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Abstract—This paper examines the dynamics of power-
electronic inverters in islanded microgrids that are controlled
to emulate the dynamics of Van der Pol oscillators. The general
strategy of controlling inverters to emulate the behavior of nonlin-
ear oscillators presents a compelling time-domain alternative to
ubiquitous droop control methods which presume the existence of
a quasi-stationary sinusoidal steady state and operate on phasor
quantities. We present two main results in this work. First, by
leveraging the method of periodic averaging, we demonstrate
that droop laws are intrinsically embedded within a slower
time scale in the nonlinear dynamics of Van der Pol oscillators.
Second, we establish the global convergence of amplitude and
phase dynamics in a resistive network interconnecting inverters
controlled as Van der Pol oscillators. Furthermore, under a set
of non-restrictive decoupling approximations, we derive sufficient
conditions for local exponential stability of desirable equilibria
of the linearized amplitude and phase dynamics.

I. INTRODUCTION

AN islanded inverter-based microgrid is a collection of het-
erogeneous DC energy resources, e.g., photovoltaic (PV)

arrays, fuel cells, and energy-storage devices, interfaced to an
AC electric distribution network and operated independently
from the bulk power system. Energy conversion is typically
managed by semiconductor-based power-electronic voltage-
source inverters. The goal of decentralized real-time control
is to regulate the inverters’ terminal-voltage amplitude and
frequency to realize a stable power system while achieving
a fair and economic sharing of the network load.

The vast majority of academic and industrial efforts ap-
proaches the real-time control challenge by means of droop
control [1]–[4]. Drawing from the control of synchronous
generators in bulk power systems, droop control linearly trades
off the active and reactive power injection with the inverters’
terminal-voltage amplitude and frequency. In this paper, we
focus on a communication-free decentralized control strategy
wherein islanded inverters are regulated to mimic the dynamics
of nonlinear limit-cycle oscillators [5]–[8]. This method is
inspired by synchronization phenomena in complex networks
of coupled oscillators, and is termed Virtual Oscillator Con-
trol (VOC). In general, VOC is executed by programming
nonlinear differential equations of limit-cycle oscillators onto
inverters’ microcontrollers, and utilizing pertinent sinusoidally
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Figure 1: VOC stabilizes arbitrary initial conditions to a sinusoidal
steady state, while droop control acts on phasor quantities; only well
defined in the sinusoidal steady state. One contribution of this work
is to determine a set of parametric correspondences such that both
approaches admit identical dynamics in sinusoidal steady state.

varying oscillator dynamic states to construct the pulse-width
modulation (PWM) control signal. It is worth emphasizing
that VOC constitutes a time-domain approach and stabilizes
arbitrary initial conditions to a sinusoidal steady state. As such,
it is markedly different from droop control which operates
on phasor quantities and presumes the existence of a quasi-
stationary AC steady state; see Fig. 1. See also [9], [10] for
similar time-domain control strategies.

Extending our previous efforts in [5]–[8] where we focused
on deadzone oscillators, in this paper we investigate the
voltage dynamics of power-electronic inverters controlled to
emulate the dynamics of Van der Pol oscillators (essentially,
smooth cubic polynomial realizations of deadzone oscillators).
Unless stated otherwise, in subsequent discussions where we
reference VOC, we imply the control strategy is implemented
with Van der Pol oscillators; also, inverters controlled with
this approach are termed virtual-oscillator controlled (VO-
controlled) inverters. Coupled Van der Pol oscillators tend to
synchronize without any external forcing [11], [12], and hence
utilizing them as virtual oscillators for inverter control is an
effective strategy for realizing a stable AC microgrid.

We provide two main contributions in this paper: First, a
correspondence is established between VOC and droop control
by obtaining conditions under which the respective voltage dy-
namics at the inverter terminals—close to the sinusoidal steady
state—are identical. To bridge the temporal gap between
droop control and VOC, we average the periodic nonlinear
oscillator dynamics to focus on AC-cycle time scales [13].
In addition to yielding insightful circuit-theoretic interpreta-
tions for droop control, our analysis highlights the choice of
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design parameters that ensure VO-controlled inverters mimic
the behavior of droop-controlled inverters close to the quasi-
stationary sinusoidal steady state and vice versa (see Fig. 1).
This allows us to leverage insights on the optimal choice of
droop coefficients [14] to design VO-controlled inverters that
achieve load sharing or economic optimality in steady state.

The second contribution of this work is to demonstrate
the convergence of the averaged terminal-voltage amplitude
and phase dynamics of VO-controlled inverters in resis-
tive networks using a gradient-sytem formulation in concert
with LaSalle’s invariance principle. Under a set of non-
restrictive decoupling assumptions on the phase and amplitude
dynamics—valid in unstressed networks with a nearly uniform
voltage profile and approximately equal phase angles [1],
[15]–[19]—we also present sufficient conditions for local
exponential stability of potentially desirable equilibria of the
linearized and averaged VO-controlled inverter dynamics.

Within the realm of analytical approaches that investigate
stability and synchronization in this application domain, for
the deadzone type oscillators and parallel-connected inverters
considered in [5]–[8], we utilized small-gain type arguments
to prove synchronization; these results were generalized in
terms of oscillator type and network topology recently in [20]
by leveraging structural and spectral properties of a network
reduction procedure called Kron reduction [21]. Related work
in [9], [10] employed similar arguments based on incremental
passivity. From a dynamical systems perspective, we establish
a connection between limit-cycle oscillators (VO-controlled
inverters) and phase oscillators (droop-controlled inverters) by
means of coordinate transformations and averaging. For Van
der Pol oscillators, similar connections and synchronization
analyses date back to [11] and have recently been surveyed
in the tutorial [22]. Additionally, averaging methods have
recently been applied to study synchronization in Liénard-type
oscillators [23], which include Van der Pol oscillators as a par-
ticular case. It is also worth mentioning that similar averaging
methods have been applied to extract small-signal state-space
models for DC-DC power-electronic converters [24]–[28].
Finally, we emphasize that the averaging analysis adopted here
applies to general planar Liénard-type limit-cycle oscillators
which include Van der Pol oscillators as a particular case [29].

