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Abstract— Conventional analysis and control approaches to
inter-area oscillations in bulk power systems are based on a
modal perspective. Typically, inter-area oscillations are identi-
fied from spatial profiles of poorly damped modes, and they
are damped using carefully tuned decentralized controllers.
To improve upon the limitations of decentralized controllers,
recent efforts aim at distributed wide-area control strategies
that involve the communication of remote signals, which are
typically chosen to maximize modal observability metrics. Here,
we investigate a novel approach to the analysis and control of
inter-area oscillations. Our framework is based on a stochasti-
cally driven system with performance outputs chosen such that
the H2 norm is associated to incoherent inter-area oscillations.
We show that an analysis of the output covariance matrix
offers new insights complementary to modal approaches. Next,
we leverage the recently proposed sparsity-promoting optimal
control approach to design controllers that simultaneously opti-
mize the closed-loop performance and the control architecture.
We investigate various performance trade-offs between fully
decentralized and distributed wide-area controllers. In the end,
we are able to identify decentralized control architectures that
are capable of reasonable performance levels compared to the
optimal centralized controllers.

I. INTRODUCTION

Inter-area oscillations in bulk power systems are associated
with the dynamics of power transfers and involve groups
of synchronous machines oscillating relative to each other.
These system-wide oscillations arise from modular network
topologies (with tightly clustered groups of machines and
sparse interconnections among these clusters), heterogeneous
machine dynamics (resulting in slow and fast responses),
and large inter-area power transfers further promoting os-
cillations. As the system loading increases and renewables
are deployed in remote areas, long-distance power transfers
will outpace the addition of new transmission facilities. As
a result, inter-area oscillations become ever more weakly
damped, induce severe stress and performance limitations on
the transmission network, and may even become unstable and
cause outages [1], see the 1996 Western U.S. blackout [2].

Traditional analysis and control approaches to inter-area
oscillations are based on modal approaches [3], [4]. Typi-
cally, inter-area oscillations are identified from the spatial
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profiles of eigenvectors and participation factors of poorly
damped modes [5], [6]. Such oscillations are conventionally
damped via decentralized controllers, whose gains are care-
fully tuned according to root locus criteria [7]–[9].

To improve upon the limitations of decentralized con-
trollers, recent research efforts aim at distributed wide-area
control strategies that involve the communication of remote
signals, see the surveys [10], [11] and the excellent articles
in [12]. The wide-area control signals are typically chosen
to maximize modal observability metrics [13], [14], and the
control design methods range from root locus criteria to
robust and optimal control approaches [15]–[17].

Here, we investigate a novel approach to the analysis and
control of inter-area oscillations. Our unifying analysis and
control framework is based on a stochastically driven power
system model with performance outputs inspired by slow
coherency theory [18], [19]. We analyze inter-area oscilla-
tions by means of the H2 norm of this system, as in recent
related approaches for interconnected oscillator networks and
multi-machine power systems [20]–[22]. We show that an
analysis of power spectral density and variance amplification
offers new insights that complement conventional modal
approaches.

To identify a suitable and sparse wide-area control archi-
tecture and to design optimal controllers, we appeal to the
recently proposed paradigm of sparsity-promoting optimal
control [23]–[26]. Sparsity-promoting control approaches
have been successfully employed in power system wide-area
control problems [27]–[31]. Here, we follow the sparsity-
promoting optimal control framework developed in [24], [29]
and find a linear static state feedback that simultaneously
optimizes a standard quadratic H2 optimal control criterion
(associated to incoherent and poorly damped inter-area oscil-
lations) and induces a sparse control architecture. We inves-
tigate different performance indices resulting in controllers
that strike a balance between low communication complexity
and closed-loop performance. We are able to identify fully
decentralized controllers that achieve comparable perfor-
mance relative to the optimal centralized controllers. Thus,
our results also provide a constructive answer to the much-
debated question whether locally observable oscillations in
a power network are also locally controllable; see [32]. We
illustrate the utility of our approach with the IEEE 39 New
England power grid model, whose data can be found in [33].

The remainder of this paper is organized as follows.
In Section II-A, we recall the modeling and causes for
inter-area oscillations in power networks. In Section II-B,
we introduce a new perspective of analysis and control of



inter-area oscillations, power spectral density and variance
amplification analysis. In Section II-C, we formulate the
sparsity-promoting optimal control problem subject to struc-
tural constraints. In Section III, we present our control design
and analysis for the IEEE 39 New England power grid.
Finally, Section IV concludes the paper.

