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Abstract— This paper focuses on reactive power flow and
voltage stability in electrical grids. We provide novel analytical
understanding of the solutions to the classic nonlinear polyno-
mial equations describing the decoupled reactive power flow.
As of today, solutions to these equations can be found only via
numerical methods. Yet an analytical understanding would be
beneficial to the rigorous design of future electrical grids. This
paper has two main contributions. First, for sufficiently high
reference voltages, we guarantee the existence of a high-voltage
solution for the reactive power flow equations and provide
its approximate analytical expression. We bound the approx-
imation error in terms of network topology and parameters.
Second, we consider a recently proposed droop control strategy
for voltage stabilization in a microgrid equipped with inverters.
For sufficiently high reference voltages, we prove the existence
and the exponential stability of a high-voltage fixed point of the
closed-loop dynamics. We provide an approximate expression
for this fixed point and bound the approximation error in terms
of the network topology and parameters. Finally, we validate the
accuracy of our approximations through numerical simulation
of the IEEE 37 standard test case.

I. INTRODUCTION

The power flow equations model the relationships among
bus power injections, power demands, and bus voltages
and angles in a power network. They are the heart of
most system-planning and operational studies and also the
starting point for transient and dynamic stability studies.
They constitute a set of coupled equations with trigonometric
and polynomial nonlinearities, and the solution space admits
a rich and complex phenomenology [1], [2]. Conditions for
the existence and exact expression of the solutions have
been derived for the case of a radial grid [3], while for
a general network only conservative conditions have been
proposed [4]–[6]. The work of [7] establishes instead a
sufficient condition for the insolvability of the power flow
equations, by considering an associated convex optimization
problem. The lack of sharp results on solutions to the power
flow has motivated the interest in approximate solutions.
Of particular interest is [8], where an approximate solution
to the power flow equations was developed for electrical
networks connected to a larger parent grid at a single Point
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of Common Coupling, such as typical distribution networks.
While this analytic approximation is potentially powerful, it
can not be used in more general electrical networks where
multiple fixed-voltage buses are present. Also due to the
lack of analytic results, the current standard for power flow
solution is numerical simulation [9], and the power industry
invests considerable effort in simulating thousands of power
flow equations for large grids. This motivates the importance
of a deeper analytic insight into the problem.

A classic approach [4], [5] to the analysis of the power
flow equations is to study the active and the reactive power
equations separately under mild decoupling assumptions
which are usually satisfied under regular system operation
[10]. After the decoupling, the phase angles become the only
variables appearing in the active power equations, while the
voltage magnitudes become the only variables in the reactive
ones. We focus our attention on the resulting reactive power
flow equations: these are a system of quadratic equations
in the voltage magnitudes at the buses. Despite the simpler
problem formulation, no sharp analytic answers pertaining
to the existence of solutions are known to date [4]–[6].

The first contribution of this paper is the extension of the
approximate load flow solution proposed in [8] to networks
with multiple fixed-voltage buses. In particular, we present
the result as an approximate solution to the decoupled
reactive power flow equations. The resulting solution can be
viewed as the reactive power counterpart of the DC load flow
approximation for the active power flow [11]. The classic
DC load flow approximation expresses the solution to the
non-linear active flow equations as a linear combination of
the active powers at the buses. The linear coefficients only
depend on the network parameters. The approximate solution
that we propose for the reactive power flow is the sum of two
main terms: the first one is similar to the DC approximation,
as it is a linear combination of the reactive powers at the
buses; the linear coefficients only depend on the network
parameters. The second term consists of a constant high-
voltage value for each bus, and it is related to the general
and well accepted idea that strongly-clustered high-voltage
solutions of the reactive flow equations are the desired stable
solutions [12].

In the second part of the paper we focus on the stabil-
ity of a droop control strategy in an islanded microgrid.
Microgrids are low-voltage electrical distribution networks,
heterogeneously composed of distributed generation, load,
and managed autonomously from the larger primary net-
work. Power sources in microgrids generate either variable
frequency AC power or DC power, and are interfaced with
a synchronous AC microgrid via power electronic DC/AC



inverters. In islanded operation, it is through these inverters
that actions must be taken to ensure synchronization, voltage
stability, power balance and load sharing in the network [13].