Related to this work, for droop-controlled inverters in radial
lossless microgrids under the assumption of constant voltage
amplitudes, analytic conditions for proportional power sharing
and synchronization have recently been derived by applying
results from the theory of coupled oscillators in [14], [30].
Conditions for voltage stability for a lossless parallel mi-
crogrid with one common load have been derived in [31].
A decentralized linear matrix inequality-based control design
for guaranteeing network stability considering variable voltage
amplitudes and phase angles for meshed networks while
accounting for power sharing has been described in [32].

The remainder of this manuscript is organized as follows.
Section II establishes notation and relevant mathematical pre-
liminaries. In Section III, we introduce droop control and
VOC, and derive parametric conditions under which inverter
dynamics controlled with the two approaches are identical.
Next, in Section IV, we establish global convergence of

solutions for VO-controlled inverters in resistive networks; we
also derive conditions for the exponential stability of linearized
and decoupled amplitude and phase dynamics. Finally, we
provide numerical simulations in Section V, and conclude the
paper in Section VI by highlighting directions for future work.

II. NOTATION AND PRELIMINARIES

A. Electrical System Fundamentals

The nominal system frequency is denoted by ω, and for the
jth inverter, the instantaneous phase angle, φj , evolves as

dφj
dt

= ω +
dθj
dt
, (1)

where θj represents the phase offset with respect to the rotating
reference frame established by ω. Denote the instantaneous
current injected by the jth inverter by ij(t) and its instan-
taneous terminal voltage by vj(t). Since we are primarily
interested in harmonic signals, we parameterize the instan-
taneous voltage as vj(t) := rj(t) cos(ωt+ θj(t)), where rj(t)
is the instantaneous terminal-voltage amplitude. We define the
instantaneous active- and reactive-power injections [33], [34]

Pj(t) := vj(t)ij(t) = rj(t) cos(ωt+ θj(t))ij(t), (2)

Qj(t) := vj

(
t− π

2

)
ij(t) = rj(t) sin(ωt+ θj(t))ij(t).

Assuming the fundamental frequency of the current injected
by the jth inverter is ω, the average active and reactive power
over an AC cycle (of period 2π/ω) are then given by

P j =
ω

2π

∫ 2π
ω

s=0

Pj(s)ds, Qj =
ω

2π

∫ 2π
ω

s=0

Qj(s)ds. (3)

In general, the time average of a periodic signal uj with period
T is denoted by uj , and defined as:

uj :=
1

T

∫ T

0

uj(t)dt. (4)

Subsequent developments will leverage signals represented in
the scaled time coordinates τ = ωt, and for the continuous-
time signal x, we will denote ẋ = d

dτ x.

B. Mathematical Notation

For the N -tuple, {x1, . . . , xN}, denote x = [x1, . . . , xN ]T

to be the corresponding column vector; (·)T denotes transpo-
sition. The cardinality of the set X is denoted by |X |; [X]ij
isolates the entry in the ith row and jth column of matrix
X . RN is the space of N × 1 real-valued vectors, TN is the
N -torus. Given a scalar function f(x), ∇xf(x) returns the
gradient [ ∂f∂x1

, . . . , ∂f∂xn ]T. Finally, diag{x1, . . . , xN} denotes
a diagonal matrix with diagonal entries given by x1, . . . , xN .

III. CORRESPONDENCE BETWEEN DROOP CONTROL AND
VOC FOR INVERTER CONTROL

In this section, we derive the droop coefficients under which
the dynamics of droop control match VOC. We begin with a
brief overview of droop control and VOC.
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Figure 2: Implementation of VOC for a single-phase power-electronic
inverter. The Van der Pol oscillator is composed of a parallel RLC
circuit, and a nonlinear voltage-dependent current source, g(v). The
capacitor voltage is utilized as the PWM modulation signal.

A. Droop control

For resistive networks, droop control linearly trades off fre-
quency deviation versus reactive-power; and inverter terminal-
voltage amplitude versus active-power [2], [35]:
d

dt
θj = nj

(
Qj −Q

∗
j

)
, rj − r∗j = mj

(
P
∗
j − P j

)
, (5)

where Q
∗
j and P

∗
j are the per-phase average reactive-power

and active-power setpoints, respectively; r∗j is the terminal-
voltage-amplitude setpoint; and nj ,mj ∈ R>0 are reactive-
power and active-power droop coefficients, respectively. As
expressed in (5), we assume that the droop laws are executed
with AC-cycle averages of active and reactive power. To pre-
serve the generality of the ensuing discussions, we disregard
the dynamics of additional low-pass filters, voltage controllers,
and current controllers in experimental implementations [3];
however, these could be included in the analysis readily.

B. VOC implemented with a Van der Pol Oscillator

Consider the Van der Pol oscillator to constitute the virtual
oscillator circuit for inverter control as shown in Fig. 2. The
circuit implementation is composed of a parallel RLC circuit
and a nonlinear voltage-dependent current source, g(·). In the
scaled time coordinates τ = t/

√
LC, the dynamics of the

oscillator are captured by the following:1

v̈ −
√
L

C

(
σ − 1

R

)(
1− 3k

(σ − 1
R )
v2

)
v̇ + v = κ

√
L

C
u̇(τ),

(6)
where u(τ) is the current input to the Van der Pol oscillator
(see Fig. 2), and κ is the current gain. In particular, the inverter
output current is scaled by κ, and this is extracted from the
Van der Pol oscillator that forms the inverter controller. The
system in (6) can be compactly written as

v̈ − εα
(
1− βv2

)
v̇ + v = κεu̇(τ) , (7)

by defining the following parameters:

ε :=

√
L

C
, α := σ − 1

R
, β :=

3k

(σ − 1
R )
. (8)

1For notational simplicity, we drop the subscript from electrical quantities
and parameters that indexes the inverter in this section.

With this notation in place, the nonlinear voltage-dependent
current source is a cubic polynomial, g(v) = v − β(v3/3)
(see Fig. 2). Liénard’s condition [12] for ensuring a stable
limit cycle in the system (7) requires positive damping at
the origin, i.e., α = σ − 1/R > 0. In the so-called quasi-
harmonic limit, i.e., ε ↘ 0, the model (7) reduces to a
forced harmonic oscillator with unit frequency. In the original
time scale t = τ

√
LC, this natural frequency of oscillation

is 1/
√
LC. By standard regular perturbation arguments [13,

Theorem 10.1], this correspondence can also be made for ε
sufficiently small. In subsequent developments, with reference
to (1), and to compare the droop-control system (5) and the
VOC system (6), we set ω = 1/

√
LC.

