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Abstract—A major transition in the operation of electric
power systems is the replacement of bulk generation based on
conventional power plants and their synchronous generators by
renewable sources connected to the grid through power electronic
converters. The accompanying “loss of rotational inertia” and the
fluctuations by renewable sources jeopardize the system stability,
as testified by the ever-growing number of frequency incidents.
As a remedy, numerous works show how virtual inertia can be
emulated through various devices. In this work, we instead ask
the system-level question on how to use virtual inertia to increase
the resilience of low-inertia power systems. To this end, we discuss
several metrics for power system robustness and show, via an
insightful example, that some of these metrics are not suitable to
characterize resilience. Instead, we focus on a performance metric
based on system norms which accounts for network coherency as
well as efficient use of control energy. We consider a linear multi-
machine / multi-inverter power system model and virtual inertia
devices modeled as controllable power sources with delayed
feedback control actions. In practice such delays arise from signal
processing, e.g., phase-locked loops, used in converter control
schemes which emulate synchronous generators and their inertia.
Based on this model and our performance metric we propose a
computational approach to optimize the inertia allocation and
ultimately increase the resilience of low-inertia power systems.
A three-area power system case study is used to illustrate the
results and compare different performance metrics.

I. INTRODUCTION

The electric power system is currently undergoing a major
transition towards integration of large shares of distributed
generation connected via power electronic converters. Today
power systems operation is based on bulk generation by syn-
chronous machines. In contrast, future power systems will be
based on renewable sources, distributed generation, and power
electronics. A direct consequence of retiring synchronous
generators is the loss of rotational inertia, which thus far
was the main reason for the grid’s stability and robustness to
disturbances [1], [2]. This results in larger, and more frequent
frequency deviations and jeopardizes the stability of the power
grid [3], [4].

System inertia, as a global parameter, represents the capabil-
ity to store and inject kinetic energy to the grid. Lower inertia
is commonly associated with larger frequency fluctuations
following a disturbance [5], i.e., any event that causes power
imbalance in the grid: disconnection of a generator, sudden
drop in power injection from a renewable (uncontrollable)
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source, tie line faults, grid splits, loss of loads, etc. Even as
of today the deteriorating effects of low inertia levels on the
system frequency and related incidents are being observed by
transmission system operators worldwide [6]–[8].

To mitigate the loss of rotational inertia different tech-
nologies have been proposed to provide virtual (or synthetic)
inertia. A number of control schemes have been designed in
order to make power converters behave as closely as possible
to synchronous machines [9], [10]. These schemes range from
simple proportional-derivative droop control laws [11], to the
more complex control schemes reviewed in [12] and [13]
under the name of Virtual Synchronous Generators. All these
strategies require some amount of energy storage (to provide
the equivalent role as the the missing rotor kinetic energy),
which could be batteries [14], super-capacitors, or flywheels.

On the other hand, specialized control schemes have been
proposed for those power sources in which some kinetic
energy is available, notably wind turbines [15] and diesel
generators [16]. For these sources, and in particular for wind
turbines interconnected to the grid via doubly fed induction
generators, the power converters can be controlled in order to
mimic the inertial response of a synchronous machine [17]–
[20]. Interestingly, it is also possible to control these power
converters so that an inertial response is induced, without
relying on (possibly destabilizing) PLL measurements [21].

Given the maturity of these solutions, virtual inertia is
becoming a viable technology that can be deployed throughout
the grid. Given the opportunity of placing synthetic inertia in
the grid, in this work we focus on the fundamental system-
level question of “how to optimally use synthetic inertia”. The
authors in [5] observed that the detrimental effects of reduced
system inertia are worsened by spatially heterogeneous inertia
profiles. In other words, while the total amount of system
inertia is commonly thought of as metric for robustness of the
grid, the spatial distribution of inertia in the grid also plays a
very crucial role.

Different authors considered this problem of optimally
placing and tuning of virtual inertia controllers based on
either spectral performance metrics [22], [23] or system norms
[24]–[26]. In these works it is assumed that the inertia of
generators can be directly modified. In contrast, we model
virtual inertia devices as a feedback control that mimics the
inertia and damping characteristics of synchronous generators
and includes delays due to signal processing, e.g., phase
locked loops, in virtual inertia devices, which are known



to have deteriorating effects [6]. This setup allows us to
consider a more realistic setting and is advantageous for
optimizing system resilience via system norms. We review
several performance metrics used to quantify the robustness
of a power system and provide an example that highlights
that three commonly used metrics (the total inertia, maximal
rate of change of frequency, and smallest damping ratio)
are not suitable to quantify resilience. Instead, we propose
to use the H2 norm of the power system as measure for
robustness of the power system. The H2 norm of a system
is an integral-quadratic performance criterion that quantifies
the system state excursions following a shock. The problem of
optimizing system resilience via virtual inertia devices is recast
as a structured H2 norm optimization. Whereas [23]–[25] rely
on constraints which implicitly limit the peak power injection
and output energy of the control devices we propose to use
energy metrics which can be directly incorporated into the
H2 norm optimization. Finally, we analyze the performance
of the resulting allocations of virtual inertia for a three-area
test system and several different performance metrics.

The paper is organized as follows: In Section II, we
introduce the power system model. We review performance
metrics used to quantify frequency stability in Section III.
The main result on optimizing power system resilience via
H2 norm optimization is presented in Section IV. The results
are illustrated using a three-area test system in Section V, and
the paper closes with some conclusions in Section VI.

II. MODEL

A. Interconnected synchronous machines

A commonly used model to assess dynamic phenomena in
power systems is the swing equation. It models each generator
i with two dynamic states, angle θi and frequency ωi. The
dynamics of a generator are assumed to be dominated by the
rotational inertia, and all voltages are assumed constant; see
[27], [28] for a detailed derivation. We further linearize around
a steady state and assume that the mechanical input to the
generator stays constant over the time scale of interest.

