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Abstract— Motivated by online optimization problems arising
in nonlinear power system applications, this article concerns
optimization over closed subsets of Riemannian manifolds.

Compared to conventional optimization over manifolds, we
explicitly consider inequality constraints that result in a fea-
sible set that is itself not a smooth manifold. We propose
a continuous-time projected gradient descent algorithm over
the feasible set and show its well-behaved convergent behavior.
Under mild assumptions on the non-degeneracy of equilibria
we show that points are local minimizers if and only if they
are asymptotically stable.

The proposed algorithm can be implemented as a real-time
feedback control law on a physical system. This approach
is particularly appropriate for online load flow optimization
problem in power systems, in which the state of the grid
is naturally constrained to the manifold that represents the
solution space to the nonlinear AC power flow equations.

We specialize our approach for the case of power distribution
systems that need to respect operational constraints while being
economically efficient, and we illustrate the resulting closed-loop
behavior in simulations.

I. INTRODUCTION

Finding the minimal value and minimizer of a function
on a given closed domain is one of the most fundamental
problems in mathematics and arises in many engineering
problems. One of the most studied problem class is the opti-
mization of a function over a subset of Euclidean space. The
methods applied to these problems can often be defined on
spaces that are only locally Euclidean, namely differentiable
manifolds. Given the vast variety of differentiable manifolds
and engineering problems defined on these manifolds, this
extension considerably increases the scope of traditional
concepts for optimization. A differential geometric approach
has led to elegant reformulations of problems like eigenvalue
computations and sorting [1] that can be cast as flows on
manifolds. More recently, it has fueled the development of
practical algorithms for numerical computations [2], [3].

To the best of the authors’ knowledge, all of these works
have only considered unconstrained manifold optimization
problems where the only constraint is the fact that the solu-
tion has to lie on the manifold. However, this setup severely
limits the scope of possible applications since many problems
involve not only manifold-constraints, but also additional
restrictions on the space of feasible points, particularly in
engineering problems. These will often take the form of
inequality constraints.
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In this paper we consider constrained optimization over
manifolds, that is, the optimization of a function over a
subset of a manifold. In analogy to the Euclidean case, we
define a continuous-time projected gradient descent algo-
rithm. We show that its trajectories asymptotically converge
to equilibrium points, and that under suitable non-degeneracy
assumptions these equilibria are stable if and only if they are
local minimizers.

We show how this type of algorithm can be realized in a
controlled physical differential-algrebraic system that is drift-
free, i.e., remain stationary in the absence of control inputs.
This allows us to use the proposed approach for online opti-
mization in closed-loop. Instead of solving the optimization
problem offline and applying the final solution to the system,
each iterate of the optimization is fed back to the system with
the effect of being more computationally efficient, robust
towards parameter uncertainty, and potentially amenable to
distributed implementation.

Online optimization has recently become popular in the
field of power system, for voltage regulation problems [4],
optimal reactive power compensation [5], optimal frequency
control [6] and economic dispatch [7], [8]. We adopt the
same application, and in particular load flow optimization
problem in a power distribution grid, to illustrate the potential
of the approach proposed in this paper.

The rest of this paper is structured as follows. Section II
summarizes various results from convex and variational
analysis, differential and Riemannian geometry and key
concepts for discontinuous dynamical systems. In Section III
we define a class of constrained optimization problems on
manifolds and introduce projected gradient descent as a
continuous-time solution algorithm. We show its asymptotic
convergence to equilibrium points and relate their stability
to local optimality.

Section IV shows how projected gradient descent can be
locally implemented as an online feedback control law on
a given drift-free physical system. Finally, in Section V we
simulate its behavior in a simplified power system.

A. Notation

Given a differentiable function f : Rn → Rm, we
write ∇f(x) ∈ Rm×n for the Jacobian matrix in standard
coordinates. The kernel space of ∇f(x) as linear map is
denoted by ker∇f(x).

For a differentiable curve γ : R→ Rn we use the notation
γ′(t) = dγ/dt(τ) and γ′+(τ) = lim

t→τ+
γ′(t).



II. PRELIMINARIES

A. Projection on Closed Convex Cones

We recall some basic facts about projections on cones. Let
V be a finite-dimensional vector space, then C ⊆ V is a cone
if for all x ∈ C it holds that λx ∈ C for all λ ≥ 0. The cone
C is closed and convex if it is closed and convex as a subset
of V . Consider an inner product 〈·, ·〉r : V ×V → R, that is
a positive-definite, symmetric bilinear form on V . The dual
cone C∗ of C is defined as C∗ := {v| 〈v, w〉r ≥ 0∀w ∈ C}.1
Let || · ||r denote the 2-norm induced by 〈·, ·〉r. Given x ∈ V ,
its projection on C is defined as Πr

C(x) := arg min
y∈C
||x−y||2r .