We consider the problem of voltage stabilization; that is,
keeping the average voltage level in the network high, and
keeping the total voltage profile roughly uniform. This is
a crucial aspect of microgrid control, as the relatively low
voltage levels and uncompensated loads in microgrids put
the network at risk for voltage instability and collapse [2].
In the last two decades the E −Q voltage-droop controller
has become the tool commonly used for these tasks [14].
Despite the wide-spread adoption of the E−Q voltage-droop
controller, few analytic results are available about its closed-
loop performance. Specifically, to the best of our knowledge,
no results are available on the existence and locations of the
equilibria of the closed-loop network.

This paper considers the quadratic droop controller pro-
posed by [15]. This modified version of the standard E−Q
droop controller reproduces the inherently quadratic and
asymmetric nature of the reactive power flow equations and
facilitates an analytic treatment. Our previous work [15]
characterizes the existence, stability and location of the
equilibrium point for a purely-inductive (lossless) network
with parallel topology. In this work, we consider networks
with arbitrary topology and we make the important assump-
tion of negligible voltage angle differences; by applying
the approximation method proposed for the reactive power
flow equations, this paper establishes the existence and
the stability of a high-voltage fixed point and provides an
approximate expression for its location.

This paper is organized as follows. In the remainder of
this section we introduce some preliminaries and recall the
reactive power flow equations. In Section II we give the ap-
proximate solution to the reactive power flow equations, and
in Section III we apply the results to study voltage stability in
a droop-controlled microgrid. Section IV reports a numerical
study of the accuracy of the proposed approximation. Finally,
Section V contains our concluding remarks.

Notation and Network Modeling

Given a finite set V , let |V| denote its cardinality. Let 1
denote the vector of all ones, 0 a matrix of all zeros; their
respective dimensions are determined by context. Let [xi]i∈V
be an alternative notation for the vector x, with indices in the
set V . Let diag(x) denote the diagonal matrix whose main
diagonal is the vector x and diag−1(x) its inverse, when
defined. Given the vectors x and y, we write x > y (resp.
x ≥ y) if xi > yi (resp. xi ≥ yi), for all i ∈ I . For a ∈ C,
a∗ denotes the complex-conjugate of a.

We model a power network in synchronous steady-state
as a connected, undirected and complex-weighted graph
G(V, E , Y ), where V = {1, . . . , n} is the set of nodes (or
buses) and E ⊂ V×V is the set of edges (or branches). Since
the graph is undirected, if (i, j) ∈ E , then it is also (j, i) ∈ E .
The weight of edge (i, j) is its admittance Wij =Wji ∈ C.
To the weighted graph G we associate the admittance matrix
Y ∈ C|V|×|V|, defined element-wise by Yij = −Wij , i 6= j,

with diagonal elements Yii = −
∑
i 6=j Yij . To each node

i ∈ V we assign a phasor voltage Ui = Eie
jθi ∈ C,

a phasor current Ii ∈ C, and a power injection Si =
Pi + jQi ∈ C, whose real part Pi ∈ R is the active power
and imaginary part Qi ∈ R is the reactive power. In vector
notation, Kirchoff’s current law and Ohm’s law give the
current-balance relation I = Y U . Moreover, power, voltage
and current at each node are related through: Si = UiI

∗
i .

Combining the last two equations in vector notation results
in

P + jQ = diag(U)(Y U)∗ , (1)

which in components reads

Pi =
∑n

j=1
Im(Yij)EiEj sin(θi − θj)

+
∑n

j=1
Re(Yij)EiEj cos(θi − θj) , i ∈ V , (2)

and

Qi =−
∑n

j=1
Im(Yij)EiEj cos(θi − θj)

+
∑n

j=1
Re(Yij)EiEj sin(θi − θj) , i ∈ V. (3)

During regular power system operation the solutions to (1)
usually satisfy |θi − θj | � 1 for each (i, j) ∈ E [10], [11].
We assume from now on that θi−θj = 0 for each (i, j) ∈ E .
Under this condition, we can decouple equations (2) and (3)
and write the reactive power flow equations (RPFE) (3) in
compact vector notation as

Q = diag(E)LE , (4)

where L = −Im(Y ) is a Laplacian matrix (therefore having
non-positive off-diagonal terms and zero row sums), since the
susceptance of each resistive and inductive line is negative.
Finally, as standard in load flow analysis, we model loads as
stiff constant-power demands [10].