The differential equation describing the dynamics is then

miω̇i = −diωi + pmech,i + pel,i , (1)

where mi = Jiω0 is the inertia and di the damping coefficient
of generator i. The term pmech,i represents changes in the me-
chanical torque on the machine, while pel,i represents changes
in the electrical torque, including line flows to neighboring
buses, bus power injections, and local disturbances. In the
remainder we shall use the vector ωG to denote the frequencies
of the synchronous generators. We also use a small inertia time
constant and damping to model each load, thereby adding
dynamic states for the load buses as well. Specifically, a
small inertia constant mi at the load buses may be used to
model fast initial transients in the angle and frequency of
the load buses after a disturbance. Using mi = 0 for the
load buses results in the well-known frequency dependent load
model with damping [29]. Moreover, letting both mi = 0 and
di = 0 for the load buses results in an implicit formulation

of the frequency divider [30]. We remark that the model in
[29] can be interpreted as the result of applying the singular
perturbation approximation mi → 0 to each load bus [31].
This suggests that the differences between the two models
become negligible for a small enough mi at the load buses.
It should also be noted that, in some cases, using the load
inertia mi = 0 will result in a more involved formulation of
the H2 norm optimization problem presented in Section IV.
In the remainder, we shall consider the more general case of
a small load bus inertia constants mi > 0. We shall revisit the
case of load bus inertia constants mi = 0 in Section V-E and
use a numerical example to show that the difference between
the two models is negligible.

The load buses and generator buses are connected via
power lines, described by the graph Laplacian L (the bus
susceptance matrix of the grid). Under small-signal DC power
flow assumptions, the electric torque term pel can then be
linearized as

pel = −Lθ + p ,

where the i-th element pi of p represents the change in electric
power injection at bus i.

The system dynamics can be written compactly as
[
θ̇
ω̇

]
=

[
0 I

−M−1L −M−1D

]

︸ ︷︷ ︸
A0

[
θ
ω

]

︸︷︷︸
x0

+

[
0

M−1

]

︸ ︷︷ ︸
B0

(pmech + p) ,

(2)

where the diagonal matrices M and D contain the inertia and
damping coefficients mi and di, respectively. We denote the
state of system (2), which contains all voltage angles and bus
frequencies, by x0 = (θ, ω) and define the system output
ω = Cx0.

B. Governors and primary droop control

The swing equation model (2) is suitable for small-signal
disturbance analysis. As we investigate frequency stability, we
need to extend the model of each synchronous machine with
a governor model and speed droop control which is the main
frequency control mechanism in the time scales of interest.
Conventionally, the control action through the turbine and
governor are modeled by a first-order low-pass filter [28] of
the form

pgov,i = − Kg,i

Tg,i s+ 1
ωi , (3)

with time constant Tg,i > 0 and control gain Kg,i > 0. As
a state-space representation for each governor, we adopt the
form

Ag,i = − 1

Tg,i
, Bg,i =

1

Tg,i
, Cg,i = −Kg,i , (4)

which constitute the diagonal elements of the aggregate state
space representation matrices Ag, Bg, and Cg. The state xg
of the aggregated system is a low-pass filtered version of
the generator frequencies (the input of the system), while the
output pg is fed into the mechanical power control term pmech

in (2).
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C. Virtual inertia as a feedback control loop

Virtual inertia devices are modeled as local feedback control
loops that connect the frequency and power injection at the
terminals of a converter. While there are different imple-
mentations, we adopt here the following often-termed grid-
following implementation: Each virtual inertia device receives
bus frequency measurement ωi as input, and feeds power
pv,i = pm,i + pd,i into the system according to the transfer
functions

pv,i =
m̃is+ d̃i

(T1is+ 1)(T2is+ 1)
ωi , (5)

=
m̃is

(T1is+1)(T2is+1)
ωi

︸ ︷︷ ︸
=pm,i

+
d̃i

(T1is+1)(T2is+1)
ωi

︸ ︷︷ ︸
=pd,i

.

We call m̃i ≥ 0 the virtual inertia, as it reacts proportional to
the derivative of the frequency, and d̃i ≥ 0 the virtual damping,
as it reacts proportional to the frequency itself.

The transfer functions have two time constants T1i > 0 and
T2i > 0 – one is needed for causality of this PD-control, and
the other one models the time constant of the PLL. In fact,
ωi is the frequency of the voltage at bus i, which cannot be
measured without a time delay.

One possible state-space realization of the controller (5) is

Ãi =

[
−T1i+T2i

T1iT2i
− 1
T1iT2i

1 0

]
,

B̃i =

[
1

T1iT2i

0

]
, C̃i =

[
m̃i 0

0 d̃i

]
.

(6)

The controller (6) has two states: ω̃i and ˙̃ωi. The state ω̃i
can be interpreted as low-pass-filtered measurement of the
frequency ωi, while the state ˙̃ωi can be seen as low pass filtered
derivative of ωi. The output of the controller (6) are the electric
powers pm,i and pd,i which are injected by the virtual inertia
device at bus i and therefore acts via the term pel,i in (2).
We finally define the aggregate representation matrices Ã, B̃,
C̃, which have the blocks Ãi, B̃i, C̃i, respectively, on their
diagonal. We denote the state of the aggregated virtual inertia
devices by x̃.

D. Interconnected closed-loop power system

The interconnection of the dynamical models of syn-
chronous machines, governors, and virtual inertia devices, is
schematically represented in Figure 1. In the block-diagram
we have also considered a disturbance input η in the electric
power injection accounting for, e.g., loss of load or generation.

