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Abstract

We consider the problem of grid-forming control of power converters in low-inertia power systems. Starting from an average-
switch three-phase inverter model, we draw parallels to a synchronous machine (SM) model and propose a novel grid-forming
converter control strategy which dwells upon the main characteristic of a SM: the presence of an internal rotating magnetic
field. In particular, we augment the converter system with a virtual oscillator whose frequency is driven by the DC-side voltage
measurement and which sets the converter pulse-width-modulation signal, thereby achieving exact matching between the
converter in closed-loop and the SM dynamics. We then provide a sufficient condition assuring existence, uniqueness, and global
asymptotic stability of equilibria in a coordinate frame attached to the virtual oscillator angle. By actuating the DC-side input
of the converter we are able to enforce this sufficient condition. In the same setting, we highlight strict incremental passivity,
droop, and power-sharing properties of the proposed framework, which are compatible with conventional requirements of power
system operation. We subsequently adopt disturbance decoupling techniques to design additional control loops that regulate
the DC-side voltage, as well as AC-side frequency and amplitude, while in the end validating them with numerical experiments.

1 Introduction

The electrical power system is currently undergoing sig-
nificant changes in its structure and mode of operation
due to a major shift in generation technology from syn-
chronous machines (SMs) to power electronics-based
DC/AC converters, or simply inverters. As opposed to
SMs, which store kinetic energy in their rotational in-
ertia, these devices are on the one hand designed with
little or no built-in energy storage capacity, while on
the other hand actuated at much faster time scales.
Large SMs with their rotational inertia, their self-
synchronizing physics, and their controls act as safe-
guards against faults and disturbances – all of which
are absent in low-inertia systems with a dominant share
of distributed and variable renewable sources interfaced
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through inverters. Hence, the proper control of inverters
is regarded as one of the key challenges when massively
integrating renewable energy sources (Kroposki et al.,
2017; Taylor et al., 2016; Denis et al., 2015).

Converter control strategies are classified in two groups.
While there is no universally accepted definition, con-
verters are usually termed grid-following if their controls
are designed for a stiff grid, and they deliver power at
the stiff AC grid frequency usually measured through
a phase-locked loop (PLL). Otherwise, converters are
termed grid-forming if they are assigned to interact with
a non-stiff grid similarly as SMs do by balancing kinetic
and electrical energy such that a frequency consensus is
achieved. A low-inertia system cannot be operated with
only grid-following units. With this in mind, we review
the literature on grid-forming control.

The inherent self-synchronizing behavior of SMs has in-
spired controllers such as droop and virtual synchronous
machines (VSMs) (Torres and Lopes, 2013; Karapanos
et al., 2011; Van Wesenbeeck et al., 2009; D’Arco and
Suul, 2013; Chen et al., 2011; Zhong and Weiss, 2011).
These controllers are designed to emulate the behavior of
SM models of different degree of fidelity and are based on
measurements of AC quantities such as injected power,
frequency, and amplitude. For example, inverse droop
and related VSM control strategies measure the AC fre-
quency through a PLL and accordingly adapt the con-
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verter power injection based on a simple SM swing equa-
tion model. The latter is encoded in a micro-controller
whose outputs are tracked by the converter modulation
signal typically through a cascaded control architecture.
For these and other VSM implementations, the time de-
lays resulting from measuring and processing AC quan-
tities render control often ineffective (ENTSO-E, 2016;
Bevrani et al., 2014; Denis et al., 2015). Droop con-
trol can also be implemented by measuring the injected
power and accordingly adapting the converter frequency
(Guerrero et al., 2013), but its applicability is limited to
inductive grids and with a possibly narrow region of at-
traction (Sinha et al., 2015; Dörfler et al., 2016; De Per-
sis and Monshizadeh, 2015). Additionally, the inverter’s
DC-side storage element is often not included in the
model, nor in the control design, which, as far as we can
tell, misses a key insight: namely, the DC bus voltage
reflects the power imbalance and serves as valuable con-
trol signal. Finally, alternative control strategies employ
nonlinear virtual oscillators fed by AC current measure-
ments (Sinha et al., 2015; Colombino et al., 2017). For
these strategies global stability certificates are known,
but their design and analysis is quite involved (as a re-
sult, no controllers for regulation of amplitudes and fre-
quency is known thus far) and their compatibility with
SMs is unclear to this date.

Another set of literature relevant to our methodology
is passivity-based control (PBC) (Van Der Schaft, 2000)
and interconnection and damping assignment (IDA) (Or-
tega and Garca-Canseco, 2004). Their application to
DC/DC converters (Escobar et al., 1999; Zonetti et al.,
2014), AC/DC converters (Perez et al., 2004), and power
systems in general (Caliskan and Tabuada, 2014; Fiaz
et al., 2013) suggests a physically insightful analysis
based on energy dissipation and shaping. As we will fur-
ther see, our analysis relies also on a characterization of
the power system steady-state specification (Groß et al.,
2016; Groß and Dörfler, 2017) which restricts the class
of admissible controllers.

Our main investigation is three-fold. First, we propose
a novel grid-forming control strategy that matches the
electromechanical energy exchange pattern in SMs.
This is achieved by augmenting the converter dynam-
ics with an internal model of a harmonic oscillator
whose frequency takes the value of the DC-side voltage
measurement. This voltage-driven oscillator is then as-
signed to drive the converter’s pulse-width-modulation
cycle, thereby assuring that the closed-loop converter
dynamics exactly match the SM dynamics, whereas the
DC voltage serves as the key control and imbalance
signal akin to the SM’s angular velocity. Based on a
Lyapunov approach we provide a sufficient condition
certifying existence, uniqueness, and global asymptotic
stability of equilibria in a coordinate frame attached to
the virtual oscillator angle. By actuating the DC-side
input current we are able to satisfy this condition. We
also demonstrate strict incremental passivity, droop,

and power-sharing properties of the closed-loop sys-
tem. Our approach is grounded in foundational control
methods, while being systematically extensible to PBC
and IDA designs. Additionally, the key DC voltage sig-
nal is readily available while all other approaches rely
on extensive processing of the AC measurements. Sec-
ond, building on the proposed matching controller, we
further design overarching control loops that regulate
the DC voltage, AC frequency, and AC amplitude. This
is done by pursuing an approach based on disturbance
decoupling, which performs asymptotic output volt-
age amplitude tracking while rejecting the load current
seen as a measurable disturbance. We then suggest ex-
tensions based on employing PBC and voltage-power
droop control strategies, which have been previously
investigated in various settings. Third and finally, we
validate the performance and robustness of our designs
by comparing them in numerical experiments of single
and multi-converter scenarios.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the models and the control objectives.
Section 3 proposes the matching controller and derives
its properties. Section 4 designs the regulation and dis-
turbance rejection controllers. Section 5 presents our nu-
merical case study, and Section 6 concludes the paper.

