at a supply-
demand balanced setpoint with 60 Hz frequency. At time
t = 1 second, buses 4, 12, 20 each makes a 33 MW step
change in real power consumption, causing bus frequencies
to drop. Figure 2 shows the frequencies of five generators,
under cases with different control schemes: droop control, the
completely decentralized integral control, and DAI. It can be
seen that while droop control synchronizes bus frequencies to
lower than 60 Hz, both the decentralized integral control and
DAI recover bus frequencies to 60 Hz, with similar transients.

Figure 3 shows the trajectories of marginal costs ajuj ,
under the completely decentralized integral control and the
DAI control. While at the equilibrium of the decentralized
integral control the marginal costs are different across the
generators and controllable loads, they are the same under
DAI, which, by Proposition 1, implies that economic dispatch
is solved by DAI. Moreover, for most of the displayed gener-
ators and controllable loads, DAI reduces both transient and
steady-state control actions compared to the decentralized
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Fig. 4. Trajectories of economic dispatch objective for the completely
decentralized integral control and DAI. The blue dotted line shows the
minimum objective value of economic dispatch.

integral control.
In Fig. 4 we compare the objective values of economic

dispatch, i.e., total costs of control and a measure for the
control effort, along trajectories of control actions of the
completely decentralized integral control and DAI, and com-
pare them with the minimum objective value of economic
dispatch for the given step change in load. We see that DAI
achieves a better transient performance, a smaller total cost
of control, as well as a more economic stead-steady state
compared to the decentralized integral control, and indeed
solves the economic dispatch problem at equilibrium.

VI. CONCLUSIONS

In this paper we proposed two control strategies–a
completely decentralized integral control and a distributed
averaging-based integral (DAI) control–that can be imple-
mented using generators or loads. We showed that the
decentralized integral control can achieve global asymptotic
stability after arbitrary changes in generation or load. How-
ever, the resulting equilibrium may be neither optimal nor
feasible for economic dispatch. Thus, we proposed the DAI
control, for which local asymptotic stability of the closed-
loop system was proved. Simulations demonstrated that DAI
preserves similar convergence properties as the decentralized
integral control, and achieves the desired economic dispatch
performance.
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