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Abstract— A major transition in the operation of electric
power grids is the replacement of bulk generation based on
synchronous machines by distributed generation based on low-
inertia power electronics sources. The accompanying “loss
of rotational inertia” and fluctuations by renewable sources
jeopardize the system stability, as testified by the ever-growing
number of frequency incidents. As a remedy, numerous studies
demonstrate how virtual inertia can be emulated through
various devices, but few of them address the question of
“where" to place this inertia. It is however strongly believed
that the placement of virtual inertia hugely impacts system
efficiency, as demonstrated by recent case studies. In this
article, we carry out a comprehensive analysis in an attempt to
address the optimal inertia placement problem. We consider a
linear network-reduced power system model along with an H2

performance metric accounting for the network coherency. The
optimal inertia placement problem turns out to be non-convex,
yet we provide a set of closed-form global optimality results
for particular problem instances as well as a computational
approach resulting in locally optimal solutions. We illustrate our
results with a three-region power grid case study and compare
our locally optimal solution with different placement heuristics.

I. INTRODUCTION

As we retire more and more synchronous machines and
replace them by renewable sources interfaced with power
electronic devices, the stability of the power grid is jeop-
ardized, which has been recognized as one of the prime
concerns by transmission system operators [1]. Both in
transmission grids as well as in islanded microgrids, low
inertia levels together with uncertain renewable generation
lead to large frequency swings.

Not only low levels of inertia are troublesome, but particu-
larly spatially heterogeneous and time-varying inertia profiles
can lead to destabilizing effects, as shown in an interesting
two-area case study [2]. It is not surprising that rotational
inertia has been recognized as a key ancillary service for
power system stability, and a plethora of mechanisms have
been proposed for the emulation of virtual (or synthetic) iner-
tia [3]–[5] through a variety of devices (ranging from wind
turbine control [6] to batteries [7] and flywheels), as well
as inertia monitoring schemes [8] and even inertia markets
[9]. In this article, we pursue the questions raised in [2]
regarding the detrimental effects of spatially heterogeneous
inertia profiles, and how they can be alleviated by virtual
inertia emulation throughout the grid. In particular, we are
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interested in the allocation problem “where to place the
inertia?” to optimize the system coherency.

The problem of inertia allocation has been hinted at before
[2], but we are aware only of the study [10] explicitly
addressing the problem. In [10], the grid is modeled by the
linearized swing equations, and eigenvalue damping ratios
as well as transient overshoots (estimated from the system
modes) are chosen as optimization criterion for placing
virtual inertia and damping. The resulting problem is highly
non-convex, but a sequence of approximations led to some
insightful results. In comparison to [10], we focus on network
coherency as an alternative performance metric, that is, the
amplification of stochastic or impulsive disturbances to a
quadratic performance index measured by the H2 norm
[11]. As performance index, we choose a classic coherency
criterion penalizing angular differences and absolute frequen-
cies, which has recently been popularized for consensus
and synchronization studies [12]–[17] as well as in power
system analysis and control [18]–[20]. We feel that this H2

performance metric is not only more tractable than spectral
metrics, but it is also very meaningful for the problem at
hand: it measures the effect stochastic fluctuations (caused
by loads or renewable generation) as well as discrete events
(such as faults or deterministic frequency errors caused by
markets) and quantifies their amplification by a coherency
index related to frequency volatility. Finally, in comparison
to [10], the damping or droop coefficients are not decision
variables in our problem setup, since these are determined
by the system physics (in case of damping), the outcome
of primary reserve markets (in case of primary control), or
scheduled according to cost coefficients or ratings [21].

The contributions of this paper are as follows. We provide
a comprehensive modeling and analysis framework for the
inertia placement problem in power grids to optimize an H2

coherency index subject to capacity and budget constraints.
The optimal inertia placement problem turns out to be non-
convex, yet we are able to provide upper and lower bounds on
the performance index for general networks as well as a set of
closed-form global optimality results for particular problem
instances characterized by uniform disturbance over damping
ratios and for two-area networks. Moreover, we develop a
computational approach based on a gradient formula that
allows to find locally optimal solutions for large networks
and arbitrary parameter settings. Finally, we illustrate our
results with a three-region case study. Our analytic and
computational results paint a surprisingly complex picture:
they generally show that inertia is placed dominantly at the
sites of disturbances yet no other nodes are normally ne-
glected. However, naive solutions such as uniform allocation



or placement at maximum capacity deliver very suboptimal
results.