2 Three-Phase Converter Model, Synchronous
Machine Model, & their Analogies

2.1 Preliminaries on AC and DC signal spaces

We consider three-phase AC quantities z = (za, zb, zc) ∈
R3 that are assumed to be balanced: za + zb + zc = 0.
We denote by zαβ ∈ R2 the restriction of z to the plane
orthogonal to [1 1 1] and omit the third so-called zero
sequence component, denoted by zγ ∈ R; see Remark 1.

We define the desired power system steady state as in
(Groß et al., 2016; Groß and Dörfler, 2017): a DC sig-
nal z∗dc ∈ R is said to be in steady-state when it sat-
isfies ż∗dc = 0; an AC signal z?αβ ∈ R2 is said to be in

(synchronous and balanced) steady state when it satis-
fies ż?αβ = ω∗ Jz?αβ for some nonzero frequency ω∗ ∈ R.

Here I = [ 1 0
0 1 ] is the identity and J =

[
0 −1
1 0

]
is a rota-

tion matrix analogous to the imaginary unit
√
−1 when

working in complex rather than αβ-coordinates. In this
paper, ‖ · ‖ denotes the standard Euclidean norm.

Given an AC signal zαβ ∈ R2 in αβ-frame and an angle
θ ∈ S1, we define zdq ∈ R2 in dq-frame as

zdq =

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
zαβ . (1)
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Observe that a steady-state AC signal ż?αβ = ω∗Jz?αβ in
αβ-frame with synchronous frequency ω∗ is mapped to
an equilibrium ż∗dq = 0 in a dq-frame with appropriate

transformation angle θ? = ω∗t+ φ for some φ ∈ S1.

Throughout this article, a signal zref denotes a user-
defined set-point, whereas z∗dq or z?αβ will denote a steady
state induced by external inputs, e.g., unknown loads.

2.2 Three-Phase DC/AC Converter Model

We consider a standard average-switch model of the
three-phase inverter, represented by a continuous-time
system whose main nonlinearity is contained in the mod-
ulation block, as depicted in Figure 1. See (Tabesh and
Iravani, 2009) for a more in-depth overview.

il

+

−

vx

iαβ R L

C G

−

+

vαβidc Gdc Cdc

ix
−

+

vdc

Fig. 1. Circuit diagram of a 3-phase DC/AC converter

The DC circuit consists of a constant current source
idc > 0 in parallel with a capacitance Cdc > 0 and a par-
asitic conductance Gdc > 0. The DC current taken by
the switching block is denoted by ix ∈ R, while vdc ∈ R
represents the voltage across the DC capacitance.

The AC circuit contains at each phase an inductance
L > 0 in series with a resistance R > 0 connected to
a shunt capacitance C > 0. Here vαβ ∈ R2 denotes
the AC voltage across the output capacitor. The load is
represented by a shunt conductanceG > 0 at each phase
together with the AC load current, il ∈ R2. Furthermore,
iαβ ∈ R2 denotes the AC current in the inductors and
vx ∈ R2 the average AC voltage at the switching node.

The switching block represents an averaged model of
a 6-switch 2-level inverter which converts DC voltage
into AC voltage according to a complementary pulse-
width-modulation (PWM) carrier and a modulation sig-
nal mαβ ∈ R2. For the time scales of interest, we assume
a sufficiently high switching frequency which allows us
to discard the PWM carrier harmonics. Due to the con-
verter topology, the switching block defines the identities

ix =
1

2
m>αβiαβ ; vx =

1

2
mαβvdc ,

where mαβ ∈ R2 is the modulation signal in αβ-frame,
corresponding to the average of the converter’s PWM
signals over one switching period and is defined such that
its components take values inside the unit disk.

By putting it all together, our three-phase DC/AC con-
verter model can be written as

Cdcv̇dc = −Gdcvdc + idc −
1

2
i>αβmαβ (2a)

Li̇αβ = −Riαβ − vαβ +
1

2
vdcmαβ (2b)

Cv̇αβ = −Gvαβ − il + iαβ . (2c)

Remark 1 (Zero sequence) We construct the modu-
lation signal such that mγ = 0 which implies that vx,γ =
0. For a balanced load, it also holds that il,γ = 0. We are
left with the following dynamics for the γ- subsystem:

Li̇γ = −Riγ − vγ (3a)

Cv̇γ = −Gvγ + iγ . (3b)

Since (3) is an asymptotically stable linear system, the
omission of the γ-component is well justified. �

2.3 Control objectives

In this section, we formalize the control objectives to be
achieved via the two main actuation inputs, the modu-
lation signal mαβ and the DC-side current injection idc.
Broadly speaking we require the following:

(i) Grid-forming: The objective of grid-forming control
is best defined by mimicking the electromechanical inter-
action of a SM with the grid rather than prescribing the
converter modulation frequency to the grid frequency,
e.g., via a PLL. The synchronization properties of SMs
rely on a particular kinetic to electrical energy exchange
pattern. This can be induced in the DC/AC converter
by exactly matching the SM’s dynamics.

(ii) Stable steady states: We intend to stabilize the DC
signal vdc and AC signals iαβ , vαβ to synchronous steady
states which may depend on on the converter parame-
ters, load demands, and control gains, as characterized
in (Groß et al., 2016; Groß and Dörfler, 2017).

(iii) Strict incremental passivity: We aim to induce strict
incremental passivity (Van Der Schaft, 2000) with re-
spect to the AC and DC ports, u = (idc, il) and y =
(vdc, vdq), and with respect to a desired steady-state so-
lution z∗ = (v∗dc, i

∗
dq, v

∗
dq). More precisely, we seek a posi-

tive definite and continuously differentiable storage func-
tion V(z−z∗), in appropriate coordinates, whose deriva-
tive along trajectories of the closed-loop system satisfies

V̇(z − z∗) ≤ −W (z − z∗) + (u− u∗)>(y − y∗) ,

where W is positive definite. This passivity property is
considered a key local certificate to ensure stability in
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an interconnected power grid (Fiaz et al., 2013; Caliskan
and Tabuada, 2014; De Persis and Monshizadeh, 2015).

(iv) Regulation and disturbance rejection: Independently
of the load parameters il and G, we aim to regulate the
steady-state frequency ω∗ of all AC quantities as well as
the steady-state amplitudes of DC and AC voltages v∗dc
and ‖v∗αβ‖ to reference values ωref > 0, vdc,ref > 0, and
rref > 0.