If C is closed and convex, the projection exists and is unique.
Furthermore, the following properties hold.

Lemma 1. [9, Proposition 3.2.3] Given a closed convex
cone C ⊂ V , then x̃ is the projection of x ∈ V if and only
if there exists n ∈ C∗ such that

x̃ = x+ n and 〈n, x̃〉r = 0 .

Furthermore, the projection on a closed convex cone is
idempotent and non-expansive [10, E.9.3], that is,

||Πr
C(x1)−Πr

C(x2)||r ≤ ||x1 − x2||r .
In the special case where V = Rn is endowed with the

canonical basis and with the Euclidean norm e, and C is a
subspace, then the projection on C takes an explicit form
which will be useful later.

Lemma 2. Let A ∈ Rm×n have rank m ≤ n. The projection
of x ∈ Rn on C = kerA is given as

Πe
kerA(x) = x−ATβ .

where β := (AAT )−1Ax .

Proof. First, note that the dual cone of kerA is the space
spanned by the columns of AT . In accordance with Lemma 1,
we define n := −ATβ and therefore just need to check that
〈n, x̃〉 = 0, which can be verified by inspection.

B. Inward tangent and normal cones

To properly define a projected gradient descent we need
to describe the set of admissible directions at every point
of a set. In the interior of the feasible set, any direction is
admissible. At the boundary however, a vector represents an
admissible direction only if it points into the set. These con-
cepts are made formal using the following notions from [11].

Given a set K ⊂ Rn, a vector v ∈ Rn is called a
(geometrically derivable) inward tangent vector at x ∈ K
if there exists a smooth curve γ : [0, ε) → K with ε ≥ 0,
γ(0) = x and γ′+(0) = v. We call the set of all inward
tangent vectors at x the inward tangent cone and denote it
by T>x K.

It is easy to see that T>x K is indeed a cone, since any
curve t 7→ γ(t) with γ′+(0) = v can be reparametrized as

1Strictly speaking, the dual cone C∗ is a cone in the dual space of V , but
we may as well consider C∗ to be a subset of V under the isomorphism
between V and its dual implicitly defined by the inner product.

t 7→ γ̃(t) where γ̃(t) := γ(λt) for λ > 0. The chain rule
yields γ̃′+(0) = λv.

Given K with inward tangent cone T>x K at x, the inward
normal cone is defined as the dual cone of T>x K, that is,

N>
x K := {w ∈ Rn| 〈w, v〉 ≥ 0 ∀v ∈ T>x K} .

In the rest of the paper we will often consider sets that
are of the form

K = {x ∈ Rn|h(x) = 0, g(x) ≤ 0} (1)

with h : Rn → Rm and g : Rn → Rp smooth.

Assumption 1. Given a set K as in (1) assume that for
every x ∈ K the vectors ∇hi(x) and ∇gj(x) are linearly
independent for all i = 1, . . . ,m and j = 1, . . . , p such that
gj(x) = 0.

Remark 1. It can be shown that Assumption 1 holds gener-
ically [12]. That means, if g and h do not satisfy Assump-
tion 1, an infinitesimally small perturbation of the constraints
is sufficient to make the assumption hold.
Remark 2. Assumption 1 is also known as LICQ (linear inde-
pendence constraint qualification) in nonlinear programming.

As a consequence of Theorems 6.30, 6.31 and 6.42 of [11],
under Assumption 1 the inward tangent cone T>x K at every
x ∈ K can be decomposed as follows.

Theorem 1. Let K be as in (1) and satisfy Assumption 1.
Define Hi := {x|hi(x) = 0} and Gj := {x|gj(x) ≤ 0}
where hi and gj denote the i-th and j-th component function
of h and g respectively. Then, the inward tangent cones of
Hi and Gj at x are given as

T>x Hi = {v ∈ Rn|∇hi(x)v = 0}
T>x Gj = {v ∈ Rn|∇gj(x)v ≤ 0} .

Furthermore, the inward tangent cone of K is closed
convex and is given by

T>x K =

(
m⋂
i=1

T>x Hi
)
∩

 p⋂
j=1

T>x Gj


C. Differential and Riemannian geometry

In the following, we introduce a few basic notions from
differential geometry required for our particular application.
For a comprehensive introduction see [13], [14].

We consider regular submanifolds of Rn of the form

M = {x ∈ Rn|h(x) = 0} (2)

where h : Rn → Rq is a smooth function such that for every
x ∈ h−1(0) the rank of ∇h(x) is q. Then, M is called a
smooth (embedded) manifold of dimension n− q.

