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Amidst centralized and distributed
frequency control in power systems

Florian Dörfler and Sergio Grammatico

Abstract—We propose a novel frequency control approach
in between centralized and distributed architectures, that is a
generalized continuous-time feedback control version of the dual
decomposition optimization method. Specifically, a convex combi-
nation of the frequency measurements is centrally aggregated and
followed by an integral control, which is broadcast as the control
signal, and then by the optimal local allocations. We show that
our controller comprises many previously proposed strategies for
specific parameter sets. Under mild parametric assumptions, we
prove local asymptotic stability of the closed-loop equilibria of
the power system, which is modeled as a nonlinear, differential-
algebraic, dynamical system that includes traditional generators,
frequency-responsive as well as passive loads, where the sources
are already equipped with primary droop control. Our feedback
control is designed such that the closed-loop equilibria of the
power system solve the optimal economic dispatch problem.

I. INTRODUCTION

The quintessential task of power system operation is to
match electrical load and generation. The power balance in
an AC grid can be directly accessed via the system frequency,
making frequency regulation the fundamental mechanism to
ensure the load-generation balance. This task is subject to op-
erational constraints, system stability, and economic interests,
and it is traditionally accomplished by adjusting generation
in a hierarchical structure consisting of three layers: primary
(droop control), secondary (automatic generation control) and
tertiary (economic dispatch) - from fast to slow timescales,
and from decentralized to centralized architectures [1], [2].

With the increasing integration of distributed renewable
energy generation, such as solar and wind power, the grid is
subject to larger and faster fluctuations in power supply. There-
fore, frequency control requires more fast-ramping generators
to act as spinning reserves, which is expensive, inefficient,
and the resulting emissions defeat the purpose of renewables
[3]. As a complement, distributed frequency control through
inverter-based sources [4] or loads [5] has a high potential due
to the fast ramping capabilities of these devices. In any case,
the task of frequency regulation will have to be shouldered by
more and more small-scale and distributed devices.

From a control-theoretic perspective, the main objective
of frequency control is to stabilize the system frequency
to the nominal value, subject to operational constraints and
economic interests such as load sharing, optimal economic
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generation dispatch, or according to the outcome of reserve
markets. Possible further constraints include a partial informa-
tion structure accounting for a distributed generation environ-
ment, liberalized markets, and limited system knowledge. A
plethora of strategies has been developed to address these tasks
ranging from fully decentralized to centralized architectures,
partially relying on time-scale separation and hierarchical
control, and being dependent on the detailed system model,
load and generation forecasts. While robustness to failures
and uncertainties is an issue for centralized architectures
relying on detailed models, this is not the case for distributed
frequency control approaches. The major drawback of the
latter, in terms of practical implementation, is that a massive
(often bidirectional) communication architecture is required.
We postpone a detailed literature review to Section II-D, after
introducing the problem setup.

In this paper, we consider a nonlinear, differential-algebraic,
and heterogeneous power system model including tradi-
tional generation, power electronic sources, and frequency-
responsive as well as passive loads. We assume that the
sources are already equipped with primary droop control, and
we focus on designing the secondary control strategy while
simultaneously solving a tertiary economic dispatch problem.

Our control approach falls square in between centralized
and distributed architectures, and is motivated and developed
by exploiting parallels in dual decomposition methods in op-
timization [6], auctions in markets [7], mean field control [8],
as well as classic Automatic Generation Control (AGC) [1].
Interestingly, our controller includes many previous frequency
control strategies for specific parameter sets.

Specifically, we first develop an online optimization routine
for the steady-state dynamics that evaluates the price of
frequency violation in feedback with the optimal generation
response of each generator. Next, we propose a continuous-
time feedback control version of this optimization scheme as
a centralized aggregation of a convex combination of mea-
surements, followed by integral control and optimal local al-
locations of the broadcast control signal. Our feedback control
law is such that the closed-loop equilibria of the power system
solve the optimal economic dispatch problem, and in addition
is transiently optimal, in the sense that identical marginal costs
are achieved during transients. Under mild assumptions on the
parameter design, we prove local asymptotic stability of the
closed-loop equilibria of the nonlinear differential-algebraic
power system.