(v) Droop compatibility: In a neighbourhood of the de-
sired steady-state solution z∗, we aim to achieve a lin-
ear droop characteristic between the converter modu-
lation frequency and its power output as: ω − ωref =
d(P − Pref ), where d > 0 is the droop gain to be spec-
ified, Pref > 0 is a power injection set-point and P is
the delivered active power. Such a local droop behavior
is known to guarantee power sharing and compatibil-
ity with other droop-like controllers in a power system
(Sinha et al., 2015; Dörfler et al., 2016).

In the sequel, we will further specify these objectives (in
more suitable coordinates) and also consider alternative
objectives such as voltage amplitude droop control.

2.4 The Synchronous Machine Model

In what follows, we consider a SM model which lends
itself useful in designing the matching controller. We
consider a single-pole-pair, non-salient rotor, SM under
constant excitation, defined in αβ-frame as in (Caliskan
and Tabuada, 2014), together with a capacitor at its AC
terminal, and described by the state-space model

θ̇ = ω (4a)

Mω̇ = −Dω + τm + i>αβLmif

[
− sin(θ)

cos(θ)

]
(4b)

Lsi̇αβ = −Riαβ − vαβ − ωvLmif

[
− sin(θ)

cos(θ)

]
(4c)

Cv̇αβ = −Gvαβ − il + iαβ . (4d)

Here, M > 0 and D > 0 are the rotor inertia and damp-
ing coefficients, τm is the driving mechanical torque,
Lm > 0 is the stator-to-rotor mutual inductance, Ls > 0
the stator inductance. We denote the rotor angle by
θ ∈ S1, its angular velocity by ω ∈ R, the magnetic flux
in the stator winding by λαβ ∈ R2, and the stator resis-
tance by R > 0. At its terminals the SM is interfaced
to the grid through a shunt capacitor with capacitance
C > 0 and capacitor voltage vαβ ∈ R2, a constant load
conductance G > 0, and the load current extraction de-
noted by il ∈ R2. The strength of the rotating magnetic
flux inside the SM (4) is given by the rotor current if
which is assumed to be regulated to a constant value, as
in (Caliskan and Tabuada, 2014; Groß et al., 2016).

Observe the similarities between the inverter model (2)
and the SM model (4). The DC capacitor is analogous to
the rotor moment of inertia, while the electrical torque
and the electromotive force (EMF) (the rightern-most
terms in (4b) and (4c)) play the same role as ix and
vx. The self-synchronizing properties of a multi-machine
power system are attributed to exchange of kinetic and
electrical energy through the electrical torque and the
EMF. In the following section, we will assign this very
mechanism for the inverter dynamics (2).

3 Grid-Forming SM Matching Control

From Groß and Dörfler (2017), we know that every con-
verter modulation controller inducing a synchronous,
balanced, and sinusoidal steady state must necessarily
include an internal model of an oscillator of the form
ṁ?
αβ = ω∗Jm?

αβ . Thus, the first step in our design is to
assign a sinusoidal modulation scheme parameterized in
polar coordinates by means of a virtual angle θv ∈ S1 as

θ̇v = ωv ; mαβ = µ

[
− sin(θv)

cos(θv)

]
, (5a)

where ωv ∈ R and µ ∈ ]0, 1] are the assignable modu-
lation frequency and amplitude to be specified later. In
the next step, we design a grid-forming modulation con-
troller by matching the converter model (2) augmented
with the internal model control loop (5a) to the SM
model (4). By visual inspection we observe that model
matching is achieved by dynamic feedback

ωv = η vdc (5b)

where the constant η = ωref/vdc,ref > 0 encodes the ra-
tio between the nominal AC frequency ωref and the DC
voltage reference vdc,ref . All subsequent developments
will be based on the matching control (5).

Remark 2 (Equivalent SM interpretation) In the
following, we highlight the similarities between the gen-
erator model (4) and the converter model (2) under the
control scheme (5). By writing ix and vx as

ix =
µ

2
i>αβ

[
− sin(θv)

cos(θv)

]
; vx =

µ

2
vdc

[
− sin(θv)

cos(θv)

]
(6)

we identify the AC-side switch voltage vx with an equiv-
alent EMF by choosing the modulation amplitude as µ =
−2ηLmif We also identify the DC-side switch current ix
with the equivalent torque

τe =
1

2η
i>αβ µ

[
− sin(θv)

cos(θv)

]
=

1

η
ix . (7)
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Finally, by defining the equivalent angular velocity as
ωv = ηvdc we rewrite the closed loop (2), (5) as the equiv-
alent SM

θ̇v = ωv (8a)

Cdc
η2

ω̇v = −Gdc
η2

ωv +
idc
η
− 1

η
ix (8b)

Li̇αβ = −Riαβ − vαβ +
1

2η
ωvmαβ (8c)

Cv̇αβ = −Glvαβ + iαβ − il , (8d)

where we identify Cdc/η
2, Gdc/η

2, and idc/η with the
equivalent mechanical inertia damping, and mechanical
driving torque. �

3.1 Closed-Loop Incremental Stability & Passivity

In this section, we show how the matching controller (5)
induces desirable stability and passivity properties in
an appropriate dq-frame and in incremental coordinates
formulated with respect to an induced steady state. Con-
sider now the closed-loop inverter dynamics (2), (5). By
applying the dq-coordinate transformation (1) with an-
gle θv to iαβ and vαβ , we arrive at the following subsys-
tem, which is independent of the angle state variable:

Cdcv̇dc = −Gdcvdc + idc −
µ

2

[
0

1

]>
idq (9a)

Li̇dq = −(RI + ωvLJ)idq +
µ

2

[
0

1

]
vdc − vdq (9b)

Cv̇dq = −(GI + ωvCJ)vdq − il,dq + idq . (9c)

The following result characterizes the strict incremental
passivity and stability properties of the dq-frame inverter
model (9), with respect to a steady state solution.

Theorem 3 (Closed-loop stability & strict pas-
sivity in dq-frame) Consider the closed-loop inverter
model (9) and assume that there exists steady state
x∗ = (v∗dc, i

∗
dq, v

∗
dq) that satisfies

C2‖v∗dq‖2

4G
+
L2‖i∗dq‖2

4R
<
Gdc
η2

. (10)

Then, the following statements hold:

(1) the inverter model (9) is strictly incrementally pas-
sive with respect to the input (idc − i∗dc, il,dq − i∗l,dq)
and the output (vdc − v∗dc, vdq − v∗dq);

(2) x∗ is the unique real-valued equilibrium; and
(3) for stationary inputs (idc, il,dq) = (i∗dc, i

∗
ldq), the

steady state x∗ is globally asymptotically stable.