To every point x ∈ M there is a tangent space TxM
attached, identified as

TxM = ker∇h(x) = T>x M . (3)

The second equality emphasizes the relation to the over-
lapping, yet consistent, definitions of the previous section.



Namely, for a smooth manifold its tangent space (as a
manifold) is identical to its inward tangent cone (as a set).

For a smooth function φ : M → R, and x ∈ M, the
differential Dxφ : TxM→ R is defined as

Dxφ(v) := (φ ◦ γ)′(v)

where γ : (−ε, ε) → M is a smooth curve with γ(0) = x
and γ′(0) = v ∈ TxM. It can be shown that the differential
is independent of the curve γ. As such, the differential can
be interpreted as a directional derivative in direction v.

A vector field F is map that assigns to every point x ∈M
a vector F (x) ∈ TxM.

Given the smooth manifoldM, a Riemannian metric r on
M is a smooth map that assigns to every point x ∈ M an
inner product r(x) : TxM× TxM→ R denoted by 〈u, v〉r
for u, v ∈ TxM. Besides being the foundation of many
advanced concepts, a Riemannian metric r is required to
define the notion of gradient on a manifold. Given a function
φ : M→ R, the gradient of φ at x ∈ M is defined as the
unique tangent vector gradφ(x) such that

〈gradφ(x), v〉r = Dxφ(v) (4)

holds for every v ∈ TxM.
It is a well known fact that, the gradient of f at x is the

direction of steepest ascent in the sense that

gradφ(x)

|| gradφ(x)||r
= arg max

v∈TxM: ||v||r=1
Dxφ(v) .

Since M is embedded in Rn let f : Rn → R be such
that φ = f |M and by choosing standard coordinates we can
write Dxφ(v) = ∇f(x)v for v ∈ TxM.

In the case study in Section V we will use the the metric
induced by the ambient Euclidean space given by

〈·, ·〉r : TxM× TxM→ R, (v, w) 7→ 〈v, w〉e (5)

where 〈·, ·〉e denotes the standard inner product on Rn.
With this induced metric the definition of the gradient on

M reduces to a projection of ∇f(x) on TxM, that is,

gradφ(x) = Πe
ker∇h(x)(∇f(x)T ) , (6)

as one can verify using the definition for Πe
ker∇h(x) provided

in Lemma 2.

D. Discontinuous dynamical systems

Consider a dynamical system ẋ = F (x) where F is a
vector field defined on a manifold M.

Given x0 ∈ M, a curve γ : [0, ε) → M for some ε > 0
is a called a (Carathéodory) solution of ẋ = F (x) on the
interval [0, T ) if it is absolutely continuous2, γ(0) = x0 and
if ẋ(t) = F (x(t)) holds except on a zero measure set.

A set S ⊆M is called invariant if every solution starting
at some x0 ∈ S remains in S.

A point x∗ ∈ M is called an equilibrium point of F if
F (x∗) = 0. An equilibrium point x∗ is called isolated if

2A curve on a smooth manifold is absolutely continuous if it is absolutely
continuous in any coordinate domain. This definition goes back to [15].

there exists an open neighborhood U such that U \ {x∗}
contains no equilibrium point.

An equilibrium point x∗ is called (Lyapunov) stable if
for every neighborhood U of x∗ there exists another neigh-
borhood V ⊂ U of x∗ such that for every solution x with
x(0) ∈ V it holds that x(t) ∈ U for t ≥ 0. An equilibrium
point x∗ is asymptotically stable if it is stable and there exists
a neighborhood U of x∗ such that all trajectories starting in
U converge to x∗.

Given a smooth function φ : M→ R, the Lie derivative
of φ along the vector field F (x) is given by LFφ(x) :=
Dxφ(F (x)). If M is embedded in Rn and f : Rn → R
is such that φ = f |M then LFφ(x) = ∇f(x)F (x) for all
x ∈M assuming canonical coordinates.

For the convergence analysis we require a LaSalle-like
invariance theorem for discontinuous systems that goes back
to [16]. We use the following simplified version.

Theorem 2. [17, Proposition 2.1] Let F be a vector field on
a domain D ⊂ Rn and let S ⊂ D be compact and invariant
such that for every x0 ∈ S there is a unique global solution.
Let f : S → R be continuously differentiable such that
LF f(x) ≤ 0 for all x ∈ S. Then, the Carathéodory solution
x starting at x0 ∈ S converges to the largest invariant set
in the closure of

{x ∈ S|LF f(x) = 0} .

III. CONSTRAINED OPTIMIZATION OVER MANIFOLDS

We now turn to the main problem of finding the minimum
(and minimizer) of a function on a subset of a manifold.