The remainder of this section introduces some notation.
Section II motivates our system model and the coherency
performance index. Section III presents inertial allocation
results for general networks and provide explicit results for
the two-area networks. Section IV presents a case study on a
three-region network. Finally, Section V concludes the paper.

Preliminaries and Notation

Let 1n and On be the n-dimensional vectors of all ones
and zeros. Given an index set I with cardinality |I| and a
real valued array {x1 . . . x|I|}, we denote by x the vector in
R|I| obtained by stacking the scalars xi, and by diag{xi} the
associated diagonal matrix. The vector ei is the i-th vector
of the canonical basis for Rn.

II. PROBLEM FORMULATION

A. System Model

Consider a power network modeled by a graph with nodes
(buses) V = {1, . . . , n} and edges (transmission lines) E ⊆
V × V . We consider a small-signal version of a network-
reduced power system model [22], [23], where passive loads
are eliminated via Kron reduction [24], and the network is
reduced to the sources i ∈ {1,. . . , n} with dynamics

miθ̈i + diθ̇i = pin,i − pe,i , i ∈ {1, . . . , n} , (1)

where pin,i and pe,i refer to the power input and electrical
power output, respectively. If bus i is a synchronous machine,
then (1) describes the electromechanical swing dynamics for
the generator rotor angle θi [22], [23], and the coefficients
mi > 0 and di > 0 account for the generator’s rotational
inertia and frequency damping and speed droop control
coefficient. If bus i connects to a renewable or battery
source interfaced with a power electronics inverter operated
in grid-forming mode [25], [26], then θi is the voltage
phase angle, di > 0 is the droop control coefficient and
mi > 0 accounts for power measurement time constants [27]
or arises from virtual inertia emulation [3]–[5]. Finally, the
dynamics (1) may also arise from frequency-dependent or
actively controlled frequency-responsive loads [23].

Under the assumptions of constant voltage magnitudes,
purely inductive lines, and a small signal approximation, the
electrical power output at the terminals is given by [23]:

pe,i =

n∑
k=1

bik(θi − θk), i ∈ {1, . . . , n} , (2)

where bik ≥ 0 is the susceptance between nodes {i, k} ∈ E .
The state space representation of the system (1)-(2) is then[
θ̇
ω̇

]
=

[
0 I

−M−1L −M−1D

] [
θ
ω

]
+

[
0

M−1

]
pin , (3)

where M = diag{mi} and D = diag{di} are the diagonal
matrices of inertial and damping/droop coefficients, and
L = LT ∈ Rn×n is the network Laplacian (or susceptance)
matrix with off-diagonal elements lik = −bik and diagonals

lii =
∑n
k=1,k 6=i bik. The states (θ, ω) ∈ R2n are the stacked

vectors of angles and frequencies and pin ∈ Rn is the net
power input – all of which are deviation variables.

B. Coherency performance metric

We consider the linear power system model (3) driven by
the inputs pin,i accounting either for faults or non-zero initial
values (modeled as impulses) or for fluctuations in renew-
ables and loads. We are interested in the energy expended
in returning to the steady-state configuration, expressed as a
quadratic cost of the angles and frequency displacements:

1

2

∫ ∞
0

∑n

i,j=1
αij(θi(t)− θj(t))2 +

∑n

i=1
βiω

2
i (t) dt .

(4)
Here, βi > 0 are positive scalars for i ∈ V , and we
assume that the nonnegative scalars αij = αji ≥ 0 induce a
connected graph – not necessarily identical with the grid.