We begin by establishing a state-space model in Cartesian
coordinates; choosing a scaled version of the inductor current
and capacitor voltage as states, x := εiL, and y := v, we get

ẋ = y, ẏ = −x+ εαg(y) + εκu(τ). (9)

Next, we transform the model (9) to polar coordinates by
defining x = r sin(φ) and y = r cos(φ). We recover the
following dynamics in polar coordinates:2

ṙ = ε
(
αg
(
r cos(φ)

)
+ κu(τ)

)
cos(φ),

φ̇ = 1− ε
(
α

r
g
(
r cos(φ)

)
+
κu(τ)

r

)
sin(φ).

(10)

In ensuing discussions, we will leverage (10) written in the
original time coordinates, with the nominal frequency of
oscillation, ω = 1/

√
LC, and phase offset as defined in (1):

dr

dt
=

1

C

(
αg
(
r cos(ωt+ θ)

)
+ κu(t)

)
cos(ωt+ θ), (11)

dθ

dt
= ω −

(
α

rC
g
(
r cos(ωt+ θ)

)
+
κu(t)

rC

)
sin(ωt+ θ).

Remark 1 (Controller implementation). Essentially, (11), (5)
describe the controller dynamics of the per-phase equivalent
circuit at the inverter terminals; the signal v = y = r cos(φ)
can be utilized for control of single-phase inverters [8] (Fig. 2).
For three-phase settings, a balanced set of PWM modulation
signals, ma,mb,mc are obtained as follows:ma

mb

mc

 = ΣT

[
r cos(φ)
r sin(φ)

]
, Σ :=

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
. (12)

The matrix Σ implements a coordinate transformation from
polar to abc coordinates [6], [36]. �

C. Uncovering Droop Laws in Averaged VOC Dynamics

Consider two microgrids, each with N identical inverters,
identical network configurations and loads. All inverters in
one microgrid are controlled with VOC (11), and the inverters
in the other are controlled with droop control (5). For the jth
inverter, denote the difference in voltage amplitudes and phase
offsets in the two inverter-control strategies by

er(t) = r̄j − rj(t), eθ(t) = θ̄j(t)− θj(t) (13)

2This bijective change of coordinates is well defined (and leads to smooth
dynamics) whenever r 6= 0 or equivalently [x, y]T 6= 0. In Theorem 2, we
establish well-posedness conditions focused on convergence of the amplitude
dynamics to an equilibrium that excludes the origin.
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where r̄j and θ̄j(t) are the amplitudes and phases as used in
droop control (5), and rj(t) and θj(t) those in VOC (11).

In the following, we analyze how the droop laws and
coefficients should be designed so that the difference in the
phase dynamics and steady-state equilibrium voltage profile of
the two sets of inverters (controlled with VOC and droop) is of
order O(ε) = O(

√
L/C). To bridge the time-scale separation

between VOC (that is implemented in real-time) and droop
control (that presumes the existence of a quasi-stationary
sinusoidal steady state), we average the VOC dynamics (11)
(a detailed derivation is provided in Step 1 of the proof to
Theorem 1 below) to arrive at the following description:

d

dt
rj =

α

2C

(
rj −

β

4
r3
j

)
− κj
Crj

P j , (14a)

d

dt
θj = +

κj

Cr2
j

Qj . (14b)

The averaged VOC dynamics (14) enable us to compare the
droop control laws in (5) with VOC (11).

Theorem 1 (Correspondence between Droop Control and
VOC). Consider two identical microgrids where all inverters
in one microgrid are controlled with VOC (11), and the
inverters in the other are droop controlled (5). Assume
(A1) unique solutions to the droop-controlled system (5) and

the averaged VOC system (14) exist in a time interval
t ∈ [0, t∗] of strictly positive length.

(A2) the average active power delivered by the jth inverter in
sinusoidal steady state, P j,eq, is bounded as

0 < κjP j,eq <
α

2β
, (15)

so that the average VOC dynamics (14) admit a nonneg-
ative amplitude equilibrium rj,eq.

(A3) both the VO-controlled microgrid (11) and the droop-
controlled microgrid (5) operate in steady state and the
initial signal differences are of order ε =

√
L/C:

er(0) ≈ O(ε) and eθ(0) ≈ O(ε).

Suppose the frequency-droop coefficient is picked as

nj =
κj

r2
j,eqC

, (16)

and the average reactive-power setpoint is set to zero, Q
∗
j = 0.

Suppose the voltage-droop coefficient is picked as

mj = −κj
(
α

(
rj,eq −

β

2
r3
j,eq

))−1

, (17)

and the average active-power and amplitude setpoints are
picked as P

∗
j = P j,eq and r∗j = rj,eq. Then, there exists an

ε∗, such that for all 0 < ε < ε∗, for all t ∈ [0, t∗]

er(t) ≈ O(ε) and eθ(t) ≈ O(ε).

Assumption (A1) is guaranteed for rj(0) > 0 due to local
Lipschitz continuity; (A2) can be met by design; and (A3)
is necessary for comparing the two strategies using averaging
techniques.

The correspondences derived in Theorem 1 are asymptotic
results based on a perturbation and averaging analysis for

sufficiently small ε =
√
L/C. However, a small ε also

implies a weak (nonlinear) viscous damping in (7) and a slow
convergence to the quasi-harmonic limit cycle. In Section V-C,
we show that the convergence rate is, in fact, inversely propor-
tional to ε. Theorem 1 and the above discussion indicate that
the droop laws (5) are recovered from the VOC dynamics (11)
only on slow AC-cycle time scales, and when the dynam-
ics of VO-controlled inverters are deliberately decelerated.
Hence, on the limit cycle, the decelerated VOC subsumes
droop control, but it is much faster in general. Finally, the
correspondences established in (16) and (17) are formally
valid only on a bounded time horizon [0, t∗]. The findings can
be extended to an unbounded time horizon provided that the
averaged system is exponentially stable [13]. In Section IV,
we establish such exponential stability results.

Proof: The proof consists of three parts: an averaging
analysis of VOC, a correspondence of the phase dynamics,
and a correspondence of the steady-state voltage amplitudes.