To the authors’ knowledge, research in the field of op-
timization on manifolds has almost exclusively considered
“unconstrained” problems in the sense that a solution can lie
anywhere on the manifold but is not otherwise constrained.

However, for practical problems, such as power systems
optimization, it is necessary to consider optimization over
feasible subsets describing operational constraints.

Hence, a constrained optimization problem over the man-
ifold can be defined as

minimize
x∈M

φ(x)

subject to x ∈ K
(7)

for a smooth φ :M→ R and a closed subset K of M.
A point x∗ ∈ K is a minimizer of (7) if there exists a

neighborhood U ⊆ K of x∗ such that φ(x∗) ≤ φ(x) for all
x ∈ U . A minimizer x∗ is strict if there exists a neighborhood
U of x∗ such that φ(x∗) < φ(x) for all x ∈ U \ {x∗}.

For our control application we restrict ourselves to sub-
manifolds of Rn. Recall, that for our purposes M takes the
form (2), i.e., it is the regular level set of some function
h : Rn → Rq and is endowed with a Riemannian metric
r. Furthermore, we assume that there exist smooth functions
f : Rn → R such φ := f |M and g : Rn → Rp such that

K =M∩G (8)



where G := {x ∈ Rn|g(x) ≤ 0}. Then, (7) has the same
solution as the nonlinear programming problem

minimize
x∈Rn

f(x)

subject to h(x) = 0

g(x) ≤ 0 .

However, in the spirit of optimization over manifolds, we
are only interested in algorithms that produce iterates or
trajectories that lie on K at all times. This requirement is
particularly important when considering online optimization
in closed loop where instead of applying the final solution to
a system, the iterates or trajectory obtained during runtime
are fed into the system. For this to work properly, the iterates
have to be feasible at all times.

We proceed by defining a continuous-time algorithm for
solving (7) that takes the form of a (discontinuous) dynamical
system on M. Our algorithm is inspired by the theory on
projected dynamical systems over convex sets in Rn [18].

A. Projected dynamical system on Riemannian manifolds

Among the most basic optimization paradigms is gradient
descent. By moving in the along direction of the steepest
descent of a differentiable function, one is guaranteed to
asymptotically reach a local minimum (unless the problem
is unbounded or the initial point is a equilibrium that is
not a minimizer). This is straightforward for unconstrained
optimization. In the case of constrained optimization, this
approach is complicated by the fact that at the boundary
of the feasible set the gradient can point in an unfeasible
direction, i.e., pointing out of the feasible set. The solution
to this is to restrict the set of admissible directions and find
the direction of steepest descent within the inward tangent
cone. To accomplish this, we define the following operator
that projects any tangent vector on the inward tangent cone.

Definition 1. For a Riemannian manifold (M, r) and a
closed set K ⊂M for which T>x K is a closed convex cone
define the operator

projK(x, ·) : TxM → T>x K
v 7→ Πr

T>
x K(v)

for every x ∈ K.

Recall that M is a submanifold of Rn such that K takes
the form (8). Under Assumption 1 we can apply Theorem 1
and conclude that TxK is closed convex for all x ∈ K.
Furthermore, using the induced metric (5) on M and a
function f : Rn → R such that f |M = φ, the evaluation
of projK(x,− gradφ(x)) reduces to solving a quadratic
program

minimize
w∈Rn

||∇f(x)− w||2

subject to ∇h(x)w = 0

∇gJ(x)(x)w ≤ 0

(9)

where J(x) = {i|gi(x) = 0} is the index set of active
constraints at x.

Given a smooth function φ : K → R, we can apply projK
to its gradient to yield the projected gradient vector field
projK(x,− gradφ(x)) for all x ∈ K.

For the rest of the paper we will consider the projected
gradient descent algorithm given by the dynamical system

ẋ = projK(x,− gradφ(x)) x(0) = x0 (10)

where x0 ∈ K is an initial value.
In general, as (10) has a discontinuous right-hand side,

standard results about the existence and uniqueness of solu-
tion trajectories do not apply.

Assumption 2. Given a set K of the form (8) satisfying
Assumption 1, assume that for every x0 ∈ K there exists a
unique solution x(t) in the sense of Carathéodory to (10)
on the interval [0,∞) such that x(0) = x0. Furthermore,
x(t) ∈ K for all x ∈ [0,∞).

Remark 3. It is tempting to think that Assumption 2 is
guaranteed by the existence and uniqueness results of [19]
for Euclidean spaces sinceM is locally Euclidean. However,
upon inspection, projected systems on manifolds fall into
the category of projected dynamical systems with oblique
projections – a case not covered in [19]. Nevertheless, under
Assumption 1, the results from [20], that constitute the key
ingredient in the proofs in [19], apply to this more general
case with oblique projections, and it is then plausible to
assume that the results generalize to Assumption 2.