PROOF. Our proof is inspired by Caliskan and
Tabuada (2014). Starting from the assumptions
of the theorem, we define the error coordinates
ṽdc = vdc− v∗dc, ω̃v = ηvdc− ηv∗dc, ĩdq = idq − i∗dq, ṽdq =

vdq − v∗dq, ĩl,dq = il,dq − i∗l,dq, ĩdc = idc − i∗dc such that
the associated transient dynamics are expressed as

Cdc ˙̃vdc=−Gdcṽdc + ĩdc −
µ

2

[
0

1

]>
ĩdq

L˙̃idq=−(RI+ω∗vLJ+ω̃vLJ )̃idq − ω̃vLJi∗dq (11)

+
µ

2

[
0

1

]
ṽdc − ṽdq

C ˙̃vdq=−(GI+ω∗vCJ+ω̃vCJ)ṽdq−ω̃vCJv∗dq+ ĩdq− ĩl,dq

By considering the physical storage of the circuit ele-
ments, we define the incremental positive definite and
differentiable storage function V1 : R5 → R>0 by

V1 =
1

2
Cdcṽ

2
dc +

1

2
Lĩ>dq ĩdq +

1

2
Cṽ>dq ṽdq . (12)

Due to skew symmetry of J , the derivative of V1 along
the trajectories of the error system (11) evaluates to

V̇1 = −
[
ṽdc ĩ

>
dq ṽ

>
dq

]
P
[
ṽdc ĩ

>
dq ṽ

>
dq

]>
−ṽ>dq ĩl,dq+ĩdcṽdc ,

where the symmetric matrix P ∈ R5×5 is given by

P =


Gdc

ηL
2 (Ji∗dq)

> ηC
2 (Jv∗dq)

>

ηL
2 (Ji∗dq) RI 0
ηC
2 (Jv∗dq) 0 GI

 (13)

By evaluating all leading principal minors of P we see
that under condition (10), P becomes positive defi-
nite. Hence, system (11) is strictly passive with input
(̃idc,−ĩl,dq) and output (ṽdc, ṽdq). Moreover, by Lya-
punov’s direct method, the origin of (11) is asymptot-
ically stable if we assume zero incremental input sig-
nals. Since V1 is radially unbounded, we obtain global
asymptotic stability as well as the absence of any other
equilibrium. �

The stability condition (10) requires sufficiently large
damping in the AC and DC components of the converter.
However, the parasitic resistances R and Gdc can be ar-
bitrarily small in practice. To alleviate this shortage of
stabilizing dissipation, we implement a DC-side actua-
tion akin to governor speed droop control for generators
to enforce condition (10). We design the current source
idc as the proportional (P) controller

idc = idc,ref −Kp(vdc − vdc,ref ) , (14)
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where Kp > 0 is a gain, while idc,ref > 0 and vdc,ref > 0
are set-points for the DC current source and DC volt-
age, respectively. By the analogous reasoning leading to
Theorem 3, we arrive at the following corollary.

Corollary 4 (Closed-loop stability with DC-side
P-control) Consider the inverter model (9) with P-
controller (14) on the DC-side input. Assume there is a
steady state x∗ = (v∗dc, i

∗
dq, v

∗
dq, i

∗
dc, i

∗
l,dq) satisfying

C2‖v∗dq‖2

4G
+
L2‖i∗dq‖2

4R
<
Gdc +Kp

η2
. (15)

Then the augmented system (9), (14), with input il,dq and
output vdq is strictly incrementally passive. Moreover,
for stationary inputs il,dq = i∗ldq, the steady state x∗ is
unique and globally asymptotically stable.

We underscore that condition (15) can be met by suit-
able choice of gain Kp. We conclude this subsection with
the following remarks. Since we have only performed P-
control thus far, we cannot necessarily guarantee asymp-
totic regulation of vdc to a particular vdc,ref . Later in
Section 4, we will specify under which conditions a desir-
able closed-loop steady state exists, as assumed earlier,
when it is unique, and how to regulate vdc to vdc,ref .

The incremental passivity property highlighted in The-
orem 3 and Corollary 4 is regarded as a key requirement
for stability under interconnection, see (Fiaz et al., 2013;
Caliskan and Tabuada, 2014), however this requires a
single coordinate frame analysis for the networked sce-
nario. Since in our work we use a dq-coordinate frame
attached to a particular converter angle, the analysis
does not pertain to a multi-inverter setup. Nevertheless,
this property is preserved in all our subsequent develop-
ments. In what follows, we investigate the steady-state
droop behavior of the closed loop (9), (14).

3.2 Droop properties of matching control

A key requirement for plug-and-play operation in power
systems is power sharing amongst multiple inverters by
means of a droop characteristic trading off power injec-
tion with the voltage amplitude and frequency (Dörfler
et al., 2016). In this section, we investigate these prop-
erties for the closed-loop system (2), (5), (14).

Let r∗x > 0 and ω∗x > 0 be the steady-state amplitude
and frequency of the switching voltage. Following (Akagi
et al., 1983), we define the active and reactive power at
the load and switching node as[
P ∗l

Q∗l

]
=

[
v∗d v∗q

v∗q −v∗d

][
i∗l,d

il,q

]
,

[
P ∗x

Q∗x

]
=

[
i∗d i∗q

i∗q −i∗d

][
v∗x,d

v∗x,q

]
.

Two converters i, j are said to achieve proportional power
sharing at a pre-defined ratio ρ > 0 if P ∗x,i/P

∗
x,j = ρ.

Finally, the linear sensitivity factors relating steady-
state active power injection P ∗x to voltage amplitude r∗x
and frequency ω∗x, are represented here by the droop co-
efficients drx = ∂Px/∂rx and dωx = ∂Px/∂ωx. The fol-
lowing proposition puts these quantities into relation.

Proposition 5 (Active/ Reactive Power Injec-
tions) Consider the inverter model (2) together with
the matching controller (5) and the DC-side P-control
(14). Assume that all DC and AC signals are in steady
state with synchronous frequency ω∗x = ω∗, and define
i0 = idc,ref +Kpvdc,ref . The following statements hold:

(1) Nose curves: the switching voltage amplitude and its
frequency have the following expression as a func-
tion of exogenous inputs

r∗x =
µ

4(Gdc +Kp)

(
i0±
√
i0

2 − 4(Gdc +Kp)P ∗x

)
,

and accordingly ω∗x = 2ηr∗x/µ. Moreover, the reac-
tive power Q∗x is independent of (r∗x, ω

∗
x).