III. PERFORMANCE METRICS AND DESIGN CONSTRAINTS

A. Quantification of frequency stability

The amount of inertia available in the grid is commonly
thought of as a direct indicator for the rate of change of fre-
quency (RoCoF) in the instants that immediately follow a large
disturbance, as depicted in upper panel of Figure 2. Moreover,
as the governor response of the generators (primary frequency

Synchronous machines

A0, B0, C0

state x0

Governors

Ag, Bg, Cg

state xg

pg

pel

pmech

Virtual inertia

Ã, B̃, C̃

state x̃
pv

ω

η

Fig. 1. Schematic representation of the interconnection of the dynamical
models for synchronous machines, governors, and virtual inertia.

regulation) does not act until seconds after an incident, the
RoCoF directly affects the lowest frequency reached by the
grid (the frequency nadir, in Figure 2). A low frequency nadir
can lead to the disconnection of generators, load shedding
intervention, and is therefore dangerous for system stability.
Moreover, a steep RoCoF itself triggers circuit breakers and
safety equipment. Based on this understanding, the inertia and
RoCoF are typically adopted as the main metrics to evaluate
the robustness of the system in terms of frequency stability.

Another approach for the assessment of frequency stabil-
ity consists of evaluating a signal norm for the post-fault
frequency response. As depicted in Figure 2, the total area
between the frequency evolution and the steady-state post-
disturbance frequency can be interpreted as the energy imbal-
ance caused by the disturbance, i.e., it describes how promptly
and efficiently the system is restored to its nominal operating
conditions after a large-scale disturbance.

It should be noted that upper panel in Figure 2 shows the
post-fault behavior for a power system based on synchronous
machines, today’s control strategies, and faults expected in
today’s grid operation. However, in low-inertia power systems
the inherently different properties of renewable generation
may lead to different scenarios. Interestingly, signal norms are
also informative in such scenarios. When a large number of
renewable sources are connected to the grid, power imbalances
will not only be caused by rare large events, such as the loss

ω

nominal frequency

RoCoF (maximum rate of change of frequency)

frequency nadir

energy imbalance

restoration time

ω

nominal frequency

secondary control

Fig. 2. Schematic representation of a power system frequency response to
large disturbances, such as generator faults and network splits (upper panel)
and to smaller persistent disturbances, such as fluctuating power demand or
power generation from renewables (lower panel).
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of a generator, but also by the temporal fluctuations of loads
and uncontrollable sources such as wind and solar. The size
of this latter class of events is expected to be smaller, but
their occurrence is quite more frequent. For analysis purposes,
one should consider a persistent disturbance on the power
infeed of the buses where renewable sources are connected. In
this case, the aforementioned signal norm would describe the
amplification gain between these disturbances and the resulting
fluctuations in grid frequency, as depicted in the bottom panel
of Figure 2.

B. Performance metrics

In this section, we consider all these metrics, in order to
build a deeper understanding of the effects of lower grid inertia
and of the related frequency stability phenomena. Based on
the model presented in Section II, we formally define a set of
performance metrics that we shall use to assess the frequency
stability of the grid, when subjected to disturbances.

As schematically represented in Figure 2, different metrics
can be defined on the time-domain response of the system
following a specified disturbance input η0. In particular, given
a negative step disturbance η0, e.g., a sudden load increase or
generation drop, at time t = 0, we define the following indices
on the time domain evolution of bus frequencies.
• Rate of change of frequency (RoCoF):

|ω̇|max := max
i

(
max
t≥0
|ω̇i(t)|

)
. (7)

• Frequency nadir:

|ω| := max
i

∣∣∣∣min
t≥0

ωi(t)

∣∣∣∣ . (8)

Independently of the particular disturbance, the damping
ratio describes how fast oscillations in the power system are
vanishing. The damping ratio of a power system is defined
as the smallest damping ratio of its eigenvalues λk. A higher
numeric value hence corresponds to better performance.
• Damping ratio of a power system:

ζmin := min
k

−σk√
(σk)2 + (ωk)2

, (9)

where λk = σk + iωk is the k-th eigenvalue of the closed-
loop power system model.

The total inertia of a power system is commonly used as
measure for its resilience and given by the sum of the inertia
coefficients of the generators and the virtual inertia devices.
• Total inertia:

Htotal :=
∑

i

Hi +
∑

i

H̃i, (10)

where Hi = miω0

2Srated,i
and H̃i = m̃iω0

2Srated,i
are the rated inertia

constants in seconds.
For the same step disturbance as considered above, we also

define the following indices to quantify the control effort that
the virtual inertia devices need to exert.

• Peak virtual inertia power injection:

p̄v := max
i

(
max
t≥0
|pv,i(t)|

)
. (11)

Moreover, we define the following energy metrics, which
we shall use to quantify the energy imbalance and control
effort for a time τ after a fault.
• Total energy imbalance:

Eτ,ω :=

∫ τ

0

∑

i

qi ω
2
i dt =

∫ τ

0

ω>Qω dt , (12)

where qi are positive, possibly bus-dependent, weights on
the different bus frequency deviations, and are collected in
the diagonal matrix Q.

• Total virtual inertia effort:

Eτ,m :=

∫ τ

0

∑

i

rm,i p
2
m,i dt =

∫ τ

0

p>mRm pm dt , (13)

where rm,i are positive, possibly bus-dependent, weights
on the control effort due to virtual inertia, and are collected
in the diagonal matrix Rm.

• Total virtual damping effort:

Eτ,d :=

∫ τ

0

∑

i

rd,i p
2
d,i dt =

∫ τ

0

p>d Rd pd dt , (14)

where rd,i are positive, possibly bus-dependent, weights on
the control effort due to virtual damping, and are collected
in the diagonal matrix Rd.

The following two system norms provide a measure of the
magnitude of the system output in response to a disturbance
input η (see [32]).
• H2 norm: The H2 norm can be interpreted as the energy of

the response to an impulsive fault or the expected energy
of the response to white noise. By defining a suitable
performance output yp (see e.g., (19)), the energy metrics
(12)-(14) with τ = ∞ can be directly considered in this
framework as the overall output energy

∫∞
0
‖yp‖2dt.

• H∞ norm: The H∞ norm corresponds to the root mean
square (RMS) gain from the disturbance to the performance
output yp, which may include the frequencies ω as well as
the control inputs pg and pv.