II. PROBLEM FORMULATION

A. Modeling and background on inter-area oscillations

A power network is described by the nonlinear dynamics
of generators and their control equipments as well as the
algebraic load flow, generator stator, and power electronic
circuit equations [34]. After linearizing the dynamics around
a stationary operating point and eliminating the algebraic
equations, we obtain a linear state space model of the form

ẋ = Ax + B1 d + B2 u , (1)

where x is the state, u is the control action provided by
generator excitation/governor control or power electronics
control devices, and d represents disturbance in the form
of white-noise, for example, from fluctuations in generation
and loads [34], [35].

When neglecting the fast electrical dynamics as well
as control and disturbance inputs, the dominant dynamic
behavior of a multi-machine power system arises from the
electro-mechanical dynamics among the generators, which
are typically modeled by the swing equations [34]:

M θ̈ + D θ̇ + Lθ = 0 . (2)

Here, θ and θ̇ are the generator rotor angles and frequencies,
M and D are the diagonal matrices of generator inertia
and damping coefficients, and L is a Laplacian matrix that
describes the interactions between generators, see [31]. The
swing dynamics (2) feature an inherent rotational symmetry
and are invariant under a rigid rotation of all angles θ.

The swing dynamics (2) illustrate the cause of inter-area
oscillations: the swing equations describe a large-scale sys-
tem of heterogenous oscillators harmonically (with distinct
inertia and damping coefficients) coupled through a spring-
type network with Laplacian matrix L. Inter-area oscillations
arise from modular network topologies and weights (encoded
in the Laplacian matrix L) featuring densely connected
groups of generators (so-called areas), which are sparsely
connected among another. These areas can be aggregated
into coherent groups of machines which swing relative to
each other; see the slow coherency analysis in [18], [19].

In this paper, we design wide-area controllers to suppress
such inter-area oscillations. With a linear static state feedback
u = −Gx (to be designed later), the closed-loop system takes
the form

ẋ = (A−B2G)x + B1 d

z =

[
z1
z2

]
=

[
Q1/2

−R1/2G

]
x

(3)

where z is a performance output with state and control
weights Q and R. The preceding discussion on inter-area

oscillations suggests that homogeneous networks (with iden-
tical all-to-all coupling among generators) feature no inter-
area oscillations. This suggests a state objective of the form

xT Qx =
1

2
θT Lunif θ +

1

2
θ̇T M θ̇.

where Lunif is the uniform Laplacian (or projector) matrix

Lunif = I − (1/N)11T . (4)

where 1 denotes the vectors of all ones. The objective
function xTQx quantifies the kinetic and potential energy
of the swing dynamics in a homogeneous network, and
preservers rotational symmetry. The term uTRu quantifies
the control efforts. In summary, the performance output z1
describes the deviation from a homogenous network without
inter-area oscillations. For simplicity, we choose the control
weight R to be the identity matrix.

B. Analysis of power spectral density and variance amplifi-
cation

The conventional analysis of inter-area oscillations is
based on spatial profiles of eigenvectors and participation
factors of poorly damped modes. Likewise, the traditional
control design is also based on a spectral and modal perspec-
tive [5], [6]. In this paper, we analyze and control inter-area
oscillations from the perspective of power spectral density
and output covariance of both the open-loop and the closed-
loop system [36]–[38]. This approach offers additional and
complementary insights to a modal analysis.

We briefly review the power spectral density and variance
amplification analysis of a linear state space system of the
form (3). The H2 norm from the white noise input d to the
performance output z is defined as

‖H(jω)‖22 =
1

2π

∫ ∞
−∞
‖H(jω)‖2HS dω

= trace
(
X (Q + GT RG)

) (5)

where H(jω) is the transfer function from d to z in the
frequency domain, and the controllability Gramian X is the
solution to the Lyapunov equation [39]

(A−B2G)X + X (A−B2G)T = −B1B
T
1 . (6)

Here, the Hilbert-Schmidt norm ‖H(jω)‖2HS is defined as

‖H(jω)‖2HS = trace (H(jω)H∗(jω))

=
∑
i

σ2
i (H(jω)),

(7)

where the σi’s are the singular values of H(jω). The Hilbert-
Schmidt norm quantifies the power spectral density of the
stochastically forced system (3).

The controllability Gramian X in (6) is also the state
covariance matrix, and

Y = Q1/2XQ1/2

is the output covariance matrix corresponding to z1. The



eigenvalue decomposition of the output covariance matrix

Y =
∑
i

λi vi v
T
i (8)

provides insight about the spatial distribution of modes that
determine variance amplification. Here, λi’s and vi’s are the
eigenvalues and right eigenvectors of the matrix Y .