(2) Droop behavior: Around an operating point (r∗x, ω
∗
x),

the expression for the droop coefficients is given by:

drx = −8(Gdc +Kp)

µ2
r∗x +

2i0
µ
, (16a)

dωx
= −2(Gdc +Kp)

η2
ω∗x +

i0
η
. (16b)

(3) Power sharing: Consider any pair of converters i
and j, {i, j} ∈ N with identical values of DC con-
ductance Gdc = 0, DC voltage reference vdc,ref > 0
and control gain η > 0, the converters achieve pro-
portional power sharing ratio ρ = P ∗x,i/P

∗
x,j if

Kp,i = ρKp,j , idc,ref,i = ρ idc,ref,j , (17)

or equivalently if dω,i = ρ dω,j and Pdc,i = ρPdc,j.

PROOF. To prove statement (1), consider the DC cir-
cuit dynamics (2a) at steady state, i.e., when v̇dc = 0:

0 = −(Gdc +Kp)v
∗
dc + i0 − i∗x . (18)

We multiply (18) by vdc to obtain quadratic expression
relating Px = i>x vdc and vdc, at steady state:

v∗dc =
i0±
√
i0

2 − 4(Gdc +Kp)P ∗x

2(Gdc +Kp)
. (19)
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Note that the amplitude r∗x and frequency ω∗x at the
switching node can be expressed as

r∗x =
1

2
µ v∗dc ; ω∗x = η v∗dc . (20)

The claimed nose curves follow directly from (19), (20).
We then use (20) in (19) to obtain the steady-state active
power P ∗x as

P ∗x =
−4(Gdc +Kp)

µ2
r∗2x +

2i0r
∗
x

µ
(21)

=
−(Gdc +Kp)

η2
ω∗2x +

i0
η
ω∗x .

By linearizing the above equations around the operating
point (r∗x, ω

∗
x), we find the droop slopes in (16). Finally,

the proportional power sharing ratio ρ > 0 between two
converters i and j is given by

ρ =
P ∗x,i
P ∗x,j

=

−Kp,i

η2 ω∗x +
i0,i
η

−Kp,j

η2 ω∗x +
i0,j
η

, (22)

where we replaced P ∗x,i and P ∗x,j by the expressions in
(21) with Gdc = 0 and identical values for vdc,ref > 0
and η > 0. The latter equality is satisfied if (17) holds.�

The following remarks are in order: Statement (1) gives
two solutions for the voltage amplitude r∗x. Among these
two, the so-called high-voltage solution (with the plus
sign) is the practically relevant operating point. From
statement (1), we can also deduce that the maximal ac-
tive power P̄x that can be delivered at the switching
node, P̄x = i20/ (4(Gdc +Kp)), is naturally constrained
by the maximal DC power. Finally, the power shar-
ing conditions (17) are perfectly analogous to the ones
in conventional droop control (Dörfler et al., 2016): the
droop slopes and the power set-points must respect the
same ratio ρ. We remark that similar expressions can be
obtained for a non-zero conductance.

3.3 Relation to Other Converter Control Strategies

Our matching control can be understood from the view-
point of PBC by writing the inverter (2) as the Port-
Hamiltonian system (Van Der Schaft, 2000)

ż = [J (m)−D]∇H(z) + Gw ,

where z = (z1, z2, z3) = (Cdcvdc, Liαβ , Cvαβ) is the
state, m is the modulation, w = (idc,−il) is an exoge-
nous input,H(z) = 1

2C
−1
dc z

2
1+ 1

2z
>
2 L
−1z2 + 1

2z
>
3 C
−1z3 is

the physical energy, as in (12), and the skew-symmetric

interconnection matrix, positive definite damping ma-
trix, and input matrix are given, respectively, by

J (m)=

[
0 − 1

2m
> 0

1
2m 0 −I
0 I 0

]
, D=

[
Gdc 0 0
0 R I 0
0 0 G I

]
, G=

[
1 0
0 0
0 I

]
.

The Port-Hamiltonian structure is preserved upon aug-
menting the inverter with the internal model (5a). On
this ground, we can link our approach to that of PBC
and IDA-based matching control (Ortega and Garca-
Canseco, 2004). In particular, matching controller (5) to-
gether with P-controller (14) can be understood as IDA
reshaping the J and D matrices.

Our control strategy is also reminiscent of oscillator-
based controller methods. By defining m ∈ R2 as the
controller state, we can rewrite (5) as

ṁ = ωvJm,

i.e, the matching control (5) is an oscillator with constant
amplitude ‖m(0)‖ = µ and state-dependent frequency
ωv = ηvdc as feedback for the converter dynamics (2).
This control strategy resembles the classic proportional
resonant control (Teodorescu et al., 2006) with the dif-
ference that the frequency of the oscillator (3.3) adapts
to the DC voltage which again reflects the grid state. An-
other related control strategy is virtual oscillator control
encoding the inverter terminal dynamics as a nonlinear
limit cycle oscillator adapting to the grid state (Johnson
et al., 2014; Sinha et al., 2015; Colombino et al., 2017).

4 Voltage and Frequency Regulation

Starting from the model-matching controller (5), we now
look to design outer control loops for the current source
idc as well as the modulation amplitude µ with the aim
of tracking a given constant reference initially for the
DC capacitor voltage and then also for the AC capaci-
tor voltage amplitude. In what follows, we consider the
closed-loop model (9) in dq-frame, and design controllers
for a setup which has as load model a constant conduc-
tance G > 0 as well as a constant (in dq-frame) load
current il,dq ∈ R2. Arguably, a constant load current, as
it appears here, is a compromised load model for many
reasons, nevertheless, it can still be used to account for
disturbances beyond linear conductance loads or uncer-
tainties. Finally, since the current drawn by the load il,dq
is actually measurable (ditto in the non-constant case),
it is a useful signal for disturbance rejection, see Corol-
lary 8.