II. APPROXIMATE SOLUTION TO THE REACTIVE POWER
FLOW EQUATIONS

In this section we partition the network nodes as V =
{VL,VS} corresponding to loads and sources (or generators).
The source buses have the property that their voltage mag-
nitudes are regulated to constant, predetermined values. The
typical example of such a network is a transmission-level
grid consisting of loads and PE-generation sources such as
synchronous generators. The voltage magnitude vector and
the Laplacian L inherit the partitioning as

E =

[
EL
ES

]
, L =

[
LLL LLS
LSL LSS

]
.

With this in mind, equation (4) becomes[
QL
QS

]
= diag(EL, ES)

[
LLL LLS
LSL LSS

] [
EL
ES

]
. (5)

Besides assuming that the source voltages ES are fixed, no
constraints are imposed here on the sources power injections
QS , that is, the sources are PE-buses [10]. Hence, the
second block of equations in (5) can be thought of as
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determining QS as a function of the load voltages EL. Thus,
the equations (5) reduce to their first block:

QL = diag(EL)
[
LLL LLS

] [EL
ES

]
. (6)

The variables in the |VL| equations (6) are the |VL| load
voltages EL. In other words, these equations, if solvable,
determine EL as a function of the remaining constant source
voltages and network parameters.

In general the system of quadratic equations (6) is not
solvable analytically. The classic example of a two node
network (see [16] for a detailed analysis) nicely illuminates
some of the general features of these equations and motivates
our subsequent approximation.

Example II.1 (Two node network). Consider a network
with two nodes connected through an inductive line with
susceptance −`. One node is a load with reactive power
demand q, while the other node is a source with fixed voltage
magnitude EN > 0. If we denote by e the voltage magnitude
at the load, equation (6) reduces to

q = `e(e− EN ) . (7)

If
q ≥ −qcrit := −

1

4
`E2

N , (8)

then equation (7) admits two real-valued solutions, given by

e1,2 = EN

(
1

2
± 1

2

√
1 +

q

qcrit

)
. (9)

If |q/qcrit| � 1, the first-order Taylor series expansion
(
√
1 + x ' 1 + 1

2x) leads to the approximate expressions:

e1 ' EN +
q

`EN
, e2 ' −

q

`EN
. (10)

The solution e1 is the desired one in practice, as it corre-
sponds to a high-voltage low-current configuration for the
network, resulting in low power losses. In particular, we can
interpret the solution as being roughly EN , with a correction
term linear in the power demand, scaled inversely by both
EN and the line susceptance. �

We now build further on the motivation of Example II.1
and offer some intuitive derivations on how to generalize the
example. We set EN := mini∈VS Ei and define the vector η
so that the voltages can be decomposed into E = EN (1+η).
As in the example, we are interested in the high-voltage
solution to the power flow equations and, moreover, we
are interested in solutions with uniform voltages. High and
uniform voltages correspond to the regime where EN � 1
and η � 1. In this regime, equation (6) becomes

QL = EN diag(1+ ηL)
[
LLL LLS

]
EN (1+ η)

= E2
N

([
LLL LLS

]
η + diag(ηL)

[
LLL LLS

]
η
)

' E2
N (LLLηL + LLSηS) , (11)

where the second equality holds because 1 is in the kernel of
L, and the last approximation neglects the quadratic term in

η. Solving (11) for ηL, we obtain the following approximate
solution

EL = EN (1+ ηL)

' EN1− ENL−1LLLLSηS +
1

EN
L−1LLQL . (12)

Looking back at Example II.1, we see how the first order
expansion that in the two-node network led to the solution
e1 in equation (10) corresponds exactly to the approximation
(12).