C. Sparsity-promoting linear quadratic control with struc-
tural constraints

The sparsity-promoting optimal control framework de-
veloped in [24] aims at finding a static state feedback G
that simultaneously optimizes the H2 norm of system (3)
while inducing a sparse control architecture. Compared to
conventional optimal control and stabilization problems, as a
result of the rotational symmetry, both the open-loop matrix
A and the state performance weight Q feature a common
zero eigenvalue with identical eigenvector associated with
the average of all rotor angles. In earlier work [30], [31],
to arrive at a stabilizing and numerically feasible solution,
we have removed the natural rotational symmetry by adding
a small regularization term to the diagonal elements of
performance matrix Q. The resulting controllers require the
use of absolute angle measurements to stabilize the average
rotor angle. Besides the problem of obtaining absolute angle
measurements (with respect to a common reference), such a
regularization also induces a slack bus (a reference generator
with fixed angle) and implicitly manipulates the original
network infrastructure.

In this article, we restrict our attention to only relative
rotor angle measurements which preserve the natural network
symmetries. Note that this requirement imposes structural
constraints on the feedback gain G: the average rotor angle
has to remain invariant under the state feedback u = −Gx.
To cope with these structural constraints, we augment the
approach in [24]. Considering the following coordinate trans-
formation

T =

[
U 0
0 I

]
,

where the columns of matrix U ∈ RN×(N−1) (N is the
number of generators) form an orthonormal basis for the
subspace 1⊥. We can obtain the columns of U from the
(N − 1) eigenvectors of matrix Lunif in (4) corresponding
to the non-zero eigenvalues. In the new set of coordinates,
the matrices of the closed-loop system (3) change to

Ā := TTAT, B̄i := TT Bi, Q̄1/2 := Q1/2 T.

The feedback matrices G (in the original set of coordinates)
and F (in the new set of coordinates) are related by

F = GT ⇔ G = F TT .

The H2 norm from d to z is then obtained as

J(F ) :=

{
trace

(
B̄T1 P (F ) B̄1

)
for F stabilizing,

∞ otherwise,

where P (F ) is the closed-loop observability Gramian that

satisfies the Lyapunov equation

(Ā − B̄2 F )TP + P (Ā − B̄2 F ) = −(Q̄ + FT R̄ F ).

Our objective is to achieve a desirable tradeoff between the
H2 performance of the closed-loop system and the sparsity of
the feedback gain. While the H2 performance is expressed in
terms of the feedback matrix F in the new set of coordinates,
it is desired to enhance sparsity of the feedback matrix G in
the original set of coordinates. In order to achieve this task,
we formulate the sparsity-promoting optimal control problem
as

minimize J(F ) + γ g(G)

subject to F TT − G = 0
(9)

where γ > 0 is a design parameter which specifies the em-
phasis on sparsity, and the regularization term is determined
by the weighted `1-norm of G:

g(G) :=
∑
i, j

Wij |Gij |.

In [29], we showed how to efficiently solve the optimization
problem (9) by an iterative approach utilizing the alternating
direction method of multipliers (ADMM) algorithm [24],
[40]. Algorithmic details for solving this problem are pro-
vided in the appendix.

We are now in a position to design state feedback gains
G that maintain rotational symmetry and achieve a desirable
tradeoff between variance amplification of the closed-loop
system and sparsity of the controller.

III. CASE STUDY: IEEE 39 NEW ENGLAND EXAMPLE

We consider the IEEE 39 New England model, which
is illustrated in Fig. 1 and consists of 39 buses and 10
detailed two-axis generator models. Generators 1 to 9 are
equipped with excitation control systems, and generator 10
is an equivalent aggregated model representing a neighboring
transmission network area.

Fig. 1: IEEE 39 New England Power Grid and its groups of
coherent machines



We follow a two-level control strategy that combines local
and wide-area control. The local control inputs are based
on a conventional power system stabilizer (PSS) design to
suppress local oscillations, while the wide-area controller
is designed to damp inter-area oscillations. For the local
control, we use a standard PSS controller with lead/lag
elements and carefully tuned coefficients taken from [9];
see [31] for further details. For the subsequent analysis and
the wide-area control design, we assume that the local PSS
controllers are embedded in the open-loop system matrix A.

A. Open-loop system analysis

Despite the action of the local PSS controllers, a modal
analysis of the eigenvalue decomposition and participation
factors reveals the presence of five dominant inter-area modes
in the open-loop New England power grid model [31]. These
modes are reported in Table I, and the groups of coherent
machines (identified from the spatial profiles of eigenvectors)
are illustrated in Fig. 1. This spatial profile together with
modal controllability and observability metrics [13], [14] can
be used to indicate which wide-area controller links need to
be added to dampen or distort the inter-area modes.