1) Averaging the VOC dynamics: We begin by averaging
the dynamics (7) of the VO-controlled microgrid. To this end,
we first express (11) in the time coordinates τ = t/

√
LC:3

ṙ = ε
(
αg
(
r cos(τ + θ)

)
+ κu(τ)

)
cos(τ + θ),

θ̇ = −ε
(
α

r
g
(
r cos(τ + θ)

)
+
κu(τ)

r

)
sin(τ + θ).

(18)

Note that the dynamical systems above are 2π-periodic func-
tions in τ . In the quasi-harmonic limit ε ↘ 0, we can apply
standard averaging arguments using ε as the small parameter,
to obtain the averaged dynamics [13]:[
ṙ

θ̇

]
=

ε

2π

∫ 2π

0

αg
(
r cos(τ + θ)

) [ cos(τ + θ)

− 1
r sin(τ + θ)

]
dτ

+
ε

2π

∫ 2π

0

κu(τ)

[
cos(τ + θ)

− 1
r sin(τ + θ)

]
dτ (19)

= εα

[
r
2 − β r

3

8
0

]
+

ε

2π

∫ 2π

0

κu(τ)

[
cos(τ + θ)

− 1
r sin(τ + θ)

]
dτ.

The last line in (19) follows from

− ε

2πr

∫ 2π

0

αg
(
r cos(τ + θ)

)
sin(τ + θ)dτ

=
αε

2π

([
1

4
cos(2τ + 2θ)

]2π

0

+
βr2

3

[
cos4(τ + θ)

]2π
0

)
= 0.

Transitioning (19) from τ to t coordinates, we get[dr
dt
dθ
dt

]
=
α

C

[
r
2 − β r

3

8
0

]
+
κω

2πC

∫ 2π
ω

0

u(t)

[
cos(ωt+ θ)

− 1
r sin(ωt+ θ)

]
dt.

From Fig. 2 we recognize that the current sourced by the Van-
der-Pol oscillator is i(t) = −u(t), and we get[dr

dt
dθ
dt

]
=
α

C

[
r
2 −

βr3

8
0

]
+

κω

2πC

∫ 2π
ω

0

[−i(t) cos(ωt+ θ)
i(t)
r sin(ωt+ θ)

]
dt

=
α

C

[
r
2 −

βr3

8
0

]
+

κω

2πC

∫ 2π
ω

0

[
− i(t)rr cos(ωt+ θ)
i(t)r
r2

sin(ωt+ θ)

]
dt. (20)

3For notational simplicity, we drop the subscript j from the variables
[r, θ]T, [r, θ]T, κ, i, u, indexing the jth inverter in equations (18)-(20).
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Recalling the instantaneous and average active and reactive
power definitions in (2) and (3), respectively, we observe that
the averaged dynamics in (20) are given by (14).

Under assumptions (A1), (A2), and (A3), by standard
averaging arguments [13, Theorem 10.4], there exists an ε∗1
sufficiently small so that for all 0 < ε < ε∗1, the solution of
the averaged VOC dynamics (14) is O(ε) close to the solution
of the original VOC dynamics (11) for times t ∈ [0, t∗/ε]. We
proceed by comparing the averaged VOC system (14) with the
droop control system (5).

2) Correspondence of phase dynamics: We first study the
phase dynamics (14b). The VOC system (11) is assumed to
evolve in quasi-stationary sinusoidal steady state with a small
initial (at time t = 0)O(ε) difference from the harmonic droop
signals. Recall that in the quasi-harmonic limit, there exists an
ε∗2 sufficiently small so that for all 0 < ε < ε∗2, the solution
of the VOC dynamics (11) is O(ε) close to the solution of a
harmonic oscillator with radius rj,eq for t ∈ [0, t∗]; see [13],
[22]. In particular, for t ∈ [0, t∗], the solution θj(t) of the
averaged phase dynamics (14b) is O(ε) close to the solution
of

d

dt
θj =

κj

Cr2
j,eq

Qj ,

where we disregard the amplitude dynamics (14a), and replace
rj(t) in (14b) by rj,eq (whose closed form is discussed below).

For the following arguments, let 0 ≤ ε ≤ min{ε∗1, ε∗2}.
Observe that the phase dynamics of a droop-controlled in-
verter (5) correspond with the AC-cycle-averaged dynam-
ics of a VO-controlled inverter (11)—up to an order O(ε)
mismatch—if we pick the reactive-power setpoint, Q

∗
j , and

the frequency-droop coefficient, nj , as follows:

Q
∗
j = 0, nj =

κj

r2
j,eqC

. (21)

3) Correspondence of amplitude dynamics: Next, we con-
sider the amplitude dynamics (14a) and its equilibrium
terminal-voltage profile. For the network of VO-controlled
inverters, the steady-state voltage profile is recovered from the
solution of the following N nonlinear equations:

0 =
α

2C

(
rj,eq−

β

4
r3
j,eq

)
− κjP j,eq

Crj,eq
, ∀j = 1, . . . , N. (22)

Rearranging terms in (22), we get the following power-balance
condition for the jth inverter

αβ

8
r4
j,eq −

α

2
r2
j,eq + κjP j,eq = 0. (23)

The positive roots of the above equation are given by

rj,eq =

2α± 2
√
α2 − 6kκjP j,eq

3k


1
2

, (24)

where we have used the fact that αβ = 3k (see (8)). Notice
that these two roots are real-valued if and only if (15) holds.
Around the high-voltage solution of (24), (denoted by rj,eq

with a slight abuse of notation), the sensitivity of the active-
power injection with respect to a change in amplitude is:

κj
dP j,eq

drj,eq
= α

(
rj,eq −

β

2
r3
j,eq

)
, ∀j = 1, . . . , N. (25)

In Theorem 3, we prove that this high-voltage solution is expo-
nentially stable. Equation (25) can be placed in correspondence
with the amplitude dynamics of a droop-controlled inverter (5).
By an analogous reasoning as for the phase dynamics, there
exists an ε∗3 sufficiently small so that for all 0 < ε < ε∗3,
the solution rj(t) of the averaged amplitude dynamics (14a)
satisfies—up to an O(ε) mismatch—the conditions of the
stationary solution (25) (with fixed radius rj,eq) for times
t ∈ [0, t∗].