Following the interpretation proposed in [18], the above
metric (4) can represent a generalized energy in synchronous
machines. Indeed, for αij = gij (where gij are the power
line conductances) and βi = mi, the metric (4) accounts for
the heat losses in the grid lines and the mechanical energy
losses in the generators. This case is often referred to as the
short-range or local synchronization error in the coherency
literature [12], [13] whereas the case αik = 1/n is the long-
range or global synchronization error. Aside from consensus
and synchronization studies [12]–[17] the coherency metric
(4) is also used in power system analysis and control [18]–
[20]. Adopting the state representation introduced in (3), the
performance metric (4) can be rewritten as the time-integral
1
2

∫∞
0
y(t)T y(t)dt of the performance output

y =

[
N

1
2 0

0 S
1
2

]
︸ ︷︷ ︸

=C

[
θ
ω

]
, (5)

where N is the Laplacian matrix of the graph induced by the
αij and S is a diagonal matrix with elements Sii = βi. In this
notation, the short-range and long-range error corresponds to
N = L and N = Π = (In − 1n1Tn/n), respectively.

In order to model the localization of the disturbances in
the grid, we parametrize the input pin as

pin = T
1
2 η, T = diag{ti}.

We therefore obtain the state space model[
θ̇
ω̇

]
=

[
0 I

−M−1L −M−1D

]
︸ ︷︷ ︸

=A

[
θ
ω

]
+

[
0

M−1T 1/2

]
︸ ︷︷ ︸

=B

η. (6)

In the following, we refer to the input/output map (5), (6) as
G = (A,B,C). If the inputs ηi are Dirac impulses, then (4)
measures the squared H2 norm [11] of the system G, that
we denote as ‖G‖2.

There is a number of interpretations of the H2 norm ‖G‖2
of a power system [18]. The relevant ones in our context are:



1) The squared H2 norm of G measures the energy
amplification, i.e., the sum of L2 norms of the outputs
yi(t), for unit impulses at all inputs ηi(t)=δ(t):

‖G‖22 =
∑n

i=1

∫ ∞
0

yTi (t) yi(t)dt.

These impulses can model faults or initial conditions.
2) The squared H2 norm of G quantifies the steady-state

total variance of the output for a system subjected to
unit variance stochastic white noise inputs ηi(t):

‖G‖22 = lim
t→∞

E{yT (t) y(t)}.
In our case, the white noise inputs can model stochastic
fluctuations of renewable generation or loads.

For a standard (A,B,C) state-space system, we have that

‖G‖22 = Trace(BTPB) , (7)

where P=
∫∞

0
eA

T tCTCeAt dt is the observability Gramian
obtained as solution to the Lyapunov equation

PA+ATP + CTC = 0 . (8)

Recall that a necessary and sufficient condition for the
existence of a positive definite observability Gramian P is
that the pair (A,C) is detectable [11]. In our case, we have

C

[
1n
On

]
= A

[
1n
On

]
=

[
On
On

]
,

that is, the mode 1n (corresponding to the absolute angle) is
not observable. This follows from the shared zero eigenvalue
of the Laplacians N and L. On the other hand, the H2 norm
is finite since the mode [1Tn OTn ] is marginally stable and
not externally excited; see [14, Lemma 1]. A multiplication
of the Lyapunov equation (8) by

[
1Tn O

T
n

]
also yields that[

1Tn O
T
n

]
P =

[
OTn O

T
n

]
, that is, P is positive semidefinite

and the H2 norm does not account for the absolute angle.

C. Inertia allocation formulation

We assume that each node i ∈ {1, . . . , n} has a nonzero1

inertial coefficient (mi > 0) and we are interested in
optimally allocating additional virtual inertia in order to
minimize the H2 norm (4), subject to upper bounds mi at
each bus, and total budget constraint mbdg, accounting for the
available installation space and the total cost of the storage
devices, respectively.

This problem statement is summarized as

minimize
P ,mi

‖G‖22 = Trace
(
BTPB

)
(9a)

subject to
∑n

i=1
mi ≤ mbdg (9b)

mi ≤ mi ≤ mi , i ∈ {1, . . . , n} (9c)

PA+ATP + CTC = 0 , (9d)

where the matrices (A,B,C) arise from the input-output
system (5)-(6). Observe the bilinear nature of the constraint
equation (9d) featuring products of A and P , and recall from

1Observe that the case mi = 0 leads to an ill-posed model (1) whose
number of algebraic and dynamic state depends on the system parameters.

(6) that the optimization variables mi appear as m−1
i in A.

Hence, the problem (9) is highly non-convex and typically
also large-scale.