4.1 Exact Frequency Regulation via Integral Control

In some scenarios, e.g., in islanded microgrids, it is desir-
able that inverters also contribute to frequency regula-
tion (usually called secondary control) rather than mere

7



droop control. Inspired by frequency regulation of SMs
via governor control, i.e., controlling the torque in (4)
as a function of the frequency, we propose a frequency
regulation strategy by pairing the passive inputs and
outputs, ĩdc = idc − idc,ref and ṽdc = vdc − vdc,ref , re-
spectively, in the inverter model (9) to track a reference
frequency ωref = ηvdc,ref . We adopt the PID controller

idc = idc,ref −Kpṽdc −Ki

∫ t

0

ṽdc(τ) dτ −Kd
˙̃vdc , (23)

where idc,ref > 0 and Kp, Ki,Kd > 0 are control refer-
ences and gains. For a constant current load il,dq = i∗l,dq,

the converter model (9) together with the control (23)
can be expressed in dq-frame error coordinates, after in-

troducing the integral term ξ =
∫ t
0
ṽdc(τ) dτ with ξ(0) =

0 and steady-state value ξ∗, as

˙̃
ξ = ṽdc

(Cdc+Kp) ˙̃vdc=−(Gdc +Kp)ṽdc −Ki,dcξ̃ −
µ

2

[
0

1

]>
ĩdq

L˙̃idq = −(RI + ω∗vLJ + ω̃vLJ )̃idq − ω̃vLJi∗dq

+
µ

2

[
0

1

]
ṽdc − ṽdq (24)

C ˙̃vdq=−(GI + ω∗vCJ + ω̃vCJ)ṽdq − ω̃vCJv∗dq+ ĩdq .

Since PID control of the DC-voltage (23) is common
practice in DC/AC converters, pairing it with the match-
ing control (5) also allows for AC frequency regulation.

The following theorem concerns existence, uniqueness,
and stability of a desired steady state of the closed-loop
system (24) satisfying v∗dc = vdc,ref and ωref = ηvdc,ref .
Typically, in such systems, ωref can be seen as the grid
reference frequency, while vdc,ref the rated voltage of the
converter’s DC-link capacitor. By appropriately choos-
ing the gain η, we are able to achieve both specifications.

Theorem 6 (Exact frequency regulation) Consider
the closed-loop inverter model (24). The following state-
ments hold:

(1) There exists a unique steady state at the origin with
synchronous AC frequency given by ωref > 0.

(2) If the sufficient condition (15) is satisfied, this
unique steady state is globally asymptotically stable.

PROOF. A steady-state of the closed loop (24) is
characterized by ṽdc = 0 and a linear set of equations

A [ ξ̃ ĩ>dq ṽ
>
dq ]
>

= 0, A ∈ R5×5. It can be shown that A

is nonsingular and hence [ ξ̃ ĩ>dq ṽ
>
dq ]
>

= 0. Thus, there
is a unique zero steady-state for the error system. The

stability proof of this steady state is analogous to the
proof of Theorem 3 and Corollary 4 after augmenting
the storage function V1 as V2 = V1 + 1

2Kiξ̃
2 + 1

2Kdṽ
2
dc,

accounting for the state ξ̃ = ξ−ξ∗. With these modifica-
tions the derivative of the storage function V2 becomes

V̇2 = −
[
ṽdc ĩ

>
dq ṽ

>
dq

]
P
[
ṽdc ĩ

>
dq ṽ

>
dq

]>
≤ 0 ,

where P is as in (13) with Gdc replaced by Gdc + Kp.

Finally a LaSalle argument accounting for the state ξ̃
guarantees global asymptotic stability. �

In what follows, we highlight the benefits offered by PID
control (23). First, the P-control on the DC voltage en-
hances the overall system stability, as discussed before.
Second, by comparing the open and closed-loop systems
(9) and (24), we observe that the effect of the PID gains
is to provide additional DC conductance, inductance and
capacitance. Lastly, from a conventional power system
perspective, it is instructive to write the frequency error
dynamics (normalized by η2) as

(Cdc +Kd)

η2
˙̃ωv = − (Gdc +Kp)

η2
ω̃v −

Ki

η2

∫
ω̃v − τe ,

which for Ki = 0 resemble the classic swing equation
with synthetic droop and inertia induced by Kp and Kd.

We conclude that for secondary frequency regulation –
independent of the particular control strategy – a suffi-
ciently large DC energy storage is required to cope with
any imbalance. If the task of frequency regulation is to
be shouldered by multiple inverters, then the decentral-
ized integral control in (23) can be easily adapted to
broadcast AGC-like or consensus-based distributed inte-
gral control schemes (De Persis and Monshizadeh, 2015;
Dörfler et al., 2016; Dörfler and Grammatico, 2017),
which are robust and assure power sharing.

4.2 Amplitude Regulation by Disturbance Feedback

This section investigates three controllers designed to
regulate the voltage amplitude at the output capacitor
‖vαβ‖ to a desired amplitude rref > 0, independently
of the load current il,dq. The latter is assumed to be
constant during the time scales of interest. We consider
as actuation input the amplitude of the modulation µ =
‖mαβ‖, analogously to synchronous machine excitation
control. We first characterize the feasibility of this task
as a function of the system parameters.

4.2.1 Feasibility and feedforward control

Before we derive the first controller, let us characterize
the feasibility of our control objective, namely ‖vαβ‖ −
rref = 0 when at steady-state.
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Theorem 7 (Existence of Constraint Equilibria)
Consider the closed-loop inverter model (24). For given
set-points rref > 0, vdc,ref > 0 and constant load cur-
rent il,dq ∈ R2, define the quantity

p =(L2ω2
ref +R2)‖il,dq‖2 − r2ref

(
C2R2ω2

ref+L2G2ω2
ref

+ (CLω2
ref − 1)2 + (RG+ 1)2 − 1

)
, (25)

where ωref = η vdc,ref . Then, the following statements
are equivalent:

(1) There exists a unique steady state (ξ∗, v∗dc, i
∗
dq, v

∗
dq)

that satisfies ‖v∗dq‖ = rref and µ > 0; and

(2) p < 0.

PROOF. We formulate the equilibria of system (24) as

0 = v∗dc − vdc,ref (26a)

0 = −(Gdc +Kp)v
∗
dc −Ki,dcξ

∗ − µ

2

[
0

1

]>
i∗dq (26b)

0 = −(RI + ω∗vLJ)i∗dq +
µ

2

[
0

1

]
v∗dc − v∗dq (26c)

0 = −(GI + ω∗vCJ)v∗dq − il,dq + i∗dq (26d)

0 = v∗>dq v
∗
dq − r2ref , (26e)

where equation (26e) encodes the constraint accounting
for the regulated amplitude. We solve these equations for
µ as an explicit function of il,dq and otherwise constant
parameters. By subsequently eliminating the variables
(ξ∗, v∗dc, i