C. Design constraints

Virtual inertia devices have constraints on the maximum
instantaneous power p̄v that their power converters can inject
in the grid. Moreover, when considering the problem of allo-
cating virtual inertia in a grid from an economic perspective,
we expect to have a budget on the maximum total size of
the energy storage capacity in these devices, i.e. the control
effort Eτ,v = Eτ,m + Eτ,d of the devices is limited. All
these constraints need to be considered when tuning the virtual
inertia gains m̃i and d̃i.

In [23]–[25] it is assumed that the parameters M and D in
(2) can be optimized directly and the power injections pv by
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virtual inertia devices are not explicitly considered. Because
of this the peak power injection and output energy can only be
limited implicitly by relying on a worst-case analysis of the
open-loop response. According to that approach, bounds on the
peak power injection can be converted into bounds on the val-
ues of m̃i and d̃i by looking at typical frequency measurements
collected before adding the virtual inertia devices. An example
from two different grids is reported in Figure 3. In both
cases, it is evident that maximum frequency deviations and
maximum RoCoF do not happen simultaneously. Therefore,
the derivative control term m̃iω̇i and the proportional term
d̃iωi in (5) will not reach their peak value at the same time.
Based on this observation, the maximum instantaneous power
(11) can be approximately limited by magnitude constraints

m̃i ≤ m̄i, d̃i ≤ d̄i , (15)

derived from worst-case estimates of the RoCoF |ω̇|max and
frequency nadir |ω|. Similarly, the system-wide energy capac-
ity limits can be formulated as a budget constraint of the form

∑
i
m̃i ≤ mbudget,

∑
i
d̃i ≤ dbudget. (16)

The worst-case nature of both the peak power and energy
capacity constraints can result in suboptimal solutions to the
optimal inertia allocation problem. Because of the intricate dy-
namical coupling of the virtual inertia devices and generators
through the grid, the intuition that larger control gains result
in a larger peak power injection or increased use of control
energy can be misleading. Specifically, by increasing some
control gains the RoCoF and frequency nadir in closed-loop
can be reduced which in turn can result in more efficient use
of control energy.

In contrast, an important feature of modeling the virtual in-
ertia devices as a feedback control (as presented in Section II)
is that the the power injections pv by virtual inertia devices
are explicitly included in our model. This is a significant
advantage over the methods proposed in [23]–[25] because
it allows to directly consider the closed-loop gain from the
disturbance input to the control input instead of relying on
open-loop bounds. In particular, the control energy used to
return the system to its nominal operating point can be
explicitly included in the performance metrics via (13) and
(14). This approach allows us to consider both resilience as
well as power and energy limits in a single consistent problem
formulation.

Frequency deviation [Hz]

R
o
C

o
F
 [
H

z/
s]

R
o
C

o
F
 [
H

z/
s]

Frequency deviation [Hz]

Fig. 3. Scatter plot of frequency data measurements from Ireland (left panel,
courtesy of F. Milano, University College Dublin) and from continental Europe
(right panel, courtesy of RTE France).

The two approaches are compared and constrasted in the
simulations presented in Section V. A discussion on how to
use the energy metrics (i.e. (13) and (14)) to limit the output
energy and maximum instantaneous output power of the virtual
inertia devices can be found in Section V-C.

D. Discussion of performance metrics

To illustrate how well different performance metrics capture
the resilience of the system, we consider two allocations of
virtual inertia for a three-area test system proposed in [23].
The test system consists of 6 generator buses and 5 load
buses and is shown in Figure 7. To obtain a system that more
closely resembles transmission grids with low-inertia (see e.g.
[7]) we reduced the inertia of the generators to one third of
the original value. Moreover, in comparison to the three-area
test system power grids in which low levels of inertia are
problematic today, e.g. the Nordic Grid [7], typically have
longer transmission lines and weaker coupling. To account for
this, we weakened the inductive coupling through the grid.
Because bus 11 is not connected to a load or a generator we
can reduce the system, without any loss of generality, to an
eleven-bus (i.e. buses labeled 1-10, and 12) system via Kron
reduction [33].

We consider two allocations that use the same amount of
virtual inertia, i.e.,

∑
i H̃i = 27.23 s, but in different locations.

No additional damping is used in these examples, i.e., d̃i = 0.
The inertia at each node, i.e., Hi+ H̃i, is depicted in Figure 4
for each of the two allocations. Figure 5 shows the response
of the synchronous generator frequencies ωG to a 100MW
load step at bus 7 (the topology of the system is depicted
in Figure 7). It can be seen that the first allocation results
in substantially larger frequency deviations compared to the
second allocation. The corresponding performance metrics can
be found in Table I.

While the frequency nadir |ω|, and system norms support
the observation that the second allocation is more resilient, the
total inertia Htotal is identical for both allocations. Similarly,
the RoCoF |ω̇|max and damping ratio ζmin are almost iden-
tical for both allocations. Moreover, it can be seen that the
second allocation results in a significantly smaller peak power
injection p̄v. The plot of the eigenvalues of the closed-loop
power system in Figure 6 does not shed much light on the

TABLE I
COMPARISON OF PERFORMANCE METRICS FOR A LOAD STEP AT NODE 7

Allocation 1 Allocation 2

Htotal 40.85 s 40.85 s
ζmin 0.1190 0.1206
|ω̇|max

α 0.8149 Hz/s 0.8135 Hz/s
|ω| α 84.8 mHz 65.1 mHz
H2 gainβ 1.5337 0.6522
H∞ gainβ 0.7454 0.2782
p̄v 118.38 MW 7.0446 MW

αgenerator frequencies.
βgenerator frequencies ωG and virtual inertia control pv.
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Fig. 4. Inertia of the original system and two allocations with the same
amount of virtual inertia.
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Fig. 5. Time domain plots for frequency variation at the generator nodes after
100MW load increase at bus 7.
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Fig. 6. Spectrum of the two allocations with the same amount of virtual
inertia, same damping ratio, and identical RoCoF.

performance of the two allocations, as both achieve similar
worst-case damping ratios and damping asymptotes.