B. Convergence and Local Optimality of Projected Gradient
Descent

We now show that projected gradient descent asymptoti-
cally converges to an equilibrium point and that therefore it
does not exhibit limit cycles or strange attractors. Addition-
ally, the stability of equilibrium points can be related to their
local optimality.

We first show that φ is non-increasing along trajectories
of the projected gradient flow.

Lemma 3. Let F (x) := projK(x,− gradφ(x)) be the
projected gradient field with respect to the metric r. Then

LFφ(x) ≤ 0 ∀x ∈ K.

Proof. Using Lemma 1 we know that

projK(x,− gradφ(x)) = − gradφ(x) + n(x)

for some n(x) ∈ N>
x K. Hence, using the definition of the

gradient in (4) we can write

LFφ(x) = −Dxφ(gradφ(x)) +Dxφ(n(x))

= −|| gradφ(x)||2r + 〈gradφ(x), n(x)〉r .

We therefore need to show that 〈gradφ(x), n(x)〉r ≤
|| gradφ(x)||2r . In particular, using the Cauchy-Schwarz in-
equality on TxM with inner product r(x), it suffices to
show that ||n(x)||r ≤ || gradφ(x)||r. This in turn follows
directly from the Pythagorean theorem. Consequently, we
have LFφ(x) ≤ 0.



Based on Lemma 3, the next lemma shows that for pro-
jected gradient descent sublevel sets of the potential function
are invariant.

Lemma 4. Under Assumption 2, the sublevel set Sp :=
{x ∈ K|φ(x) ≤ p} is invariant with respect to the projected
gradient descent (10).

Proof. Assume for the sake of contradiction that there exists
a Carathéodory solution x(t) starting at x0 ∈ Sp and at
t = T we have x(T ) /∈ Sp. Since x is absolutely continuous
and φ is smooth we conclude that (φ ◦ x)(t) is absolutely
continuous. In particular, (φ ◦ x)(t) has a derivative almost
everywhere given by (φ ◦ x)′(t) = LFφ(x) such that

(φ ◦ x)(T ) = (φ ◦ x)(0) +

T∫
0

LFφ(x(t))dt .

However, due to Lemma 3 LFφ(x) ≤ 0 for all x ∈ K and
therefore we have

∫ T
0
LFφ(x(t))dt ≤ 0 which leads to the

contradiction.

Theorem 3. Assume that φ has compact level sets and that
Assumption 2 holds for projected gradient descent. Then,
all Carathéodory trajectories to ẋ = projK(x,− gradφ)
converge asymptotically to the set of equilibrium points.

Proof. Since K ⊂ Rn consider projK(x,− gradφ(x)) :
K → Rn to be a vector field in Rn.

According to Lemma 4 the sublevel sets Sp ⊂ K of φ are
invariant with respect to the projected gradient descent and
by assumption they are compact. Consequently, Theorem 2
applies and any trajectory starting in some sublevel set Sp
converges to the largest invariant set in the closure of {x ∈
Sp|LFφ(x) = 0}.

Finally, we show that the projected gradient asymptotically
converges to an equilibrium point. To see this, note that
according to the proof of Lemma 3, LFφ(x) = 0 implies
that either gradφ(x) = 0 or n(x) = gradφ(x). In both
cases we have, that

projK(x,− gradφ(x)) = 0

and hence x is an equilibrium point.

It is not a priori clear whether an equilibrium x of
projK(x,− gradφ(x)) is a local minimum of φ in K.
Interestingly, the stability of equilibria to can be related to
their optimality. This is particularly useful in view of online
closed-loop optimization.

First, note the following easy result.

Lemma 5. Let x∗ be a local minimizer of φ on K. Then x∗

is an equilibrium point of the projected gradient vector field
projK(x,− gradφ(x)).

Proof. The proof is similar to the proof of Lemma 4.

Theorem 4. Assume that φ has compact level sets and that
Assumption 2 holds for projected gradient descent. Then the
following are true:

(1) If x∗ ∈ K is an asymptotically stable equilibrium point
of (10) then it is a strict local minimum of φ on K.

(2) If x∗ ∈ K is a strict local minimum of φ on K then it
is a stable equilibrium point of (10).

Proof. For (1), let U be a neighborhood of x∗ such any
solution to (10) with x(0) ∈ U converges to x∗. As in the
proof of Lemma 4 we may write

lim
t→+∞

(φ ◦ x)(t) = φ(x∗) = (φ ◦ x)(0) +

+∞∫
0

LFφ(x(t))dt .