∗
dq, v

∗
dq), we arrive at the quadratic equation

0 = µ2 − s µ+
4

v2dc,ref
p ,

where 4 p/v2dc,ref , with p < 0 from (25), is the product

and s = 4
vdc,ref

(R il,q + ωrefLil,d) the sum of the two

solutions µ± of the quadratic equation. These solutions

µ±=
Ril,q+ωrefLil,d±

√
(Ril,q+ωrefLil,d)2−p

vdc,ref/2
(28)

are real and have opposite signs µ+ > 0, µ− < 0 if and
only if p < 0. In what follows, we restrict ourselves to the
unique positive solution µ+ > 0. Notice from (26a) that
v∗dc = vdc,ref . After replacing µ+ into (26b)-(26d), the

remaining equations are linear A [ ξ̃ ĩ>dq ṽ
>
dq ]
>

= 0 with
A ∈ R5×5 nonsingular as in the proof of Theorem 6.
These equations can be solved uniquely for (ξ∗, i∗dq, v

∗
dq)

which is consistent with (26e) by choice of µ+ > 0. �

The condition p < 0 can be interpreted as a lower bound
for the desired amplitude rref as a function of the load,
rref > 1√

α
‖i∗l,dq‖ , where we used the shorthand α =(

C2R2ω2
ref +L2G2ω2

ref + (CLω2
ref − 1)2 + (RG+ 1)2−

1
)
/(L2ω2

ref + R2) as an equivalent circuit impedance.
However, when the load is modeled solely as a conduc-
tance, the condition p < 0 is satisfied for all rref > 0.

Feedforward control: Starting from the insights
given by Theorem 7, we are able to construct a
disturbance-feedforward, asymptotic output tracking
controller which relies on measurement of the load cur-
rent il,dq to produce the modulation input µ according
to (28). This approach can be regarded as a system in-
version of the transfer path from il,dq to the regulated
voltage output ‖vdq‖, a standard procedure in mea-
surable disturbance decoupling. Furthermore, in the
next subsection, we will discuss two extensions to this
control strategy commending PBC and droop control
specifications.

Corollary 8 (Feedforward Control) Consider the
closed-loop inverter model (24). Assume that the load
disturbance il,dq ∈ R2 is a constant and measurable
signal and that p defined in (25) is negative. Given a
reference AC voltage rref > 0, consider the following
modulation amplitude µ > 0 as feedforward control
µ = µ+, where µ+ is as in (28). Further assume that
the stability condition (15) holds. Then the unique equi-
librium characterized by v∗dc = vdc,ref and ‖v∗dq‖ = rref
is globally asymptotically stable for the closed loop.

PROOF. For any constant µ > 0 the desired closed-
loop equilibria are described in (26). The existence of
such equilibria is guaranteed under the condition p < 0
and for µ± as in (28). By assigning the positive solution
µ+ in (28), the amplitude µ+ is constant for a given
constant load il,dq. The stability claim now follows from
the same reasoning as in the proof of Theorem 6. �

4.2.2 Compatibility with existing control techniques

While very effective in achieving the prescribed steady-
state specification, we find that the feedforward control
in Corollary 8 leaves room to more robust extensions.
We next investigate two additional controllers and show
how they are compatible with what we have done so far.

PI-PBC: We start by deriving a PBC feedback, in-
spired by Zonetti et al. (2014), which amounts to identi-
fying a new passive output. Consider again system (24)
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but with input µ(ξ, vdc, idq, vdq) yet to be designed

˙̃
ξ = ṽdc

(Cdc+Kp) ˙̃vdc=−(Gdc +Kp)ṽdc −Kiξ̃

− µ∗ + µ̃

2

[
0

1

]>
ĩdq −

µ̃

2

[
0

1

]>
i∗dq

L˙̃idq = −(RI+ω∗vLJ+ω̃vLJ )̃idq−ω̃LJi∗dq

+
µ∗ + µ̃

2

[
0

1

]>
ṽdc +

µ̃

2

[
0

1

]>
v∗dc − ṽdq (29)

C ˙̃vdq=−(GI+ω∗vCJ+ω̃vCJ)ṽdq − ω̃CJv∗dq+ ĩdq ,

where µ̃ = µ− µ∗ with with µ∗ = µ+ from (28) assum-
ing a constant measurable il,dq and that the prescribed
equilibrium of (29) satisfies (26), or equivalently p < 0.
Observe that system (29) is passive with respect to in-
put µ̃ = µ − µ∗, output y = ĩqv

∗
dc − i∗q ṽdc, and storage

function V2 from before, such that

V̇2 = −
[
ṽdc ĩ

>
dq ṽ

>
dq

]
P
[
ṽdc ĩ

>
dq ṽ

>
dq

]>
+ µ̃>y .

This last observation motivates the PI-PBC law

µ̃ = −κpy − κiν̃ , ˙̃ν = y , (30)

where y = ĩqv
∗
dc − i∗q ṽdc and κp, κi > 0.

Proposition 9 (PI-PBC) Consider system (29) with
the PI-PBC feedback (30). Assume that the load distur-
bance il,dq ∈ R2 is a constant measurable signal and that
p defined in (25) is negative. Further assume that the
stability condition (15) holds. Then the unique equilib-
rium characterized by v∗dc = vdc,ref and ‖v∗dq‖ = rref is
globally asymptotically stable for the closed loop.

PROOF. Consider the radially unbounded Lyapunov
function V3 = V2 + κi

2 ν̃
2 and its derivative along trajec-

tories of (29), (30)

V̇3 = −
[
ṽdc ĩ

>
dq ṽ

>
dq

]
P
[
ṽdc ĩ

>
dq ṽ

>
dq

]>
− κpy2 ≤ 0 ,

where P is as in (13) with Gdc replaced by Gdc + Kp.
Assuming condition (15) is met, a LaSalle argument ac-

counting for the evolution of ξ̃ and ν̃ guarantees global
asymptotic stability. �

Observe that the PI-PBC law (30) implicitly assumes a
constant and measurable load current il,dq to define the
steady-state values µ∗ and i∗dq. Hence, provided that this

quantity is measurable and all system parameters are
known both the feedforward control (28), as well as PI-
PBC (30) endow the closed-loop system with the ability
of rejecting any constant disturbance il,dq ∈ R2.

Droop control: Finally, another approach in the
power systems literature is the voltage-power droop
control, from which we derive

µ = µref + d (Pl − Pref ), (31)

where µref , Pref are set-points for the modulation am-
plitude and load power, respectively, d > 0 is the droop
coefficient, and Pl = i>l,dqvdq is the measured load power.
Droop trades off the modulation amplitude µ and the
power Pl drawn by the load, and it induces a steady-
state amplitude ‖vdq∗‖ that is not necessarily equal to
the prescribed rref . In spite of this, it is well known that
droop control is agnostic to system parameters. The fol-
lowing result shows that droop is compatible with our
framework.