For the following arguments, let 0 ≤ ε ≤ min{ε∗1, ε∗3}.
Observe that the amplitude dynamics of a droop-controlled
inverter (5) correspond with that of a VO-controlled inverter
in (25)—up to an order O(ε) mismatch—if we pick the active-
power setpoint, P

∗
j , terminal-voltage setpoint, r∗j , and the

voltage-droop coefficient, mj , as follows:

P
∗
j = P j,eq, r

∗
j = rj,eq, mj = −κj

(
α

(
rj,eq −

β

2
r3
j,eq

))−1

.

Finally, to complete the proof, let ε∗ = min{ε∗1, ε∗2, ε∗3}, and
note that all arguments held for the time scales [0, t∗/ε∗] ∩
[0, t∗] which equals [0, t∗] for ε∗ sufficiently small.

IV. STABILITY OF VOC AMPLITUDE & PHASE DYNAMICS

In this section, we investigate the stability of the averaged
VOC voltage dynamics (14). Our results are applicable to
connected microgrid electrical networks with resistive inter-
connecting lines, and we place no restrictions on the network
topology. Loads in the network are modeled as parallel con-
nections of resistances and current sources/sinks (to simplify
exposition, we refer to these as current sources subsequently).

A. Microgrid Network Architecture

We assume balanced three-phase operation and all electrical
quantities referred henceforth are with respect to a per-phase
equivalent network. The nodes of this per-phase equivalent
electrical network are collected in the set A, and branches
(edges) are collected in the set E := {(j, `)} ⊂ A × A.
Let N := {1, . . . , N} ⊆ A denote nodes that the inverters
are connected to, and denote the set of internal nodes as
I := A \ N . Shunt loads—modeled as parallel combinations
of resistances and/or constant (in a synchronous dq-frame)
current sources—are connected to I.

Denote the vectors that collect the nodal current injections
and node voltages in the network by iA and vA, respectively.
To be precise, iA and vA are real-valued functions of time.
The coupling between the inverters is described by Kirchhoff’s
and Ohm’s laws, which read in matrix-vector form as

iA = QAvA, (26)

where, entries of the conductance matrix QA ∈ R|A|×|A| are

[QA]j` :=


gj +

∑
(j,k)∈E gjk, if j = `,

−gj`, if (j, `) ∈ E ,
0, otherwise,

(27)

with gj ∈ R≥0 denoting the shunt (load) conductance at node
j, and gj` = g`j ∈ R≥0 the conductance of the line (j, `).
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Let i=[i1, . . . , iN ]T and v=[v1, . . . , vN ]T be the vectors of
inverter current injections and terminal voltages, respectively,
and let iI and vI be the vectors collecting the current
injections and nodal voltages for the interior nodes.4 Entries
of iI are non-zero only if the internal nodes are connected to
current sources. With this notation, we can rewrite (26) as[

i
iI

]
=

[
QNN QNI
QT
NI QII

] [
v
vI

]
. (28)

Assuming that the submatrix QII is nonsingular,5 the second
set of equations in (28) can be uniquely solved for the interior
voltages as vI = Q−1

II (iI −QT
NIv). Using this, we obtain:

i = Qv +QNIQ
−1
II iI , (29)

where the matrix Q =
(
QNN −QNIQ−1

IIQ
T
NI
)

is referred to
as the Kron-reduced conductance matrix. This model reduction
through a Schur complement of the conductance matrix is
known as Kron reduction [21]. With a slight abuse of notation,
we denote the effective shunt-conductance load for the jth
inverter by gj (note that this is given by the jth nonnegative
row sum of the Kron-reduced conductance matrix Q), and
the effective conductance of the (j, `) line in the Kron-
reduced electrical network by gj` = −[Q]j` in all subsequent
discussions. Additionally, the shunt current source at the jth
inverter recovered after Kron reduction, given by the jth entry
of the vector QNIQ−1

II iI , will be denoted by ιj cos(ωt+ γj),
where ιj is the amplitude of the current source, and γj is
the phase offset with respect to the rotating reference frame
established by ω. With this notation, the average real- and
reactive-power injections for the jth inverter are given by [15]:

P j =
rjιj

2
cos(θj − γj) +

r2
j

2
gjj −

rj
2

N∑
`=1, 6̀=j

gj`r` cos(θj`),

Qj =
rjιj

2
sin(θj − γj)−

rj
2

N∑
`=1

gj`r` sin(θj`), (30)

where we use the shorthand θj` := θj − θ`, and rjιj
2 cos(θj −

γj) and rjιj
2 sin(θj − γj) are the active and reactive power

drawn by the equivalent current source at the jth-inverter
terminals (after Kron reduction). For these networks, we obtain
the following well-posedness and global-convergence result.

Theorem 2. (Global convergence of VOC) Consider the
interconnected averaged VOC dynamics (14) with real and
reactive power injections given by (30). Suppose that the
terminal-voltage amplitudes are upper bounded by the open-
circuit voltage, roc :=

√
4α/3k.6 Assume further, that the

network and oscillator parameters satisfy ∀j ∈ N

16

81
(α− κjgjj)3 ≥ kκ2

j

ιj + roc
N∑

`=1, 6̀=j

gj`

2

. (31)

4We drop the subscript N when referring to the current and voltage vectors
corresponding to the inverters to simplify notation.

5This holds true in general for RLC networks, except for some pathological
cases, see [20]. For the resistive networks we consider in this work, QII is
always nonsingular due to irreducible diagonal dominance [21].

6The open-circuit voltage of the VO-controlled inverter is defined as the
voltage obtained when no current is drawn from it. It is recovered from the
high-voltage solution of (24) by setting P j,eq = 0.

Then, for all initial conditions (r0, θ0) ∈ RN≥0×TN that satisfy

rlow
j :=

√
4

9k
(α− κjgjj) ≤ r0,j ≤ roc ,∀j ∈ N , (32)

the dynamics (14), (30) have positive radii rj(t) ≥ rlow
j for

all j ∈ N and for all t ≥ 0, and they ultimately converge to
a set of equilibria as t→∞.