III. OPTIMAL INERTIA ALLOCATION

In the following, we investigate the optimization problem
(9). In particular, we will provide general lower and upper
bounds, closed-form results under certain parametric assump-
tions, general results for a two-area power system, and a
gradient formula to determine locally optimal solutions.

A. Analytic closed-form results in the general case

To begin we consider the coordinate transformations θ̂ =
M

1
2 θ and ω̂ = M

1
2ω for the sake of symmetrizing the system

matrix A in (6). The dynamics of the input-output system
defined in (5)-(6) in the transformed variables are then[

˙̂
θ
˙̂ω

]
=

[
0 I

−L̂ −D̂

]
︸ ︷︷ ︸

=Â

[
θ̂
ω̂

]
+

[
0

M−
1
2T

1
2

]
︸ ︷︷ ︸

=B̂

η ,

where L̂ = M−
1
2LM−

1
2 and D̂ = M−

1
2DM−

1
2 are

congruency transforms of L and D. In the transformed
coordinates, the performance matrix CTC is rendered to

ĈT Ĉ =

[
M−

1
2NM−

1
2 0

0 M−
1
2SM−

1
2

]
=

[
N̂ 0

0 Ŝ

]
.

Finally, the Lyapunov equation (8) is rendered to

P̂

[
0 I

−L̂ −D̂

]
+

[
0 −L̂
I −D̂

]
P̂ +

[
N̂ 0

0 Ŝ

]
= 0 (10)

where P̂ is the observability Gramian parametrized as

P̂ = P̂T =

[
X1 X0

XT
0 X2

]
.

In the transformed system, the squared H2 norm (7) is

‖G‖22 = Trace(B̂T P̂ B̂) = Trace(TM−1/2X2M
−1/2)

= Trace(TM−1X2) =
∑n

i=1

tiX2,ii

mi
, (11)

where we used the ring commutativity of the trace. Af-
ter multiplying the (1,1) equation of the matrix Lyapunov
equation (10) by the Moore-Penrose pseudo-inverse L† of
the Laplacian L, we obtain the (1,1) equation and the (2,2)
equations as

Trace(X0L̂L̂
†) + Trace(XT

0 L̂
†L̂) = Trace(N̂L̂†) , (12a)

Trace(X0 +XT
0 ) = −Trace(Ŝ) + 2 · Trace(DM−1X2) ,

(12b)
where we used the fact that D and M are diagonal and
thus commutative matrices in (12b). Recall that LL† =
Π = (In − 1n1Tn/n) and

[
1Tn O

T
n

]
P =

[
OTn O

T
n

]
. Ac-

cordingly, L̂L̂† = M−1/2ΠM1/2 and
[
1TnM

1/2 OTn
]
P̂ =[

OTn O
T
n

]
. Equivalently X0

TM1/21n = On and X0L̂L̂
† =

X0M
−1/2(In−1n1Tn/n)M1/2 = X0. Thus, (12a) reduces to

Trace(X0 +XT
0 ) = Trace(N̂L̂†) = Trace(NL†) ,



which in combination with (12b) delivers

Trace(DM−1X2)=
1

2

(
Trace(M−1S +NL†)

)
. (13)

Observe the astonishing similarities between the squared H2

norm (11) and the constraint equation (13). These relations
allow us to state general upper and lower bounds on the prob-
lem (9). Furthermore, we can obtain closed-form results for
the squared H2 norm under the following two assumptions:

Assumption 1 (Uniform disturbance-damping ratio):
The ratio ti/di is constant for all i ∈ {1, . . . , n}. �

Assumption 2 (Inertia-proportional penalty): The
frequency penalty matrix S in (5) is proportional to the
inertia allocation at each node: S = c ·M for c ∈ R ≥ 0.�

Regarding Assumption 1, the droop coefficients di are
typically scheduled proportionally to the rating of a power
source to guarantee fair power sharing [21]. On the other
hand, it is not unreasonable to expect the disturbances
to scale proportionally to size of a power source. Hence,
Assumption 1 can very well be justified. In particular, it
holds for uniform damping and disturbances – though it may
be restrictive in other scenarios. Regarding Assumption 2,
the penalty on frequency with coefficients proportional to
additional inertia is akin to penalizing kinetic energy – a
reasonable and standard penalty in power systems. Assump-
tion 2 also applies in case of no frequency penalty: c = 0.
Note that Assumptions 1 and 2 are considered only here. The
latter results are independent of these assumptions.