Overall, we conclude that the total inertia, the RoCoF, and
the damping ratio are not suitable to quantify robustness,
which points towards the need to investigate other metrics. The
frequency nadir characterizes frequency stability, but is only
well defined for steps in the disturbance input and does not
account for the cost of control energy. Moreover, computing
the frequency nadir and RoCoF is computationally expensive
because it requires to compute the step response from every
disturbance input to every bus frequency.

In stark contrast, the H2 norm and H∞ norm are different.
These norms directly compute the gain from the disturbance
inputs to a performance output, which may consider both
frequency stability and efficient use of control energy, for a
whole set of disturbance signals. This makes system norms
a very attractive tool for analysis and optimization of power
system resilience. Both norms are computationally tractable
with the H2 norm additionally being a smooth function of the
control gains and thus attractive for optimization algorithms.
In the next section we show how to optimize the allocation of
virtual inertia devices to minimize the H2 norm and improve
system resilience.

IV. CONTROL DESIGN VIA H2 OPTIMIZATION

In this section we present a computational approach to
answer the question of “how and where to optimally use
virtual inertia”. It consists of recasting the problem as that of
minimizing a system norm which takes the form of an input-
output gain. Here, the disturbances η acting on the system
form the set of inputs, and the frequency deviations of the
synchronous machines and control effort used by the virtual
inertia device, governors are the performance outputs yp. Such
an input-output gain is also referred to as the H2 system gain
as discussed in Section III.

A. Closed-loop system and performance outputs

To this end, we consider the interconnected grid model
presented in Figure 1. More precisely, we combine the state-
space representations of the synchronous machines and load
buses (2), the governors (4), and the virtual inertia filters (6),
but keep the virtual inertia gains as explicit feedback inputs.
While the frequencies ω in (2) are asymptotically stable, the
angles θ are not. However, the input-output behavior of (2)
with output ω can be equivalently expressed in terms of the
state vector xδ = (δ, ω) where δi = θ1 − θi corresponds
to the angle relative to the angle of bus 1. After applying a
corresponding similarity transformation and removing the re-
maining unstable mode with zero eigenvalue corresponding to
the absolute angle θ1, we obtain a stable system (Aδ, Bδ, Cδ)
with output ω = Cδxδ . The overall system is then given by


ẋδ
ẋg
˙̃x


=



Aδ Bδ,g 0
Bg,δ Ag 0

B̃Cδ 0 Ã




︸ ︷︷ ︸
A



xδ
xg
x̃




︸ ︷︷ ︸
x

+



Bmv

0
0




︸ ︷︷ ︸
B

u+



BδΠ

0
0




︸ ︷︷ ︸
G

η,

(17)

where η is the vector of disturbances, G is the disturbance
gain matrix which encodes (via Π) the location of these
disturbances, and the matrix Bmv = Bδ ⊗

[
1 1

]
, where

⊗ denotes the Kronecker product, is used to construct the
control input matrix B. Moreover, the matrix ΠG is used to
obtain the generator frequencies ωG from the system state,
i.e. ωG = ΠGCδxδ and the matrices Bδ,g = BδΠ

>
GCg and

Bg,δ = BgΠGCδ are used to model the interconnection
between the synchronous machines and the governors.

6



The output of the virtual inertia devices fed into the inter-
connected system in Figure 1 is given by

u =




0 0 m̃1 0 . . . 0 0

0 0 0 d̃1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . m̃n 0

0 0 0 0 . . . 0 d̃n




︸ ︷︷ ︸
K̃




xδ
xg
x̃1
...
x̃n




︸ ︷︷ ︸
x

, (18)

where K̃ is the matrix of virtual inertia parameters (propor-
tional and derivative gains).

Next, we introduce a performance output yp which contains
the signals that we wish to include in the H2 gain analysis.
With reference to (12), (13), (14), this output can be con-
structed as

yp =



Q

1
2Cδ 0 0
0 0 0
0 0 0




︸ ︷︷ ︸
C



xδ
xg
x̃




︸ ︷︷ ︸
x

+




0
0

R
1
2




︸ ︷︷ ︸
F

u, (19)

where Q penalizes the frequency deviations ω and

R =




rm,1 0 . . . 0 0
0 rd,1 . . . 0 0
...

...
. . .

...
...

0 0 . . . rm,n 0
0 0 . . . 0 rd,n




(20)

is a penalty on the control effort of the virtual inertia, i.e., pm,
and control effort of the virtual damping, i.e., pd, as discussed
in Section III.

The performance output (19) is then used to formulate the
following performance metric which combines the metrics
(12), (13), and (14):
∫ ∞

0

y>p yp dt =

∫ ∞

0

ω>Qω + p>mRmpm + p>d Rdpd dt .

(21)

By explicitly closing the loop between (17) and (18) this
results in the following dynamic system G:

ẋ = (A+BK̃)x+Gη ,

yp = (C + FK̃)x .
(22)

B. Optimization of the H2 norm

To compute the H2 norm between the disturbance input η
and the performance output yp of system (22), let the so-called
observability Gramian PK̃ denote the solution of the Lyapunov
equation

P (A+BK̃)+(A+BK̃)>P+C>C+K̃>F>FK̃ = 0, (23)

parameterized in K̃ for the given system matrices A, B, C,
F . Based on the observability Gramian PK̃ , the norm ‖G‖22 is
given by [32]

‖G‖22 = trace(G>PK̃G). (24)

Thus, the optimization problem to compute the optimal
allocation with respect to the H2 norm ‖G‖22 is obtained as

min
K̃

trace(G>PK̃G) (25)

s.t. K̃ ∈ S ∩ C.

The set C can be used to incorporate the peak power and
energy capacity constraints introduced in Section III-C. More-
over, the set S is used to encode the structural constraint on
K̃, i.e., the purely local feedback structure of the virtual inertia
control in (5). We shall refer to (25) as constrained H2 norm
optimization problem if the constraint C is present and as H2

norm optimization problem if the constraint C is removed.
Note that evaluating the cost function requires solving the
Lyapunov equation (23).