We briefly discuss the assumptions in Theorem 2. Condition
(31) assures that the radii rj(t) remain greater than a strictly
positive value rlow

j given in (32). Condition (31) is always
guaranteed for sufficiently small current and resistive loads and
a weakly coupled network, and it can be satisfied by choosing
the ratio of design parameters α/κj sufficiently large. The
proof of Theorem 2 relies on a gradient formulation of the
system dynamics and LaSalle arguments:

Proof of Theorem 2: Inspired by [37] [38], we begin by
rewriting the system (14), (30) in gradient form as

ṙj =: pj(r, θ) = −∇rjH(r, θ), (33a)

θ̇j =: qj(r, θ) = − 1

r2
j

∇θjH(r, θ), (33b)

where [r, θ]T = [r1, . . . , rN , θ1, . . . , θN ]T, and the potential
H : RN≥0 × TN → R is defined as

H(r, θ) :=

N∑
j=1

[
α

4C

(
−r2

j +
β

8
r4
j

)
+
κjιj
2C

rj cos(θj − γj)

+
κj
4C

gjjr
2
j −

κj
2C

N∑
`=1, 6̀=j

rjr`gj` cos(θj`)

]
.

Notice that the phase dynamics (33b) are not defined for rj =
0, and the notion of a radius is ill-posed whenever rj ≤ 0.
Hence, we first establish conditions such that the radii remain
greater than χ > 0, i.e., we seek conditions that ensure the set

Ωχ :=
{

(r, θ) ∈ RN≥0 × TN : χ ≤ rj ≤ roc,∀j ∈ N
}

is positively invariant. To this end, we evaluate cases such that
pj(r, θ) ≥ 0 whenever

(
r, θ
)
∈ Ξj × TN , where

Ξj :=
{
r ∈ RN≥0 : rj = χj , χ` ≤ r` ≤ roc, ` 6= j

}
, (34)

with χj and χ` yet to be determined. In particular, ∀j ∈ N
pj(r, θ)|(r,θ)∈Ξj×TN

=

[
α

2C

(
rj −

β

4
r3
j

)
− κjιj

2C
cos(θj − γj)

− κjrj
2C

gjj +
κj
2C

N∑
`=1, 6̀=j

gj`r` cos(θj`)

]∣∣∣∣
(r,θ)∈Ξj×TN

≥ α

2C

(
χj −

β

4
χ3
j

)
− κj

2C

ιj + χjgjj + roc
N∑

`=1, 6̀=j

gj`


≥ 0,

which holds if and only if there exists a χj ∈ R>0 so that

hj(χj) :=
αβ

4
χ3
j − (α− κjgjj)χj + κjιj + κjr

oc
N∑

`=1, 6̀=j

gj`
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is nonpositive. Since hj is a cubic polynomial with leading-
order positive coefficient αβ/4, the question whether there is
a χj > 0 so that hj(χj) < 0 can be answered by calculating
the positive maximum/minimum χ∗j (the root of the equation
∂hj/∂χj = 0) and verifying that hj(χ∗j ) ≤ 0.7 The positive
root χ∗j is denoted by rlow

j in (32) and hj(r
low
j ) ≤ 0 if and

only if (31) holds true. Hence, under condition (31), we have
positive invariance of the set

Ω :=
{

(r, θ) ∈ RN≥0 × TN : rlow ≤ rlow
j ≤ rj ≤ roc,∀j ∈ N

}
,

where rlow := minj∈N r
low
j . Every trajectory originating in Ω

remains in Ω, i.e., rj(t) is greater than rlow
j , ∀t ≥ 0.

The level sets of H(r, θ) are closed (due to continuity),
bounded in θ (due to boundedness of the trigonometric non-
linearities), and radially unbounded in r. Moreover, H(r, θ) is
non-increasing along trajectories, since

Ḣ(r, θ) = −
N∑
j=1

(
∇rjH(r, θ))

)2
+

(
1

rj
∇θjH(r, θ))

)2

= −
N∑
j=1

pj(r, θ)
2 + r2

jqj(r, θ)
2 ≤ 0 .

Thus, the sublevel sets of H(r, θ) are compact and forward
invariant, and we conclude by LaSalle’s invariance principle
[13, Theorem 4.4] that the dynamics (14), (30) converge to
the largest positively invariant set contained in{

(r, θ) ∈ Ω : H(r, θ) ≤ H(r0, θ0) , Ḣ(r, θ) = 0
}
,

where we incorporated the positive invariance of Ω. The
condition Ḣ(r, θ) = 0 identifies the set of equilibria and points
of zero amplitude rj = 0. Since the latter set is excluded from
Ω, all trajectories originating in Ω converge to the non-empty
set of equilibria.

Having demonstrated convergence and invariance of the
averaged VO-controlled dynamics (14), we next scrutinize the
amplitude and phase dynamics under the standard decoupling
assumptions [15]. In particular, we assume the phase offsets
(respectively, amplitudes) to be constant in the averaged
amplitude (respectively, phase) dynamics in (14a) (respec-
tively, (14b)). We are then able to derive sufficient conditions
for the exponential stability of amplitude and phase dynamics.

B. Amplitude Dynamics in Decoupled Settings

Under the decoupling approximations described above, the
phase offsets are fixed to their equilibrium values, i.e., θj =
θj,eq,∀j ∈ N ; following which the terminal-voltage amplitude

7For h(x) = ax3 − bx+ c, we obtain the extremal points by 0 = ∂h
∂x

=

3ax2−b. If we assume that a, b > 0, then the positive root is x∗ =
√

b
3a

. We

then obtain h(x∗) = a b
3a

√
b
3a
− b

√
b
3a

+ c. Notice that h(x∗) ≤ 0 if and

only if a b
3a
− b ≤ −c

√
3a
b

. This is equivalent to the condition 4
27
b3 ≥ ac2.

dynamics, recovered from (14a) and (30), are given by:

ṙj =
α

2C

(
rj −

β

4
r3
j

)
− ιjκj

2C
cos(θj,eq − γj)

− κj
2C

gjjrj +
κj
2C

N∑
`=1, 6̀=j

gj`r` cos(θj`,eq). (35)

Theorem 3 (Local exponential stability of decoupled am-
plitude dynamics). Consider the decoupled terminal-voltage
amplitude dynamics in (35). Suppose each inverter is loaded
according to (15). If an equilibrium, rj,eq, satisfies

rlow
j < rj,eq ≤ roc, ∀j ∈ N , (36)

then it is locally exponentially stable.