Building on the intuitive derivations leading to (12),
we now state our first rigorous result, which extends the
work carried out in [8] to transmission-level networks with
multiple generating sources. The proof of the following
theorem extends the proof strategy in [8] and uses arguments
of multivariate analysis along with the implicit function
theorem. Due to space constraints, we do not report the
proof here.

In order to formulate the theorem, we consider the reactive
power balance equation (6), we define EN := mini∈VS Ei
as the source baseline voltage, and we let ηS be the source
voltage spread, such that ES = EN (1 + ηS). Define the
approximate load voltage

EL,approx := EN (1− L−1LLLLSηS)+

+
1

EN

(
L−1LLdiag

−1(1− L−1LLLLSηS)QL
)
. (13)

Then the following holds.

Theorem II.2 (Approximate solution to the RPFE). There
exists a minimum source baseline voltage Emin

N such that,
for all EN > Emin

N , a high-voltage solution of the decoupled
reactive power flow equation (6) exists and is given by

EL = EL,approx +
1

E3
N

k , (14)

where the term k satisfies

‖k‖2 ≤ γ , (15)

with γ depending only on the network parameters L, QL
and ηS .

Remark II.3 We point out that the existence of the thresh-
old above which a solution exists is a generalization of
inequality (8). Note that the approximate solution (13) differs
from the intuitively derived solution (12) by an additional
term proportional to 1

EN
. In Section IV we will show by

numerical comparison of the two approximations that this
additional and perhaps unexpected term drastically increases
the numerical accuracy of the approximation. The intuition
now suggests that in general the expansion of the load flow
solution consists only in odd powers of EN , as we could
already notice in the two-node example by Taylor-expanding
the square root in (9).

From equations (13) and (14) one sees that as the source
baseline voltage EN becomes large and the source voltage
spread ηS diminishes, the load voltage solution tends to the
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source baseline EN . This regime of parameters is the one
practically relevant for regular power system operation [10].
While the explicit expression (not reported here) of the bound
γ in (15) is quite conservative for any given network, the
numerical simulations reported in Section IV indicate that
the error term k is much smaller than the theoretical upper
bound (15), and thus the approximation (13) is extremely
accurate. �

III. APPLICATION TO THE QUADRATIC DROOP
CONTROLLER

In this section, we consider the problem of voltage stabi-
lization in an inverter-based microgrid. We partition the set
of nodes in the microgrid as V = {VL,VI}, where VL are
loads and VI are inverters. The E-Q voltage droop controller
specifies the voltage magnitudes Ei at the inverters by [17,
Chapter 19]

Ci(Ei − ERi ) = −Qi , i ∈ VI , (16)

where ERi is the fixed voltage reference and Ci is a fixed
control parameter for inverter i. One can easily see that if
an inverter injects a non-zero amount of reactive power Qi,
its voltage deviates from the reference ERi . For comparison
purposes, it is convenient to add an integral channel to the
controller (16) yielding the conventional first-order droop
controller

τiĖi = −Ci(Ei − ERi )−Qi , i ∈ VI , (17)

where τi > 0. Note that solutions of (16), correspond to
steady-states of (17).

Instead of using the standard E-Q controller, we consider
here a modified version of it, namely the quadratic droop
controller recently proposed by [15], which reproduces the
quadratic nature of the reactive power flow equation. This
controller adjusts the inverter voltage magnitude according to

τiĖi = −CiEi(Ei − ERi )−Qi , i ∈ VI , (18)

where τi, Ci > 0 are fixed controller parameters, and ERi is
a fixed reference voltage. If the inverter i injects no reactive
power, the equilibrium voltage of (18) is again ERi . By
combining the reactive power flow equation at the load (6)
and the controller (18), we obtain the differential-algebraic
system[

0

τĖI

]
=

[
QL

Cdiag(EI)(ER − EI)

]
− diag(E)LE , (19)

where τ = diag([τi]i∈VI ) and C = diag([Ci]i∈VI ) are
diagonal matrices, while ER = [ERi ]i∈VR is the vector of
the reference voltages. We point out that while in Section II
the voltages ES were considered to be fixed, now due to the
introduction of the quadratic droop controller the voltages EI
in (19) are variables of the system; hence the variables are
now EL and EI . The goal of this section is to study whether
the differential-algebraic system (19) possesses a fixed point,
to find an approximate expression for it, and to determine its
stability properties.