For now we can state the following result:

Theorem 3.1: (Properties & bounds on performance
index) Consider the power system model (5)-(6), the squared
H2 norm (7) depicting the energy expended to regain syn-
chrony, and the optimal inertia allocation problem (9).

The following statements hold:
i) There exists a constant lower (respectively, upper)

bound on the H2 norm ‖G‖22 such that

ΨW ≤ ‖G‖22 ≤ ΨW ,

where W = 0.5
(

Trace(Ŝ +NL†)
)

, Ψ =
mini ti
maxi di

,

Ψ =
maxi ti
mini di

, i.e., the objective (9a) takes bounded

values.
ii) Under Assumption 1, problem (9) is equivalent to

minimize
mi

‖G‖22 = Trace
(
M−1S +NL†

)
. (14)

subject to the budget and capacity constraints (9b), (9c).
iii) Under Assumptions 1 and 2, the H2 norm ‖G‖22 is inde-

pendent of the inertia allocation, that is, any allocation
of inertia results in the same energy:

‖G‖22 =
1

2

(
n · c+ Trace(NL†)

)
.

Theorem 3.1 states some possibly surprising results. State-
ment i) gives explicit upper and lower bounds on the H2

norm, which though informative may be conservative. Result
ii) reduces the problem (9) to the simple convex problem (14)

which is independent of the Laplacian L, that is, the optimal
inertia allocation is independent of the network topology
in this case. Finally, under the assumptions of statement
iii), the H2 norm is completely independent of the inertial
coefficients.

Proof of Theorem 3.1:
i) Let t = mini{ti}, t = maxi{ti}, d = mini{di}, d =

maxi{di}. From (11) we obtain the following relations

t
n∑
i=1

X2,ii

mi
≤ ‖G‖22 ≤ t

n∑
i=1

X2,ii

mi
,

which can be further bounded as

t

d

n∑
i=1

diX2,ii

mi
≤ ‖G‖22 ≤

t

d

n∑
i=1

diX2,ii

mi
. (15)

On comparison with (13), (15) can be rewritten as:

ΨW ≤ ‖G‖22 ≤ ΨW ,

where Ψ, Ψ, and W are as stated in the theorem.
ii) From Assumption 1, let λ = ti/di > 0 be constant for

all i ∈ {1, . . . , n}. Then we can rewrite (11) as

Trace(B̂T P̂ B̂) =

n∑
i=1

tiX2,ii

mi
= λ ·

n∑
i=1

diX2,ii

mi
. (16)

As λ is a constant over the network and the right-
hand side of (16) equals (13) up to the factor λ, the
optimization problem (9) is equivalent to the following:

minimize
mi

λ

2
·
(
Trace(M−1S) +NL†)

)
(17a)

subject to
n∑
i=1

mi ≤ mbdg (17b)

mi ≤ mi ≤ mi , i ∈ {1, . . . , n} . (17c)

Observe that we removed the last redundant equation
(9d) and the variable P since the objective value of (17)
is independent of P . Finally, note that (14) and (17) are
equivalent and differ by a constant positive factor λ/2.

iii) Under Assumption 2, S = c ·M for some c ∈ R ≥ 0,
the objective (14) is independent of M .

This concludes the proof.

B. Explicit results for a two-area network

Previously in Subsection III-A, we provided some results
under the possibly restrictive Assumptions 1 and 2 for a
general power network model. In this subsection, we focus
on a two-area power grid as in [2] for illustrational purposes.

In the case of a two-area system governed by the dynamics
in (1) and for the performance metric as defined in (7), it
is possible to analytically solve the Lyapunov equation (8)
and eliminate P . As a result, we obtain a closed form, but
cumbersome expression for the objective (9a) as

f(m) = Trace[B(m)TP (m)B(m)]



subject to the budget and capacity constraints (9b)-(9c),
where f(m) is a rational function of polynomials of orders
4 (respectively, 6) in terms of inertial coefficients mi for the
numerator (respectively, denominator). Since the objective
becomes constant for an inertia-dependent frequency penalty
S = c ·M , see Theorem 3.1, we focus the the discussion
on constant frequency penalties. As the explicit expression is
more convoluted than insightful, we will not show it here, but
only report the following statements which can be verified by
a simple but tedious analysis of the rational function f(m):

1) The problem (9) admits a unique minimizer as a
function of the ti/di ratios and frequency penaltyS.