However, since
∫ +∞
0
LFφ(x(t)) ≤ 0 it follows that φ(x∗) ≤

φ(x(0)) and therefore, x∗ is a local minimizer of φ. To
see that it is a strict minimizer, assume for the sake of
contradiction that for some x̃ in the region of attraction U
of x∗ it holds that φ(x̃) = φ(x∗). The solution starting at
x̃ nevertheless converges to x∗ by assumption. Therefore, it
must hold that

∫ +∞
0
LFφ(x(t)) = 0 and since LFφ ≤ 0 it

follows that LFφ(x(t)) = 0 for almost all t ≥ 0. But as
a consequence of Theorem 3 all points x with LFφ(x) =
0 are equilibrium points, and consequently x∗ cannot be
asymptotically stable for the neighborhood U .

To show (2), we proceed similarly to the proof of Lya-
punov’s Theorem [21]. Given any neighborhood Ũ of x∗ let
U ⊆ Ũ be a compact neighborhood of x∗ in which x∗ is a
strict minimum.

Next, we construct a neighborhood V ⊂ U such that all
trajectories starting V remain in U and therefore in Ũ , thus
establishing stability.

Let α be such that φ(x∗) < α < min
x∈∂U

φ(x) where ∂U is

the boundary of U . Define V := {x ∈ U , φ(x) ≤ α} ⊆ U
which is has a non-empty interior because φ(x∗) < α. We
claim that trajectories starting in V remain in U .

To see this, assume for the sake of contradiction that
there is a solution x with x(0) ∈ U and x(T ) /∈ U for
some T > 0. By continuity of x there exists τ ∈ (0, T )
and x(τ) ∈ ∂U . That is, at t = τ the trajectory crosses
the boundary of U . However, φ(τ) > α by definition of
α, and therefore x(τ) /∈ Sα which contradicts Lemma 4.
Consequently, solutions starting in V remain in U ⊆ Ũ ,
completing the proof that x∗ is stable.

Remark 4. It seems plausible that strict minimizers are
asymptotically stable. This, however, is not true in general
as the counter-example in [22] shows. Similarly, minimizers
are not guaranteed to be stable and stable equilibria are not
in general minimizers.

If the equilibrium points of φ on K are assumed to be
isolated, Theorem 4 can be strengthened using the following
result.

Lemma 6. Assume that all equilibrium points of (10) are
isolated. Then, every stable equilibrium is asymptotically
stable.

Proof. This can be shown using Theorem 3.

From Lemmas 5 and 6 and Theorem 4 it follows that:



Corollary 1. If all equilibrium points of (10) are isolated
then every minimizer is strict and every stable equilibrium is
asymptotically stable. Furthermore, x∗ is a (strict) minimizer
of φ on K if and only if it is an (asymptotically) stable
equilibrium.

IV. CLOSED-LOOP ONLINE OPTIMIZATION

In this section we show how we can implement projected
gradient descent for a system that is naturally constrained to
a subset of a manifold. In practice, such a subset can either
be given by hard physical constraints on the system or it can
be an attractive set of equilibrium points of an underlying
nonlinear dynamical system that evolves on a faster time-
scale. It can also be a combination of the two. However, we
assume that such as system is drift-free, i.e., if the control
input is zero the system remains stationary [23].

Let M ⊂ Rn1+n2 be a smooth n1-manifold given as
M := {x|h(x) = 0} for h : Rn1+n2 → Rn2 smooth with 0
as a regular value. Let r be a Riemannian metric on M and
define x =

[
xT1 xT2

]T
where x1 ∈ Rn1 and x2 ∈ Rn2 .

Given a physical system with configuration space M,
assume that the variables x1 are exogenous, i.e., control
variables. The variables x2 are endogenous, that is, their
value is determined solely by x1. Although, given x1, the
value of x2 is not necessarily unique.

Let u :M→ Rn1 be a control law, x0 ∈M and consider
the differential-algebraic, drift-free system given by

ẋ1 = u(x)

0 = h(x)
(11)

with initial condition x(0) = x0 such that h(x0) = 0.
We show that by choosing u appropriately, the system (11)
behaves locally like a projected gradient descent (10).

For the following lemma define the projection onto the first
n1 components as π1 : Rn1+n2 → Rn1 such that π1(x) :=
x1.

Lemma 7. Let x ∈ M be such that rank∇x2
h(x) = m.