Proposition 10 (Droop control) Consider inverter
model (24) with droop control feedback (31). For an
unknown constant disturbance il,dq ∈ R2, assume
that the closed loop (24), (31) admits a steady state
(ξ∗, v∗dc, i

∗
dq, v

∗
dq). Further assume that condition (15)

holds. Then for a sufficiently small droop coefficient
d > 0, this steady state is globally asymptotically stable
for the closed loop.

PROOF. We rewrite the closed-loop DC/AC converter
in error coordinates with µ = µref + d (Pl − Pref ) as

˙̃
ξ = ṽdc

(Cdc+Kp) ˙̃vdc=−(Gdc+Kp)ṽdc −Kiξ̃ −
µref

2

[
0

1

]>
ĩdq

− d(Pl−Pref )

2

[
0

1

]>
ĩdq −

dP̃l
2

[
0

1

]>
i∗dq

L˙̃idq = −(RI+ω∗vLJ+ω̃LJ )̃idq − ω̃LJi∗dq

+
µref+d(Pl−Pref )

2

[
0

1

]
ṽdc+

dP̃l
2

[
0

1

]
v∗dc − ṽdq

C ˙̃vdq=−(GI+ω∗vCJ+ω̃CJ)ṽdq − ω̃vCJv∗dq+ ĩdq

with P̃l = Pl − P ∗l and P ∗l as the value of the load
power at steady-state. The derivative of V2 can be cal-
culated analogously to the proof of Theorem 6, as V̇2 =

−
[
ṽdc ĩ

>
dq ṽ

>
dq

]
(P + dM)

[
ṽdc ĩ

>
dq ṽ

>
dq

]>
≤ 0, where P

is as in (13) andM is a constant matrix, i.e., its entries
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do not depend on the droop coefficient d. Since P is posi-
tive definite under condition (15), there exists d > 0 suf-
ficiently small such that P + dM is positive definite. A
LaSalle argument accounting for the evolution of ξ̃ then
shows global asymptotic stability of the equilibrium. �

5 Numerical Case Study

We validate and test the proposed controllers in a nu-
merical case study. Consider for this purpose an inverter
designed for 104 W power output in S.I. units: Gdc =
0.1, Cdc = 0.001, R = 0.1, L = 5 · 10−4, C = 10−5,
and nominal DC voltage of vdc,ref = vdc(0) = 1000. In
order to obtain the desired open-circuit (no load) val-
ues rx,ref = rref = 165 and ωx,ref = ωref = 2π50,
we choose the constant gains η =

ωref

vdc,ref
= 0.3142, µ =

2rref
vdc,ref

= 0.33 .

5.1 Voltage and Frequency Regulation – single inverter

To validate our results for frequency and amplitude reg-
ulation, we present three scenarios implementing the
matching control (5) and the frequency regulation (23),
together with the three different amplitude controllers.
We consider a load step of 55% at t = 0.5s. The result-
ing amplitudes and power signals are shown in Figure
3, whereas Figure 5 shows a time-domain electromag-
netic transient (EMT) simulation of the output capaci-
tor voltage.

The parameters for our frequency controller (23) were
selected as idc,ref = 100,Kp = 1,Ki = 10, Kd = 0
and ξ(0) = 0. For voltage control we consider the feed-
forward control (28), PI-PBC (30) with (in S.I κp =
0.1, κi = 10, ν(0) = 0), as well as droop control (31) (in
S.I µref = 0.33, d = 10−5 and Pref = 104) plotted as
red, green and blue signals, respectively. For all consid-
ered controllers, the DC voltage exactly tracks the ref-
erence voltage vdc,ref = 1000V . The feedforward and
PI-PBC designs indeed also track the desired amplitude
rref = 165V . Observe that the constant amplitude ob-
jective of these controllers requires higher steady-state
current amplitudes after the load step. The droop con-
troller on the other hand ensures a trade-off between the
power load and AC voltage amplitude. We observe that
all controllers yield well-behaved transient response to
the step in disturbance.

5.2 Multi-Converter Case Study

Next we consider a network of two inverters connected
in parallel to a conductance load via a Π-transmission
line model, as described in Figure 2. The line inductor
and lumped capacitor dynamics are considered as

Cv̇αβ,i = −Gvαβ,i + iαβ,i − inet,i

Gl

+

−

vl

+

−

Cl

+

−

vx,1

iαβ,1 R L

+

−

vαβ,1

inet,1

Rnet Lnet

inet,2

Rnet Lnet

+

−

vαβ,2

iαβ,2

R L

+

−

vx,2

Fig. 2. Two inverters connected in parallel to a conductance
load Gl > 0 via a Π-line model. The Π-line parameters are (in
S.I.) Rnet = 0.5, Lnet = 2.5 · 10−5, and Cl = 2 · 10−7, where
the capacitors account for filter and line charge capacitance.

Lneti̇net,i = −Rnetinet,i + vαβ,i − vl
Clv̇l = −Glvl + inet,1 + inet,2 .

We implemented the matching control (5) with appro-
priate gains (17) to demonstrate the proportional power
sharing with ratio ρ = 3. We chose the current control
parameters for the inverters as idc,ref,1 = 100,Kp1 = 2
in (S.I), neglected internal losses Gdc,1 = Gdc,2 = 0,
fixed the modulation amplitude at µ1 = µ2 = 0.33, re-
moved the integral action Ki,1 = Ki,2 = 0, and set all
other parameters as before. Our simulation in Figure 4
displays a prescribed power sharing ratio of 3:1 under
resistive load steps at times t = 0.3s and t = 0.7s.
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Fig. 5. EMT time-domain simulations of the AC bus voltage.

6 Conclusions

This paper addresses the problem of designing grid-
forming inverter control strategies. Based on the idea of
matching the dynamics of a SM, we enable by feedback
the essential coupling between the inverter DC-side
voltage and the AC-side frequency. In this manner we
obviate the use of AC grid frequency measurement
as well as the separate regulation of DC and AC-side
circuits. Our matching controller provides droop be-
haviour, allows for proportional power sharing, and
preserves passivity-based characteristics of the inverter.
Moreover, the addition of synthetic damping and inertia
is straightforward. We further pair the proposed con-
troller with additional outer control loops for regulation
of the AC frequency and amplitude in presence of dis-
turbances. These outer controllers are designed based
on passivity-based and disturbance decoupling methods
and achieve regulation of two quantities of interest: out-
put voltage frequency and its amplitude. In the light of
our analysis, a natural counterpart is to investigate the
compatibility of these objectives and to design suitable
controllers that encompass a network of converters, as
explored in the above numerical case study.
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