2) For sufficiently large mi’s, the budget constraint (9b)
becomes active, i.e., the optimizers satisfy m?

1 +m?
2 =

mbdg. In this case, m2 can be eliminated as m2 =
mbdg−m1, and (9) can be reduced to a scalar problem.

3) In case of no capacity constraints, for identical ti/di
ratios and frequency penalties S, the optimal inertial
coefficients are identical m?

1 = m?
2. In the general case

when ti/di > tj/dj , then m∗i > m∗j (see the example
in Figure 1, where we eliminated m2 = mbdg −m1).

4) For sufficiently uniform ti/di ratios, the problem (9)
is strongly convex. We observe that the cost function
f(m) is fairly flat over the feasible set (see Figure 1).

5) For strongly dissimilar ti/di ratios, we observe a less
flat cost function. If the disturbance affects only one
node, e.g., t1 = 1 and t2 = 0, strong convexity is lost.

m1

f(m1)

Fig. 1. Trace profile for weakly dissimilar ti
di

ratios
(

t2
d2

> t1
d1

)
.

From the above facts, we conclude that the input scaling
factors ti play an overriding role in the behaviour of the
performance. Hence, some claims in Theorem 3.1 with
uniform ti/di ratios may showcase results for an idealistic
scenario. To obtain a more complete picture, we linearly
vary the disturbance input matrices from [t1, t2] = [0, 1]
to [t1, t2] = [1, 0], that is, from a disturbance localized at
node 2 to a disturbance localized at node 1. The resulting
optimizers are displayed in Figure 2 showing that inertia is
allocated dominantly at the site of the disturbance, which
is in line with previous case studies [2], [10]. Notice also
that depending on the value of the budget mbdg, the capacity
constraints mi, and the ti/di ratios, the budget constraint
may be active or not. Thus, perhaps surprisingly, sometimes
not all inertia resources are allocated. Overall, the two-area
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Fig. 2. Optimal inertia allocation for a two-area system with
identical frequency penalties S = I2, with non-identical and
identical damping coefficients di, with disturbances inputs varying
from [t1, t2] = [0, 1] to [t1, t2] = [1, 0], and for two choices of
budget mbdg.

case paints a surprisingly complex picture.

C. Perturbation analysis and gradient computation

In Subsections III-A and III-B, we considered a subset of
networks that admitted a closed-form solution for the inertia
allocation problem (9). Here, we present a computational
approach and explicitly calculate the gradient ∇f(m) of the
objective

f(m) = Trace
(
B(m)TP (m)B(m)

)
. (18)

Observe that in writing (18) we implicitly assumed that
P = P (m) is obtained from the Lyapunov equation (9d).
Information on the gradient ∇f(m) is essential for many
computational approaches, for example, the problem (9) can
be approached via the partial Lagrangian

L(m, ρ, ρ, ς) = Trace
(
B(m)TP (m)B(m)

)
+ ρT (m−m)

+ ρT (m−m) + ς

(
n∑
i=1

mi −mbdg

)
,

where ρ, ρ, ς > 0 are multipliers, and we did not dualize
the Lyapunov constraint (9d). If the gradient of f(m) is
explicitly available, then a locally optimal solution can be



computed, for example, via the iterative primal-dual algo-
rithm [28]

m(k + 1) = m(k)

− α(k)
(
∇f(m(k)) + ρ(k)− ρ(k) + ς(k)1n

)
,

ρ(k + 1) = [ρ(k) + α(k) (m(k)−m)]+ ,

ρ(k + 1) =
[
ρ(k) + α(k) (m−m(k))

]
+
,

ς(k + 1) =

[
ς(k) + α(k)

(
n∑
i=1

mi(k)−mbdg

)]
+

,

where k ∈ Z≥0 is the iteration index, α(k) > 0 is an
appropriate step size, and [·]+ = max{0, ·}. In general, most
computational approaches can be sped up tremendously if
the large-scale set of nonlinear (in the decision variables)
Lyapunov equations (9d) can be eliminated and included into
the gradient information. In the following, we provide an
algorithm that achieves so, and uses the routine Lyap(A,Q)
which returns the matrix P that solves PA+ATP +Q = 0.