Proof of Theorem 3: For small perturbations about the
equilibrium point req = [r1,eq, . . . , rN,eq]T of (22), we express
r = req+r̃, where r̃ := [r̃1, . . . , r̃N ]T. Linearizing (35) around
the equilibrium point (given by the solution of (22)), req, we
get ˙̃r = KΓr̃, where K := diag{κ1, . . . , κN}. The diagonal
entries of Γ are

[Γ]jj =
α

2Cκj

(
1− 3

4
βr2

j,eq

)
− 1

2C

gj +

N∑
`=1, 6̀=j

gj`

 .

Furthermore, the matrix Γ is irreducible (due to connectivity)
and symmetric since

[Γ]j` = [Γ]`j =
1

2C
gj` cos(θj,eq − θ`,eq).

If we ensure
α

2κj

(
1− 3

4
βr2

j,eq

)
− 1

2
gj < 0, (37)

then Γ is negative definite (due to strictly irreducible diagonal
dominance [39]). By Sylvester’s inertia theorem [40], the iner-
tia (i.e., the triple of positive, negative, and zero eigenvalues)
of Γ and KΓ are identical since κj > 0,∀j ∈ N and K
is positive definite. Consequently, KΓ is negative definite,
provided (37) is satisfied. The bounds in (36) are obtained
by rearranging terms in (37). The upper bound in (36) is the
open-circuit voltage.

C. Phase Dynamics in Decoupled Settings

Under the decoupling assumptions, the terminal-voltage am-
plitudes are fixed to their equilibrium values, rj = rj,eq,∀j ∈
N , and the phase dynamics (14b) and (30) are given by:

θ̇j =
κj

2Crj,eq

ιj sin(θj − γj)−
N∑

`=1, 6̀=j

gj`r`,eq sin(θj`)

 .

(38)
Analysis of the decoupled phase dynamics (38) with coupled
oscillator theory [41], [42] leads to the following result.

Theorem 4 (Local exponential stability of decoupled phase
dynamics). Consider the decoupled phase dynamics (38).
Assume that there exists an equilibrium θj,eq so that

|θj`,eq| < π/2 and |θj,eq−γj | > π/2, ∀j, ` ∈ N . (39)
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If there is at least one constant current load, then the equi-
librium θj,eq is locally exponentially stable. Without constant
current loads, the phase-synchronized equilibrium manifold
θj,eq = θ`,eq, for all j, ` ∈ N , is locally exponentially stable.

Condition (39) identifies the equilibria corresponding to
small reactive power flows (as suggested by the condition
|θj`,eq| < π/2) and requires the local current sources to inject
reactive power (as suggested by the condition |θj,eq − γj | >
π/2). Without current loads, the phase synchronization result
perfectly matches our previous experimental results in [5], [8].

Proof of Theorem 4: Linearization of (38) around the
equilibrium point θeq yields ˙̃

θ = KΘMθ̃, where θ =

θeq + θ̃, K := diag{κ1/r1,eq, . . . , κN/rN,eq} and M :=
diag{r1,eq, . . . , rN,eq}. The matrix Θ is irreducible (due to
connectivity), and symmetric with off-diagonal entries

[Θ]j` = [Θ]`j =
gj`
2C

cos(θj`,eq).

The diagonal entries of Θ are given by

[Θ]jj :=
ιj

2Crj,eq
cos(θj,eq − γj)−

N∑
`=1, 6̀=j

[Θ]j`.

Under assumption (39), the off-diagonal entries [Θ]j` are non-
negative, and all row sums are non-positive. If there is at least
one constant current load, the associated row sum is strictly
negative. Hence, Θ is irreducibly diagonal dominant (due to
connectivity), and thus also nonsingular [39, Corollary 6.2.27].
It follows that Θ is negative definite, and the equilibrium θeq

is isolated and locally exponentially stable. In the absence of
local current loads, the negative Jacobian, −Θ, is a Laplacian
matrix associated with an undirected and connected graph. For
this matrix, the phase-synchronized equilibrium manifold is
locally exponentially stable; see [42, Theorem 5.1] for details.

The eigenvalues of the matrix (KΘ)M are the same as
M(KΘ) since K,M are diagonal and Θ is symmetric. Again,
by Sylvester’s inertia theorem [40], the inertia (i.e., the triple of
positive, negative, and zero eigenvalues) of Θ and MKΘ are
identical since κj > 0, rj > 0,∀j ∈ N . Consequently, KΘM
is negative definite, and therefore, the phase dynamics are
locally exponentially stable, provided that (39) is satisfied.

V. REVERSE ENGINEERING DROOP CONTROL,
CONVERGENCE RATES, AND NUMERICAL VALIDATION

Simulations in this section focus on corroborating the aver-
aging analysis and the correspondence established with droop
control. Additionally, we discuss the load-sharing capabilities
afforded by VOC. Finally, we comment on implications of the
quasi-harmonic limit, ε↘ 0, on the VOC convergence speed.

A. Correspondence between VOC and Droop Control

First, we validate the averaging analysis by focusing on the
expression in (24). In particular, the voltage-regulation curve
for VOC (from (24)) is plotted in Fig. 3 and the analytical
expression is validated by comparison with simulations of the
original nonlinear and non-averaged Van der Pol oscillator
model (11) run out to steady state.

r[
V
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]

P [Watts]
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Numerical Simulation

Figure 3: Voltage-power characteristic (24) for an inverter super-
imposed to time-domain simulations of the non-averaged nonlinear
model (11) run out to steady state.
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Figure 4: Differences in: (a) equilibrium-voltages and (b) phase-
offsets when comparing VOC and droop control.

Next, we focus on the correspondences established between
VOC and droop control. To this end, we model a single
15 kW three-phase inverter connected to a load which draws
a constant current at a lagging power factor of 0.85. Suppose
a Van der Pol oscillator-based controller (parameters are listed
in the Appendix) is supplying 0.78 pu active power and
0.21 pu reactive power in steady state. A corresponding droop
controller is derived using the expressions in (16) and (17).
Figure 4(a) depicts er(t) in steady state as the active power
consumed by the load is varied. Figure 4(b) depicts eθ(t)
recorded at time t = 2.5s as the reactive power consumed
by the load is varied. Differences in both cases are of O(ε).