TABLE I: Inter-area modes of the New England power grid

mode eigenvalue damping frequency coherent
no. pair ratio [Hz] groups
1 −0.6347± i 3.7672 0.16614 0.59956 10 vs. all others
2 −0.7738± i 6.7684 0.11358 1.0772 1,8 vs. 2-7,9,10
3 −1.1310± i 5.7304 0.19364 0.91202 1,2,3,8,9 vs. 4-7
4 −1.1467± i 5.9095 0.19049 0.94052 4,5,6,7,9 vs. 2,3
5 −1.5219± i 5.8923 0.25009 0.93778 4,5 vs. 6,7

Here, we depart from this modal perspective and follow a
different path. We first study the power spectral density and
variance amplification of the open-loop system, which iden-
tifies the frequencies for which large amplification occurs.

In Fig. 2, the power spectral density of the open-loop sys-
tem is shown. Observe that the largest amplification occurs
for small temporal frequencies, and there are two resonant
peaks. The first peak at ω1 = 5.7882 rad/s corresponds to
f1 = ω1/2π = 0.9212 Hz and is aligned with the inter-area
modes 2, 3, 4, 5 in Table I. the second peak at ω2 = 3.7896
rad/s corresponds to f2 = ω2/2π = 0.5996 Hz and is aligned
with inter-area mode 1 in Table I.

Next we study the diagonal elements and the eigenvalue
decomposition of the output covariance matrix, which shows
the contribution of each generator to the variance amplifi-
cation. In Fig. 3, the diagonal elements of the open-loop
output covariance matrix are plotted to show the angle
and frequency variance of the individual generators. Fig. 4
displays the eigenvectors corresponding to the four largest
eigenvalues of the open-loop output covariance matrix. In
Fig. 3 and 4, the first 10 indices correspond to angles and
remaining ones correspond to frequencies. From Fig. 3,
we observe that frequencies are better aligned than angles.
We conclude that the bulk of the variance arises from the
misalignment of angles, in particular those of generators 4, 5,

Fig. 2: Power spectral density.

Fig. 3: Open-loop variance.

8 and 9. A similar observation can be made from the spatial
profile of the eigenvectors in Fig. 4: the largest contribution
to the variance amplification is caused by the angle deviation
of generators 4, 5, 8 and 9.

The diagonal values of the output covariance matrix and
the spatial profile of its dominant eigenvalues provide us with
a similar understanding as the conventional modal analysis
presented in [31]. On the other hand, by looking at the modes
corresponding to the dominant eigenvalues of the output
covariance matrix, our analysis provides additional insights
about the sources of variance amplification. Moreover, our
sparsity-promoting H2 optimal control design is explicitly
based on minimizing the output covariance. As a result, this
H2 analysis framework also explains the sparsity pattern
of the resulting controllers, for example, why certain long-
range communication links are important for the closed-loop
performance.

B. Sparsity-promoting optimal control

We used sparsity-promoting optimal control formula-
tion (9) with 100 logarithmically-spaced points for γ =
[ 10−4 , 2 ]. In Fig. 5, sparsity patterns of the feedback



(a) (b)

(c) (d)

Fig. 4: Eigenvector corresponding to the four largest eigen-
values of the covariance matrix Y of the open-loop system.

matrix G for different values of γ are illustrated. When
γ = 0.1099, controller on generator 9 needs to have access to
the rotor angles of generator 5 and the aggregated model 10.
This wide-area control architecture is not surprising since
generator 9 is the least connected generator (in terms of
the effective resistance metric, see [41]), the aggregated
model 10 dominates1 the power system’s kinetic energy
1/2 θ̇TMθ̇, and generator 5 dominates the most energetic
coherent group consisting of generators 4 and 5 (see the
spatial distribution in Fig. 3 and 4) in terms of kinetic energy.
For γ = 0.4460, we obtain a fully-decentralized controller,
and performance is compromised by about 7.5% relative to
the optimal centralized controller; see Fig. 6. By increasing
γ to 2, the performance is compromised by about 10.5%.

We emphasize that we can embed our fully decentralized
controller into the local generator excitation control systems,
for example, by directly feeding the decentralized and lo-
cal state-feedback to the automatic voltage regulator or by
retuning the gains of the existing local PSS controllers. In
other words, inter-area oscillations can be suppressed by
purely local control strategies while achieving nearly the
same performance of the optimal centralized controller [39].