Algorithm 1: Gradient computation
Input current value m of the decision variables
Output numerical evaluation g of the gradient ∇f(m)

A(0) ←
[

0 I
−M−1L −M−1D

]
;

B(0) ←
[

0
M−1T 1/2

]
;

P (0) ← Lyap
(
A(0), CTC

)
;

for i = 1, . . . , n do
Φ← eieTi ;
A(1) ←

[
0 0

ΦM−2L ΦM−2D

]
;

B(1) ←
[

0
−ΦM−2T 1/2

]
;

P (1) ← Lyap
(
A(0), P (0)A(1) +A(1)TP (0)

)
;

gi ← Trace
(

2B(1)TP (0)B(0) +B(0)TP (1)B(0)
)

;

Theorem 3.2: Consider the objective function (18), where
P (m) is a function of m via the Lyapunov equation (9d).
The objective function is differentiable for m ∈ Rn>0, and its
gradient at m is given by Algorithm 1.

The proof of Theorem 3.2 is partially inspired by [15] and
relies on a perturbation analysis of the Lyapunov equation
(9d) combined with Taylor and power series expansions.

Proof of Theorem 3.2: In order to compute the gradient of
(18) at m ∈ Rn>0, we make use of the relation

∇µf(m) = ∇f(m)
T
µ , (19)

where ∇µf(m) is the directional derivative of f in the
direction µ ∈ Rn, defined as

∇µf(m) = lim
δ→0

f(m+ δµ)− f(m)

δ
, (20)

whenever this limit exists.
From (18) we have that

f(m+ δµ) = Trace
(
B(m+ δµ)TPB(m+ δµ)

)
, (21)

where P is a solution of the Lyapunov equation

PA(m+ δµ) +A(m+ δµ)
T
P + CTC = 0 (22)

and where by A(m + δµ) we denote the system matrix
defined in (6), evaluated in m+ δµ.

The matrices A(m+ δµ) and B(m+ δµ) can be intended
as function of the scalar δ, and can thus be expanded in a
Taylor series around δ = 0 as

A(m+ δµ) = A
(0)
(m,µ) +A

(1)
(m,µ)δ +O(δ2) ,

B(m+ δµ) = B
(0)
(m0,µ) +B

(1)
(m0,µ)δ +O(δ2) .

(23)

In order to compute the coefficients of the Taylor ex-
pansion in (23), we recall the scalar series expansion of
1/(mi + δµi) around δ = 0:

1

(mi + δµi)
=

1

mi
− δµi
m2
i

+O(δ2).

Using the shorthand Φ = diag(µi), we therefore have

A
(0)
(m,µ) =

[
0 I

−M−1L −M−1D

]
A

(1)
(m,µ) =

[
0 0

ΦM−2L ΦM−2D

]
B

(0)
(m,µ) =

[
0

M−1T 1/2

]
B

(1)
(m,µ) =

[
0

−ΦM−2T 1/2

]
.

Accordingly, the solution to the Lyapunov equation (22)
can be exapanded in a power series as

P = P (m+ δµ) = P
(0)
(m0,µ) + P

(1)
(m0,µ)δ +O(δ2), (24)

and therefore the Lyapunov equation (22) becomes

(P (0) + δP (1) +O(δ2))(A(0) + δA(1) +O(δ2))+

(A(0)+δA(1)+O(δ2))T (P (0)+δP (1)+O(δ2))+CTC = 0,

where we dropped the subscript (m,µ) for readability. By
collecting terms associated with powers of δ, we obtain two
Lyapunov equations determining P (0) and P (1):

P (0)A(0) +A(0)TP (0) + CTC = 0 (25a)

P (1)A(0) +A(0)TP (1) +(P (0)A(1) +A(1)TP (0)) = 0 (25b)

By the same reasoning as used for equation (8), the first
Lyapunov equation (25a) is feasible with a positive semidef-
inite P (0) satisfying