B. Load Sharing and Economic Optimality

Consider the microgrid setting where N inverters are con-
nected in parallel across a balanced three-phase load. In this
case, droop control (5) also achieves steady-state load sharing
or economic optimality. For resistive networks, it is known
[2], [30] that the steady-state reactive power injection Qj,eq

from the jth inverter is proportional to its rating Rj , that is,

Qj,eq

Rj
=
Q`,eq

R`
∀ j, ` ∈ {1, . . . , N}, (40)

provided the following hold:

Q
∗
j

Rj
=
Q
∗
`

R`
, njRj = n`R` ∀ j, ` ∈ {1, . . . , N}.

Similarly, droop control can be designed to minimize an un-
constrained economic dispatch of the reactive power injections

min
{Qj,eq}Nj=1

N∑
j=1

λjQ
2

j,eq, (41)
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Figure 5: Power sharing for 3 parallel VO-controlled inverters.

with marginal costs λi > 0 provided the reactive-power
setpoints and droop coefficients are selected as follows [14]:8

Q
∗
j = 0,

nj
λj

=
n`
λ`
, ∀ j, ` ∈ {1, . . . , N}. (42)

The correspondences established in Theorem 1 allow us to
translate these insights to the design of optimal current gains
(i.e., the κ’s) in VO-controlled inverters (6) to achieve opti-
mality in terms of reactive-power production. In particular,
leveraging (21), and based on (42), the following design
achieves an optimal dispatch of reactive power generation:

κj

r2
j,eqλj

=
κ`

r2
`,eqλ`

, j, ` ∈ {1, . . . , N}. (43)

Similar load-sharing conditions have been obtained for in-
verters controlled as deadzone oscillators where all voltage
waveforms perfectly synchronize (amplitude, frequency, and
phase) [8]. In particular, picking the current gains κj as

Rjκj = R`κ`, ∀ j, ` ∈ {1, . . . , N} , (44)

ensures that the current injections are shared proportionally
[8], and thus—due to perfect synchronization of the voltage
waveforms—the apparent power injections Sj,eq = P j,eq +
jQj,eq are shared proportionally in steady state:

Sj,eq

Rj
=
S`,eq

R`
, ∀ j, ` ∈ {1, . . . , N}. (45)

As a consequence, the average active and reactive injections
are shared, and (40) is recovered as a special case. Results
from Theorem 1 allow us to extend load-sharing results for
VO-controlled inverters from a setting with perfectly syn-
chronized waveforms to more general frequency-synchronized
waveforms. Consider the closed-form high-voltage solution
for the terminal-voltage amplitude of the jth inverter in (24).
When the oscillators are identical, the terminal-voltage ampli-
tudes synchronize if we pick the current gains as follows:

κjP j,eq = κ`P `,eq, ∀j, ` ∈ {1, . . . , N}. (46)

We simulate a case of power sharing between three identical
VO-controlled inverters connected in a parallel configuration
with current gains κ = [2 2 1]T. As shown in Fig. 5, two
of the inverters share 25% of the load while the third inverter
provides 50% of the load. A load step is applied at t = 1s by
doubling the active-power demand. The inverters support the
load in the ratio of their ratings even after the load step.

8Note that the two objectives (40) and (41) and the associated droop gains
coincide for Rj/λj = R`/λ` for all j, ` ∈ {1, . . . , N}.
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Figure 6: Convergence rate of a Van der Pol oscillator.

C. Convergence Rate of a Van der Pol Oscillator
In this section, we discuss the implication of the quasi-

harmonic limit ε ↘ 0 on the time taken to converge to the
limit cycle in an open-circuited Van der Pol oscillator, i.e.,
when setting the driving term u = 0. From (10), we obtain

dr

dφ
=

εαg
(
r cos(φ)

)
cos(φ)

1− εαr g
(
r cos(φ)

)
sin(φ)

.

In the quasi-harmonic limit ε � 1, we apply the series
expansion ε/(1− ε · c) = ε+O(ε2) above to get

dr

dφ
= ε

(
αg
(
r cos(φ)

))
cos(φ) +O(ε2).

Averaging the above dynamics yields (up to O(ε2) terms):

dr

dφ
=
αε

2

(
r − β

4
r3

)
. (47)

Note that the locally stable equilibrium of the dynamics (47)
is given by the open-circuit voltage, req = roc. We integrate
both sides of (47), arbitrarily setting the limits from 0.1req

to 0.9req (without loss of generality). The arc length traced
during this transition, φs, is given by the solution of:[

−1

4
log r +

1

8
log|4− β(r)2|

]0.9req

0.1req

= −1

8
εφs.

Evaluating the limits of this integral, we recover φs ≈
6 (εα)

−1, which clearly indicates that the arc length φs (pro-
portional to a notion of convergence time to O(ε)) traced
before converging to the limit cycle is inversely proportional to
ε. Figure 6 plots φs as a function of ε. Results from simulations
of the original unforced nonlinear dynamics (10) (with u = 0)
are superimposed to demonstrate validity of the above analysis.

VI. CONCLUDING REMARKS

For a system of power-electronic inverters controlled as Van
der Pol oscillators, we characterized the voltage dynamics in
polar coordinates to establish two key results: i) we derived
a set of parameters for which the dynamics of the Van
der Pol oscillators match the classical droop laws close to
sinusoidal steady state, and ii) we established convergence of
the Van der Pol oscillator dynamics to a set of potentially
desirable equilibria. With this analysis, we are able to reverse-
engineer droop control and ensure that VOC is compatible with
secondary and tertiary control strategies developed for droop
control. Extending the analysis to inductive networks while
incorporating other load models and leveraging the averaged
dynamics to design control strategies for general microgrid
networks remain the focus of ongoing investigations.
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APPENDIX

Oscillator parameters: R = 10 Ω, L = 250µH, C =
28.14 mF, σ = 1 S, k = 4.1667× 10−5.

Network parameters (Power sharing simulation): Before the
load step: g11 = 37.71 S, g22 = 27.87 S, g33 = 50.82 S, g12 =
g21 = 8.2 S, g13 = g31 = 24.6 S, g23 = g32 = 16.4 S. After
the load step: g11 = 37.07 S, g22 = 27.59 S, g33 = 48.28 S,
g12 = g21 = 8.62 S, g13 = g31 = 25.86 S, g23 = g32 =
17.24 S. Parameters correspond to the Kron-reduced network
when the load is stepped from 20Ω to 10Ω.
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