Remark 1: In general, the optimization problem (25) is non-
convex and may be of very large-scale, but its structure can
be exploited to obtain efficient solution methods. In particular
applying the ideas of [34] to the problem at hand can be used
to compute the gradient and Hessian of the cost function in
(25) and speed up the computations of standard optimization
methods.

V. NUMERICAL CASE STUDY

In this section, we investigate the virtual inertia placement
problem for a case study described in Section V-A. Next,
optimal virtual inertia allocation profiles are computed using
theH2 norm optimization presented in Section IV. To compare
the two approaches to limit the peak power and output energy
discussed in Section III-C one allocation is optimized using
the constraints (15) and (16) while a second allocation is opti-
mized using the energy metrics (13) and (14). In Section V-B,
we compare the performance of these allocations based on
different system metrics and illustrate how the weights in the
performance output can be used to trade-off resilience and
energy efficiency. In Section V-D we illustrate the time domain
evolution of some of the performance outputs. Finally, we
conclude by discussing limitations of grid-following virtual
inertia devices in Section V-F.

A. Description of the case study

The three-area test system is adapted from [23], and its
topology is shown in Figure 7. The system is an aggregation
of twelve buses, which can be classified as: buses with
synchronous generation and buses without synchronous gen-
eration. The reactance of the step-up transformers is 0.15 p.u.
and the line impedance is (0.0001 + 0.001i) p.u./km. We do
not initially constrain ourselves concerning possible sites for
virtual inertia placement. Rather, we assume that each of the
remaining eleven buses can be assigned a virtual inertia device
with identical time constants T1 = 0.01, T2 = 0.03 resulting
in a processing delay of roughly 100ms as in [6]. As discussed
in Section II-B a governor model is added to each generator
and the gain and time delay are adjusted such that frequency
nadir occurs after roughly 7s. For the load buses we assume
a physical inertia time constant of mi = 10−3. This results
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in a fast initial frequency transient at the load buses after
a step disturbance that decays within 50ms, afterwards the
frequency of the load buses is dominated by the frequency
swings of the generators and the power injection of the virtual
inertia devices. The damping coefficients of the load buses
are 1.5p.u.. The test system, with the parameters according
to [23], has both high levels of inertia and a uniform inertia
distribution across the three areas.

Next, to study the effects of low inertia and heterogeneous
inertia profiles, we reduce the inertia of the synchronous
generators from approximately Hi = 6.5s to Hi = 1s for bus
5, 6, and 7 and to Hi = 4s for bus 1, 2, and 9. This results
in a total inertia Htotal = 15s and a ratio between kinetic
energy and power production which is approximately half of
that found today in low-inertia conditions in the Nordic Grid
[7]. Moreover, to account for the loss of primary control of
rotational synchronous generation, the gain of the speed drop
control at the buses 5,6, and 7 is reduced to one sixth of the
original value. For the H2-based optimization we consider a
scenario in which the disturbance input η is equally likely to
act on the load buses (i.e., the buses labeled 3, 4, 7, 8, 12),
i.e., the matrix Π in the system model (17) maps each entry
of η ∈ R5 to one of the five load buses.

We assume an inertia budget mbudget = 133.7856MW s2,
which, if fully used, restores the ratio between kinetic energy
storage and power production to typical levels of the Nordic
Grid without wind production. The budget constraint on the
damping coefficients is assumed to be dbudget = 37.5MW s,
this corresponds to fully restoring the damping to its pre-
vious level. Moreover, we simulate load increases of up to
100MW at every load bus to obtain the worst-case RoCoF
and frequency nadir to construct the magnitude constraints
discussed in Section III-C. Assuming that the peak virtual
inertia response to these faults should not exceed 100MW and
the virtual damping response should not exceed 10MW, the
open-loop worst-case analysis reported in Section III-C yields
the bounds m̄i = 13.605MW s2 and d̄i = 6.5MW s for each
bus. We consider a cost function that penalizes the generator
frequency deviations ωG, and the virtual inertia and virtual
damping power injections pm and pd. In particular, for ωG in
Hz we use the weight qi = 1 in (12) and vary rm and rd
to achieve different trade-offs between system robustness and

25 km 10 km 25 km10 km

25 km

110 km

11
0 k

m

110 km

1
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3 4

5

6

78

910 11

12

1570 MW

1000 MW
100 Mvar
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400 MW 490 MW

611 MW
164 Mvar

1050 MW
284 Mvar

719 MW
133 Mvar

350 MW
69 Mvar

700 MW
208 Mvar

700 MW
293 Mvar

200
M

var

350
M

var

Fig. 7. Topology of the twelve-bus test system with six generators and five
load buses.

the peak power and energy storage requirements of the virtual
inertia devices.

B. Performance of optimal allocations

In this section we compare the performance of the original
system, i.e., before reducing the inertia and primary control
gain, the low-inertia system without virtual inertia or virtual
damping, and the low-inertia system with two allocations
obtained by using the algorithm presented in Section IV. To
illustrate the effect of constraints on the parameters m̃i and
d̃i we solved two variants of the optimization problem (25):
the first allocation is optimized using the constraint C which
encodes both the budget and capacity constraints presented
in Section III-C, but without penalizing the control effort,
i.e., rm = rd = 0. For the second allocation we removed
the constraint C and used the penalties rm = 0.0083 and
rd = 0.08.

The resulting inertia and damping allocations at each node
are depicted in Figure 8, respectively. Note that the lower panel
only contains machine damping, load damping, and virtual
damping but does not include the speed droop control gains
which have been lowered for the low inertia test case.

The penalties rm = 0.0083 and rd = 0.08 on the virtual
inertia and virtual damping control effort in the H2 optimiza-
tion were chosen to yield a control effort (specifically, a peak
power injection p̄v) which is comparable to the constrainedH2

H2

constr. H2

low inertia
original

Node

d
i
+

d̃
i
[M

W
s]

Node

m
i
+

m̃
i

[ M
W

s2
]

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

0

20

40

60

0

5

10

15

Fig. 8. Damping and inertia of the original three-area test system with
high inertia, the test system with low inertia, as well as for the low inertia
test system with virtual inertia allocations obtained via constrained and
unconstrained H2 optimization.