[
1Tn O

T
n

]
P (0) =

[
OTn O

T
n

]
. The second

Lyapunov equation (25b) is feasible by analogous arguments.
Finally, by using (21) together with (23) and (24), we

obtain

f(m+ δµ) = f
(0)
(m,µ) + f

(1)
(m,µ)δ +O(δ2)

where f (0)
(m,µ) = f(m) and

f
(1)
(m,µ) = Trace

(
2B

(1)
(m,µ)

T
P

(0)
(m,µ)B

(0)
(m,µ)

+B
(0)
(m,µ)

T
P

(1)
(m,µ)B

(0)
(m,µ)

) (26)
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Fig. 3. Three-region test case adopted from [10], [23]

From (20), it clearly follows that ∇µf(m) = f
(1)
(m,µ) as de-

fined in (26), thereby implicitly establishing differentiability
of f(m).

This concludes the proof, as the algorithm computes each
component of the gradient ∇f(m) by using the relation (19)
with the special choice of µ = ei, i ∈ {1, . . . , n}, where ei
is the i-th vector of the canonical base of Rn.

IV. CASE STUDY: 12-BUS-THREE-REGION SYSTEM

In this section, we investigate a 12-bus case study illus-
trated in Figure 3. The system parameters are based on a
modified two-area system from [23, Example 12.6] with
an additional third area, as introduced in [10]. After Kron
reduction, we obtain a systems of 9 buses, corresponding to
the nodes where inertia can be allocated.

We investigate this example computationally using Al-
gorithm 1 to drive standard gradient-based optimization
routines, while highlighting parallels to our analytic results.
We analyze different parametric scenarios and compare the
inertia allocation and the performance of the proposed nu-
merical optimization (which is a locally optimal solution)
with two plausible heuristics that one may deduce from the
conclusions in [2], [10]: namely the uniform allocation of
the available budget, in the absence of capacity constraints,
i.e. mi = muni = mbdg/n; or the allocation of the maximum
inertia allowed by the bus capacity constraints, in the absence
of a budget constraint, i.e. m = m (which we set as
mi = 4mi).

a) Uniform disturbance: We first assume that the dis-
turbance affects all nodes identically, T = diag{19}/9. In
Figure 4 we consider the case where there are only capac-
ity constraints at each bus, and we compare the different
allocations vis-à-vis: the initial inertia m, a locally optimal
solution m?, and the maximum inertia allocation m. Figure 5
compares the results in the case where there is only a budget
constraint on the total allocation. We compare the initial
inertia m, the locally optimal allocation m?, and the uniform
placement mi = muni.

b) Localized disturbance: We then consider the sce-
nario where a localized disturbance affects a particular node,
e.g., node 4 with T = diag{0, 0, 0, 1, 0, 0, 0, 0, 0}. As in Fig-
ures 4 and 5, a comparison of the different inertial allocations
and the performance values is presented in Figures 6 and 7
for the cases of capacity and budget constraints.
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c) Discussion of results: We infer the following from
the above test cases: i) The locally optimal solution achieves
the best performance among the different heuristics. ii) In
case of uniform disturbances, the different heuristics as well
as the initial allocation perform nearly optimal, which reveals
similar features as the flat cost function observed in the two-
area case (Section III-B) and the results in Theorem 3.1,
indicating that any allocation is optimal under uniformity
assumptions. iii) In stark contrast is the case of a localized
disturbance, where adding inertia dominantly to disturbed
node is an optimal choice in comparison to heuristic place-
ments. The latter is also in line with the results presented for
the two-area case.

V. CONCLUSIONS

We considered the problem of placing virtual inertia in
power grids based on an H2 norm performance metric
reflecting the network coherency. This formulation gives rise
to a large-scale and non-convex optimization program. For
certain problem instances and in the low-dimensional two-
area case, we could derive closed-form solutions yielding
some, perhaps surprising, insights. Next we developed a
computational approach based on an explicit gradient for-
mulation. Finally, we validated our results on a thee-area
network to illustrate the effectiveness of our locally optimal
inertia allocation and compared it with intuitive heuristics.

Our computational and analytic results are well aligned
and suggest insightful strategies for the optimal allocation of
virtual inertia. We envision that these results find application
in stabilizing low-inertia grids through strategically placed
virtual inertia. As part of our ongoing and future work, we
also consider the extension to more detailed system models
and the allocation of a finite number of virtual inertia units.
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