Then, for every v1 ∈ Rm there is a unique v ∈ TxM such
that π1(v) = v1 and which is given by

v :=

[
v1

− (∇x2
h(x))

−1∇x1
h(x)v1

]
(12)

Proof. For x ∈M such that rank∇x2h(x) = m the implicit
function theorem implies that there is a smooth function v :
U → V where U ⊂ Rn1 and V ⊂ Rn2 are open sets such
that x1 ∈ U and v(y) ∈ V and h(y, v(y)) = 0 for all y ∈ U .
Furthermore, we have

∇v(y) = − (∇x2h(y, v(y)))
−1∇x1h(y, v(y))

and in particular, it holds that[
∇x1

h ∇x2
h
] [ v1
− (∇x2

h(x))
−1∇x1

h(x)v1

]
= 0 .

and therefore (12) lies in TxM.
In the following, we show uniqueness. Given v1, assume

that the vector v is not unique, implying that there exists

v2 6= 0 such that
[
0 vT2

]T ∈ ker∇h(x). However,∇x2
h(x)

is non-singular and therefore ker∇x2
h(x) = {0} implying

uniqueness of (12).

Theorem 5. Let (M, r) be a n1-dimensional Riemannian
manifold such thatM = {x|h(x) = 0} ⊂ Rn1+n2 . Consider
K ⊂ M and a smooth function φ : M → R such
that projected gradient descent is well-defined and satisfies
Assumption 2.

Further, let U ⊂ K be a non-empty (relatively) open
set such that ∇x2h(x) = n2 for all x ∈ U . Given the
differential-algebraic system (11), define for x ∈ U the
control law

u(x) = π1[projG(x,− gradφ(x))] . (13)

Then, x : [0, ε)→ U is a solution of (11) if and only if it is
a solution of the projected gradient descent (10).

Proof. Let x : [0, ε) → U be a solution to (11) and (13).
Then, by Lemma 7, x has to satisfy the differential equation[

ẋ1
ẋ2

]
=

[
u(x)

− (∇x2
h(x))

−1∇x1
h(x)u(x)

]
= projK(x, gradφ(x))

and is therefore a trajectory of a projected gradient descent.
Conversely, if x : [0, ε)→ U is a trajectory satisfying (10)

then it trivially satisfies (11) with (13).

If the set K is such that rank∇x2
h(x) = n2 for all x ∈ K

then the equivalence holds globally.

Corollary 2. Let (M, r), K and φ be as in Theorem 5,
i.e., such that projected gradient descent is well-defined and
satisfies Assumption 2.

If K is such that rank∇x2
h(x) = n2 for all x ∈ K,

then the control law (13) applied to (11) generates projected
gradient descent trajectories that satisfy (10).

Furthermore, if equilibrium points are isolated Corollary 1
applies and the control law (13) steers the system to a local
minimum of φ on K unless the initial point is a non-minimal
equilibrium.

In conclusion, given a drift-free system that is naturally
constrained to a manifold and that is regular with respect
to the exogenous variables, a projected gradient descent on
the feasible set can be realized by using the exogenous
components of the projected gradient as a control law.

V. CLOSED-LOOP POWER SYSTEM OPTIMIZATION

In this section we present an application of constrained
manifold optimization in closed loop. For this, let a power
network be represented by a graph G with n + 1 nodes.
Every node i has an associated voltage ui ∈ C and a power
injection si ∈ C. Node 0 acts as a voltage reference with
u0 = 1.

Voltages and power injections are linked algebraically by
the power flow equations which are given in vector form as

diag(u)Y u = s, (14)

where Y is the bus admittance matrix of the grid.



A. The Power Flow Manifold

We use the same coordinates as in [24]. That is, the state
of the power system is given by x =

[
p q v θ

]
∈ R4n

where p and q denote the active and reactive power injection
vectors (real and imaginary parts of s, respectively), while v
and θ are the vectors of voltage magnitudes and angles.

We may hence define the set

M := {x ∈ R4n|h(x) = 0}

where h(x) encodes the nonlinear equations (14), expressed
in their real and imaginary parts.

It is shown in [24] that the set M has the structure of a
2n-dimensional (real) smooth manifold. The tangent space
of M at some x ∈ M is denoted as ker∇h(x). For an
explicit expression of ∇h the reader is referred to [24].

B. Constrained Optimization on the PFM

Next, we explicitly formulate the projected gradient de-
scent on the power flow manifold that takes into account
power generation limits and voltage constraints.

We consider the problem of minimizing power generation
costs and thus define the objective function as

f(x) :=

n∑
i=1

aip
2
i + bipi

where ai > 0. Note that, while f : R4n → R is convex in
the ambient space, the notion of convexity is not a priori
well-defined when f is restricted to the manifold.