8



optimization. The tuning procedure for these two parameters
is discussed in detail in Section V-C.

Observe that the results of the H2 optimization predom-
inantly allocates virtual inertia at the peripheral generation
buses of the grid (see Figure 7 and Figure 8). This allocation is
qualitatively similar to the result in [23]. Our interpretation is
that virtual inertia is predominantly allocated at the generator
nodes for two reasons: (i) only the frequency deviations at the
generator nodes are penalized in the optimization, (ii) placing
grid-following virtual inertia devices at buses without physical
inertia, which acts as a low pass filter for the frequency
measured by the virtual inertia devices, can result in large
oscillations (see Section V-F).

For the purpose of comparing the efficacy of these different
allocations vis-à-vis the original system, we compare in this
subsection the performance metrics that have been introduce in
Section III. In particular, we consider the total physical inertia,
total virtual inertia, total virtual damping, damping ratio, and
H2 norm. These metrics are independent of specific faults,
and, as discussed in Section III, the H2 norm can effectively
capture both system-wide performance as well as the need to
use control energy efficiently. Additionally, we evaluate the
response when the test system is subjected to a load increase
of 100MW at the load bus 12 in Figure 7 to test the resilience
of these allocations. For this localized step disturbance we
inspect the maximum RoCoF (rate of change of frequency),
frequency nadir, peak power injection p̄v, as well as the total
energy imbalance Eτ,ω , and total virtual inertia and virtual
damping control effort (Eτ,m and Eτ,d) for τ = 30s.

A comparison of the aforementioned metrics across different
allocations is given in Table II. Note that the constrained H2

allocation is optimized using only the generator bus frequen-
cies as performance output (denoted by “H2 freq.”) and the

unconstrained H2 allocation is optimized for a performance
output that contains both the generator bus frequencies and
control inputs (denoted by “H2 sys.”).

The following inferences can be drawn from these results:
• The RoCoF and frequency nadir are significantly increased

by reducing the inertia and primary control gains of the
original system. By allocating virtual inertia and virtual
damping both the RoCoF and frequency nadir are signif-
icantly improved. Due to the delay in the response of the
grid-following inverters the RoCoF is not reduced to the
original level, even after restoring the total inertia of the
system. The frequency nadir is improved compared to the
original system because the virtual damping acts much faster
than the turbine and speed drop control.

• The magnitude constraints derived from worst-case open-
loop estimates ensure that the bounds on the peak power
are satisfied, i.e. the peak virtual inertia power injection is
below 100MW, but are very conservative. Removing the
constraints and using the penalties rm and rd on the control
effort results in an allocation with similar performance,
i.e., slightly lower RoCoF and slightly higher frequency
nadir, but more efficient use of control energy, i.e., lower
control effort by the virtual inertia and damping devices.
As discussed in Section III-C the main reason for these
differences is that the penalty on the control effort is
evaluated for the closed-loop system while the magnitude
constraints are derived from worst-case open-loop estimates.

• At the same time, it can be seen that the intuition that
the control effort is proportional to the budget d̄ (see
Section III-C) can be be misleading. In particular, the
constrained and unconstrained H2 allocations utilize ap-
proximately the same amount of virtual damping but the
control effort Ed used by the virtual damping devices in

TABLE II
COMPARISON OF PERFORMANCE METRICS FOR A LOAD STEP AT NODE 12

metric original low inertia constr. H2 H2∑
imi 219.76 MW s2 85.98 MW s2 85.98 MW s2 85.98 MW s2∑
i m̃i - - 133.78 MW s2 78.90 MW s2∑
i d̃i - - 37.50 MW s 36.52 MW s

ζmin 0.0048 0.0093 0.0311 0.0746

|ω̇|max
α 0.219 Hz

s
1.154 Hz

s
0.368 Hz

s
0.344 Hz

s

|ω| α 202 mHz 264 mHz 147 mHz 154 mHz

p̄v - - 26.69 MW 26.76 MW

H2 sys.β - - 1.1257 0.0718

H2 freq.α 0.0734 0.1603 0.0405 0.0534

Eτ,ω α,γ 3.279 5.689 2688 2782

Eτ,m γ - - 7.30 · 105 6.25 · 105

Eτ,d
γ - - 3.54 · 106 2.70 · 106

αgenerator frequencies.
βgenerator frequencies and virtual inertia and damping control.
γevaluated for τ = 30 s, rm,i = 1, rd,i = 1, and qi = 1.
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the constrained H2 allocation is much higher.
• In comparison to the original system and to the low inertia

system without virtual inertia or damping, the two optimized
allocations reduce the H2 norm from the disturbance inputs
to the frequency deviations at the generator buses. However,
this choice of performance output does not account for
efficient use of control energy. Evaluating the H2 norm with
a performance output that contains the generator frequencies
as well as the power injection by virtual inertia and damping
results in a much larger H2 norm for the allocation that was
optimized using the budget and magnitude constraints.

• It can be seen that the damping ratio does not correlate well
with the RoCoF or the frequency nadir. This underlines that
the spectrum itself is not very insightful.
The unconstrained H2 norm optimization results in an

allocation that is similar to the original inertia profile of
the grid before we reduced the inertia for this test case.
Moreover, virtual damping devices are placed at the buses
where we reduced the gain of speed droop control. Given that
the test system was designed around the original inertia and
damping profile, it is reasonable to expect that the optimal
allocations are similar and cannot substantially outperform
this allocation when limited to a comparable output power
and energy capacity. Nonetheless, as discussed above, the
comparably fast response time of the virtual damping results
in an allocation that decreases the frequency nadir.

C. Tuning of the weights in the H2 optimization

The simulations in Section V-B showed that including the
budget and magnitude constraints derived as in Section III-C
(i.e., based on an open-loop analysis of the system), is not an
effective tool to account for the use of control energy. Instead,
it is much more effective to consider a system H2 norm that
directly includes penalties on the control effort.