Remark III.1 (Network interpretation of quadratic
droop controller). If we compare the quadratic droop control
law (18) and the right-hand side of (7), we can interpret the
term CiEi(Ei − ERi ) in (18) as the reactive power injected
from inverter i to a fictitious node of voltage ERi through
a line of susceptance −Ci. Guided by this intuition, we
consider an extended network (Figure 1) where we introduce
the set of reference nodes VR and we connect each node
i ∈ VI to the corresponding reference node i ∈ VR (with
voltage ERi ) through a line of susceptance −Ci. The voltage
vector and Laplacian matrix of the extended network are

Ẽ =

ELEI
ER

 , L̃ =

LLL LLI 0
LIL LII + C −C
0 −C C

 , (20)

where the diagonal matrix C accounts for the new connec-
tions established between inverters VI and reference nodes
VR. From (20) we can compute the reactive power at the

Fig. 1. The equivalence between the original network (top) which consists
of an inverter (blue square) feeding a load , and the extended network
(bottom) with an additional fictitious node held at constant voltage ER.

inverters in the extended network, which we denote by Q̃I :

Q̃I = diag(EI)
[
LIL LII + C −C

]
Ẽ

= Cdiag(EI)(EI − ER) +QI ,
(21)

Inserting the expression of the reactive powers (21) in the
quadratic droop controller (18), we can now write the control
law as

τĖI = −Q̃I . (22)

Using the compact expression (22) we can write the
differential-algebraic system (19) on the extended network
equivalently as[

QL
Q̃I

]
= diag(EL, EI)

[
LLL LLI 0
LIL LII + C −C

]
Ẽ (23a)

τĖI = −Q̃I . (23b)

We emphasize that the systems (23) and (19) are equivalent
representations of the microgrid with quadratic droop control
at the inverters. �

Equation (23a) has the same structure of the original
load reactive power flow equation (6), and in Theorem II.2
we introduced an approximate solution to equation (6). It
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is natural to follow a similar path and apply the same
approximation to equation (23a) to find an approximate
solution for the voltages EL and EI , while ER is considered
to be fixed. Using the expression of the approximate solution
it is possible to study the stability of the unique equilibrium
Q̃I = 0 of (23b). This strategy leads to the Theorem III.2.
In order to state it, we define the reference baseline voltage
ẼN by

ẼN := min
i∈VR

ERi ,

and the reference voltage spread η̃ such that

ER = ẼN (1+ η̃).

Note that η̃ ≥ 0 is a vector with nonnegative entries. We
define the inverse X of the truncated Laplacian matrix by

X =

[
XLL XLI

XIL XII

]
:=

[
LLL LLI
LIL LII + C

]−1
,

and the hybrid matrix

M =

[
ML

MI

]
:= −

[
LLL LLI
LIL LII + C

]−1 [
0
−C

]
=

[
XLI

XII

]
C .

We are now ready to state the main result of this section.

Theorem III.2 (Existence and stability of the fixed point).
There exists a minimum reference baseline voltage Ẽmin

N such
that for all ẼN > Ẽmin

N the differential-algebraic system (19)
has a locally exponentially stable high-voltage fixed point
given by[

EeqL
EeqI

]
= ẼN (1+Mη̃)+

+
1

ẼN

[
XLL

XLI

]
diag−1(1+MLη̃)QL +

1

Ẽ3
N

keq ,

(24)

where the norm of the term keq can be bounded as

‖keq‖2 ≤ γ̃ , (25)

with γ̃ only depending on the network parameters L̃, QL
and η̃.