In addition, we consider power injection and voltage
magnitude constraints at every node given by

p
i
≤ pi ≤ pi

q
i
≤ qi ≤ qi

vi ≤ vi ≤ vi
(15)

for all i = 1, . . . , n. In accordance with the previous sections,
we express these constraints as g(x) ≤ 0 where g : R4n →
R3n and introduce the sets G := {x ∈ R4n|g(x) ≤ 0} and
K defined as in (8).

To minimize f over M subject to the constraints (15)
using projected gradient descent, we proceed as follows.

First, we endow the power flow manifold with the metric
induced by the ambient space and define φ := f |M. Con-
sequently, gradφ is given by (6). Furthermore, we assume
that Assumption 1 holds for the feasible set K = M∩ G.
As a consequence, projK is well-defined and the projected
gradient at x is the solution of the optimization problem

minimize
w∈R4n

||∇f(x)− w||2

subject to ∇F (x)w = 0

∇gJ(x)(x)w ≤ 0

(16)

where J(x) the denotes the set of active constraints at x.
Furthermore, we assume that Assumption 2 holds for

projected gradient descent on K and that K is such that
rank∇x1h(x) = m and hence Corollary 2 applies.

p2 p3 = −1.2 p4
q2 = 0 q4 = 0

v1 = 1
θ1 = 0 q3 = 0

control
variables

p1, q1 v2, θ2 v3, θ3 v4, θ4output
variables

slack bus generator A generator Bload

generation
cost

a = 0.1
b = 4

a = 0.1
b = 2

a = 0.1
b = 0.1

0.01 + j0.02 0.01 + j0.02 0.1 + j0.2

Fig. 1. 4-bus distribution grid hosting two generators and one PQ load.

Informally speaking, the operational constraints on voltage
magnitude and power generation are such that the Jacobian
of the power flow equations cannot become singular.

C. Numerical Simulation

Numerical integration of a differential equation on a
manifold is in general a highly non-trivial task for which
sophisticated methods exist [25]. Rather than using such
complex methods with superior approximation quality, we
employ a basic algorithm that mimics the behavior of a real-
world, discrete-time, closed-loop control system.

Let x0 ∈ K be a feasible initial point and α > 0 a fixed
step size parameter. At each iteration performs the following
two steps are performed:

(1) Forward Euler step of exogenous variables:

xn+1
1 = xn1 + απ1 (projK(xn, gradφ(xn)))

according to (16).
(2) Natural evolution of endogenous variables:

Compute xn+1
2 such that xn+1 ∈M.

Step (1) is the action performed by a discrete-time con-
troller. Since active and reactive power injections are the
only exogenous variables in our case study, this amounts to
updating set-points of generators.

Step (2) is naturally performed by the physics that govern
the power grid. In simulation, however, this is performed by
a power flow solver that solves the power flow equations
given the power injections at each node. This constitutes a
natural projection on the power flow manifold M.

Our closed-loop discrete-time control system can hence
be interpreted as an instance of the numerical integra-
tion scheme based on the projection algorithm [25, Algo-
rithm 4.2] for differential-algebraic systems of index 1.

D. Simulation Results

In order to illustrate the application of the proposed
approach to a power distribution system, we consider a
simplified 4-bus grid, hosting two generators and one load
(Figure 1). The substation is modeled as a slack bus, while
all the remaining buses are modeled as PQ buses. An over-
voltage limit of 1.05 p.u. is in force at all buses. Generator
A has a maximum active power limit of 0.4 MW.

The trajectory of the projected gradient flow is represented
in Figure 2. The discontinuous behavior is evident: after an
initial increase in the power injection of Generator B, its
overvoltage limit becomes active. The trajectory remains on
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Fig. 2. Top panel: representation of the power flow manifold. The colored
patch represents the feasible subset of the power flow manifold, defined by
the operational constraints (in blue). The thick line represent the trajectory
of the the system on the manifold. The empty circle and the filled dot
represent the initial conditions and the attractive equilibrium, respectively.
Bottom panel: Objective value, bus voltages, and active power generation,
along the trajectory of the system.

the boundary of the feasible set until the active power limit
of Generator A becomes active, at the system equilibrium
(and local minimum of the cost function).

VI. CONCLUSION

We have introduced a class of inequality-constrained opti-
mization problems on manifolds and proposed a continuous-
time projected gradient descent algorithm over the feasible
set. Our first main result establishes convergence to equilib-
rium points. If the equilibria are isolated, our second result
states that all minimizers are strict, and they are the only
asymptotically stable equilibria.

We have shown that this approach is particularly appro-
priate for online load flow optimization in power systems
where the state is naturally constrained to a manifold, and
where operational constraints have to be enforced at all time
(i.e. for the entire trajectory of the system).
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