In this section, we show how these penalty terms, and
specifically the weights rm and rd, can be tuned in order to
achieve the desired peak power injection or energy storage
capacity of the virtual inertia devices. To illustrate this fact,
we solved the unconstrained H2 norm optimization for
• rd = 0.08 and rm ranging from 0.004 to 0.02,
• rm = 0.0083 and rd ranging from 0.04 to 0.3.
The resulting peak power, RoCoF, frequency nadir and virtual
damping control effort are shown in Figure 9. We observe
that increasing the penalty rm reduces the peak power p̄v but
increases the RoCoF |ω̇|max, at the same time the frequency
nadir |ω| does not change. In contrast, increasing the penalty
rd reduces the virtual damping control effort

∫ τ
t=0

p2d dt and
increases the frequency nadir |ω|, but the RoCoF |ω̇|max does
not change. In other words, the penalty rm can be used to limit
the short term peak power injections due to virtual inertia and
the penalty rd can be used to limit the energy use due to
virtual damping on longer time scales.

D. Simulation of a load step

In this subsection, we present a simulation which enables
a better understanding of the post-fault system behavior.
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Fig. 9. Trade-off between frequency nadir, peak virtual inertia power injection,
virtual damping control effort, and RoCoF, for different penalties rm and rd.
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Specifically, we consider a load increase (step) of 100 MW
at bus 12. The time-domain plots in Figure 10 suggest that all
generators experience a significantly improved transient fre-
quency response behavior for the unconstrained H2 allocation.
The control effort displayed in Figure 10 shows a relatively
large peak power due to the virtual inertia, in contrast the
peak power due to virtual damping is smaller but the power
injection is sustained over a longer time horizon. We observe
that the virtual inertia control dominates the initial response
to a disturbance and, in practice, will be limited by the peak
power capabilities of the virtual inertia device. In contrast,
the virtual damping dominates the response for t > 5 s and,
in practice, would mostly be limited by the energy storage
capacity of the virtual inertia device.

E. Load model comparison

As discussed in Section II our model uses a small inertia
constant, i.e. mi = 10−3, at the load buses. To better
understand the consequences of this choice we simulated a
load increase (step) of 100 MW at bus 12 of the low-inertia
system without virtual inertia or virtual damping, i.e. m̃i = 0
and d̃i = 0, and load bus inertia constants mi = 10−3 as

0 5 10 15 20
−0.3

−0.2

−0.1

0

t [s]

ω
[H

z]

low-inertia H2

0 5 10 15 20

−20

0

t [s]

u
[M

W
]

pd pm

Fig. 10. Time domain simulation for the frequency variation at the generator
nodes and virtual inertia / damping infeed after a load step at load bus 12 and
the low-inertia system as well as the allocation obtained via unconstrained
H2 optimization.

well as mi = 0. The time-domain plots in Figure 11 show
the resulting frequency estimates by the PLLs, i.e. the signals
that would be used to implement virtual inertia and damping.
Both time-domain simulations show a prominent dip in the
estimated frequency of the load bus affected by the disturbance
for t < 0.05 s. The simulations confirm the expectation that
the differences between the models are negligible. Finally, we
solved the optimization problem (25) without constraint C and
with input penalties as in the previous subsections for the case
mi = 0. The resulting allocation is almost identical to the one
obtained with mi = 10−3 and time-domain simulations of
faults, i.e. Figure 10, show nearly identical results. Overall, as
predicted by singular perturbation analysis [31], this confirms
that using mi = 0 in place of the small inertia constant
mi = 10−3 results in a small change in the system response.

F. Limitations of grid-following virtual inertia devices

We observe that no virtual inertia is allocated at the load
buses by the unconstrained H2 norm optimization while the
constrained H2 norm allocates some virtual inertia at load
buses. However, the latter allocation results in a large H2

norm once the control effort is explicitly considered in the
performance outputs. This suggests that allocating virtual
inertia at the load buses of the three-area test system may not
increase resilience. In particular, when simulating impulsive
disturbances (e.g. line faults) we observe large oscillations of
the power infeed of virtual inertia devices at load buses.

We conjecture that the root cause for these oscillations is
that the virtual inertia devices in this work are grid-following,
i.e., heavily rely on measuring the local frequency at their
bus. Directly after the fault a large but very brief frequency
transient occurs at the load bus and the virtual inertia device
reacts with a large but delayed power injection. After the
initial frequency transient has decayed the frequency at the
load bus is dominated by this large power injection of the
virtual inertia device. In other words, at this point the virtual

0 0.05 0.1 0.15 0.2 0.25
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0
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t [s]
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Fig. 11. Time domain simulation for the frequency estimates by the PLLs at
the load nodes after a load step at load bus 12 for the low-inertia system and
load bus inertia constant mi = 10−3 (solid blue lines) as well as load bus
inertia constant mi = 0 (dashed red lines).
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inertia device computes its current power injection based
on a slightly delayed measurement of its power injection.
This poorly damped feedback interconnection via the delayed
device response and fast bus dynamics can result in large
frequency swings and power oscillations. This points towards
the need to investigate the use of grid-forming inverters to
provide virtual inertia and damping.

VI. SUMMARY AND CONCLUSIONS

In this paper we considered a linear multi-machine power
system model, discussed several performance metrics for low-
inertia power systems, and studied the optimal placement
and tuning of control devices providing virtual inertia and
damping. We provided an example that showed that certain
metrics, such as the total inertia and the damping ratio, which
are commonly associated with the frequency stability of a
power system may not be suitable to characterize the system
resilience. Instead, we formalized the problem of “how and
where to optimally place virtual inertia” based on the control-
theoretic notion of an H2 system norm which directly charac-
terizes the gain from a disturbance input to a performance
output. Based on this performance metric, we proposed a
computational approach to optimize the inertia allocation and
used a low-inertia three-area test case to illustrate the results
and demonstrate how to adjust parameters of the optimization
procedure to trade-off control performance and use of control
effort.
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