Theorem III.2 takes inspiration from Theorem II.2 but
addresses a different problem. While Theorem II.2 gives an
approximate solution of the algebraic equation (6), Theorem
III.2 provides the approximate expression of a fixed point
of a differential-algebraic system, and studies its stability.
The proof of Theorem III.2 is more involved than that of
Theorem II.2, and we do not report it here. Note that setting
keq = 0 in equation (24) gives an approximate expression
for the solution of (23a). The approximate expression is the
same we introduced in Theorem II.2, except that here it is
applied to an extended network with Q̃I = 0. The close
relationship between the two theorems allows us to verify
the accuracy of the approximation (14) of Theorem II.2 by
performing a numerical analysis only on the system (23) (see
Section IV).

IV. NUMERICAL STUDY

In this section we test the results obtained in Theorem III.2
on an islanded version of the standard IEEE 37 distribution
network, which we report in Figure 2. The nominal operating
voltage of the network is 4.8kV, the line susceptances vary in
the range [−0.5 S,−10 S] with R/X ratios of approximately
one, while the reactive power demands vary for each load
in the interval [−30 kvar,−70 kvar]. The sources in this

Fig. 2. Islanded IEEE 37 bus distribution network containing loads and
inverters

network are DC/AC inverters, whose voltage magnitudes
are governed by the quadratic droop controller (18). The
reference voltage magnitudes are fixed values in the interval
[ẼN , ẼN + 0.1ẼN ]. We simulate the resulting differential-
algebraic system (23) for different values of ẼN and study:

a) the threshold Ẽmin
N above which the fixed point (24)

exists and is stable, and
b) the accuracy of the approximated fixed point expression

resulting from (24); we consider two variations: in the
approximation 1 (A1) we set keq = 0 in (24); the
approximation 2 (A2) is instead[

EeqL
EeqI

]
= ẼN (1+Mη̃) +

1

ẼN

[
XLL

XLI

]
QL . (26)

Equation (26) is the “incomplete” approximation (12)
formulated for the equations (23a); comparison with this
simpler approximation will illustrate that the intuitive
analysis used to arrive at (12) is improved upon with the
rigorous results of Theorem II.2 and Theorem III.2. To
quantify the error between the true fixed point Eeqnonlin
of the nonlinear system and the approximations given
by A1 and A2, we introduce the relative approximation
errors

δi :=
‖Eeqnonlin − E

eq
approx,Ai‖∞

EN
, i ∈ {1, 2} .
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In studying the accuracy of Theorem III.2, we implicitly also
study the accuracy of Theorem II.2, as we noted at the end
of Section III.

The threshold Ẽmin
N above which a stable high-voltage

fixed point exists was found by simulation to be roughly
860V, well below the operating voltage of the system
(4.8kV). Figure 3 reports the relative approximation errors
δ1 and δ2 for the approximations A1 and A2 in the IEEE 37
network, for different values of ẼN .
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Fig. 3. Relative approximation error for simulation of the IEEE 37 bus
distribution network as a function of the nominal network voltage. The
scales on both axes are logarithmic.

Note first that both relative approximation errors decrease
rapidly as ẼN grows. In particular at the 4.8kV nominal
operating voltage of the network, the relative error using both
approximations is below 0.1%, with the accuracy of A1 being
below 0.01%. For large values of ẼN the approximation
A1 is more accurate, so the exact characterization of the
coefficient of the term 1

ẼN
leads to a better approximation

in the practical operational regime. The curious and smooth
behavior of the relative approximation error — and the
relation of this behavior to the bounds in (25) — is a subject
of future research.

V. CONCLUSIONS

In this work we have presented novel analytic expressions
for the approximate solution of the decoupled reactive power
flow equations. In addition to being readily applicable in
transmission networks, we have demonstrated the flexibility
of our result by using it to study the behavior of droop-
controlled inverters in an islanded microgrid. Through sim-
ulation, we have demonstrated that our results are practical
and very accurate. Future work in this direction seeks to
quantify the threshold Ẽmin

N , examine analytically the results
of Figure 3, and further relax the assumption of small angular
differences. We further envision an extensive set of case
studies, with the goal of demonstrating conclusively the
usefulness of this approximation in power system planning
and operation.
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