C. Comparison of open-loop and closed-loop systems

The structure of the sparsity-promoting controller with
γ = 2 is shown in Fig. 5c. This controller is fully decen-
tralized with only 18 nonzero elements. In this section, we
compare the power spectral density and variance amplifica-
tion of the following three systems: the open-loop system,
the closed-loop system with optimal centralized controller,

1The inertia of the aggregated equivalent model 10 is an order of
magnitude larger than those of the physical generators 1, . . . , 9.

(a) γ = 0.1099, card (G) = 39

(b) γ = 0.4460, card (G) = 24

(c) γ = 2, card (G) = 18

Fig. 5: Sparsity pattern of G.

Fig. 6: Performance vs sparsity.

and the closed-loop system with the sparse decentralized
controller depicted in Fig. 5c.

Fig. 7 provides a comparison between the power spectral
densities of three cases. The fully decentralized sparse con-
troller performs almost as well as the optimal centralized
controller for high frequencies; for low frequencies, we
observe some discrepancy that accounts for about 10 % of
performance degradation in the variance amplification.

Fig. 7: Power spectral density comparison.



In Fig. 8, we plot the eigenvalues of the output covari-
ance matrix Y to demonstrate the variance amplification
of both kinetic and potential energy for the three cases.
It can be observed that the optimal centralized as well as
the decentralized feedback do not only lower the variance
amplification of the open-loop system, but they also balance
the spectrum, i.e. they equalize the variance amplification of
all modes. The diagonal elements of the output covariance

Fig. 8: Variance amplification comparison. ∗’s represent
open-loop system, ◦’s represent closed-loop system with
sparse decentralized controller and +’s represent closed-loop
system with optimal centralized controller.

matrix for all three cases are shown in Fig. 9. We observe that
our control strategy is capable of diminishing the variance
of both angles and frequencies. Additionally, the diagonal
elements of the output covariance matrix are also equalized
and balanced both by the optimal centralized and the decen-
tralized controller. We conclude that, similar to the modal
observations discussed in [31], the optimal feedback gain
not only increases the damping of the eigenvalues associated
with the inter-area modes, but it structurally distorts these
modes by rotating the corresponding eigenvectors.

Fig. 9: Angle and frequency variance.

IV. CONCLUDING REMARKS

In this paper, we analyzed inter-area oscillations of power
systems by studying their power spectral density functions
and output covariance matrices. Our open-loop analysis
identifies the generators that contribute most to the inter-
area oscillations. By comparing open-loop and closed-loop
systems, we are able to understand the effect of the sparsity-
promoting control both in terms of performance and with
regards to the resulting closed-loop communication pattern.

APPENDIX

A. Sparsity-promoting optimal control algorithm

We briefly summarize the alternating direction method
of multiplier (ADMM) algorithm in the sparsity-promoting
optimal control design approach introduced in Section III
to solve (9). We refer readers to [24] for additional de-
tails. The algorithms and examples used in this paper have
been implemented in Matlab and can be downloaded at
www.ece.umn.edu/users/mihailo/software/lqrsp/.

1) Augmented Lagrangian: First, we form augmented
Lagrangian associated with the constrained problem (9)

Lρ(F,G,Λ) = J(F ) + γ g(G) +

trace
(
ΛT (F TT − G)

)
+

ρ

2
‖F TT −G ‖2F

where Λ denotes the matrix of Lagrange multipliers and ‖·‖F
is the Frobenius norm of a matrix. The positive regulariza-
tion parameter γ specifies the importance of sparsity. For
γ = 0, the standard centralized linear quadratic regulator is
obtained; as γ increases, the feedback matrix G becomes
increasingly sparser.

2) Iterative ADMM algorithm: Next, we use a sequence
of iterations following the ADMM algorithm to find a
minimizer of the constrained problem (9)

F k+1 = arg min
F

Lρ (F, Gk, Λk)

Gk+1 = arg min
G

Lρ (F k+1, G, Λk)

Λk+1 = Λk + ρ (F k+1 TT − Gk+1).

In contrast to the general method of multipliers, in which we
minimize F and G jointly, ADMM separates the problem
into an F -minimization step which can be solved using
descent method, a G-minimization step and a dual variable
update step, that have analytical solutions.

3) Stopping criterion:

‖F k+1 TT −Gk+1‖ ≤ ε

‖Gk+1 −Gk‖ ≤ ε

The ADMM algorithm stops when both primal and dual
residuals are smaller than the pre-specified thresholds.

4) Polishing step: Finally, we fix the sparsity pattern of
G identified using ADMM and solve the optimal control
problem with structural constraints corresponding to the
identified controller architecture.
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