We emphasize that our frequency control scheme does not
require any model knowledge, it relies only on unidirectional
communication, and it is privacy preserving, that is, no partici-
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pant needs to communicate its internal model or cost function.
The paper is organized as follows. In Section II we formally

introduce the frequency control problem in power systems,
that includes both the frequency regulation and the optimal
economic dispatch. In Section III we propose our novel
frequency control method, and in Section IV we show local
asymptotic stability of the set of closed-loop equilibria, under
proper choice of some parameters. In Section V, we illustrate
the performance of our controller with a simulation case study
on the IEEE39 New England grid, and we also compare to
other controllers. Section VI concludes the paper and raises
some open questions.

Notation

R, R>0, R≥0 respectively denote the set of real, positive
real, non-negative real numbers; A> ∈ Rm×n denotes the
transpose of A ∈ Rn×m. For given matrices A1, . . . , AM ,
diag (A1, . . . , AM ) denotes the block diagonal matrix with
A1, . . . , AM in block diagonal positions. 1 (0) denotes a
matrix/vector with elements all equal to 1 (0).

II. THE FREQUENCY CONTROL PROBLEM IN POWER
SYSTEMS

A. Power system model

Consider a power system modeled as a graph G = (V, E)
with nodes (or buses) V = {1, . . . , N} and edges (or branches)
E ⊆ V × V . With each bus i ∈ V , we associate the complex
voltage phasor Vi exp(iθi) corresponding to a harmonic volt-
age waveform Vi cos(ω∗t+ θi), where ω∗ = 2π · 50 Hz is the
nominal network frequency. We consider a high-voltage trans-
mission network with lossless lines. The network topology is
then induced by the sparse susceptance matrix B̃ ∈ RN×N .
We partition the set of buses according to the power sources
and sinks connected to it as V = G ∪ F ∪ P corresponding
to synchronous generators G, buses with frequency-responsive
devices F (e.g., frequency-sensitive loads or inverter sources
performing droop control), and passive buses P (e.g., static
loads or inverters performing maximum power-point tracking).
The associated dynamic model reads as follows [9]:

∀i ∈ G : Miθ̈i +Diθ̇i = Pi + ui −
∑

j∈V
Bi,j sin(θi − θj)

(1a)

∀i ∈ F : Diθ̇i = Pi + ui −
∑

j∈V
Bi,j sin(θi − θj) (1b)

∀i ∈ P : 0 = Pi + ui −
∑

j∈V
Bi,j sin(θi − θj) , (1c)

where Pi ∈ R is a constant power injection or demand
(positive for sources and negative for loads), ui ∈ Ui =
[ui , ui] ⊂ R is a controllable injection or demand, and
Bi,j := B̃i,jViVj is the effective susceptance for all i, j ∈ V .
A generator i ∈ G is characterized by its rotational inertia
Mi > 0 and primary droop control coefficient Di > 0. A
frequency-responsive device i ∈ F is characterized by its
frequency-sensitivity Di > 0 (e.g, the droop coefficient for
inverters or actively controlled loads, or the damping of a
frequency-dependent load). Finally, passive buses (inverters
performing maximum power-point tracking and static loads)

have no dynamics. We do not model reactive power and
voltage dynamics, since they do not affect the forthcoming
analyses – though everything can be extended.

B. Frequency regulation

We note that, if there is a stable synchronized solution to
(1) satisfying θ̇i = ωsync > 0 for all i ∈ V , then by summing
up all steady-state equations (1), the synchronous frequency is

ωsync =

∑
i∈V Pi + ui∑
i∈G∪F Di

(2)

If transmission losses are integrated in the power system model
(1), there would be another strictly negative term on the right-
hand side of (2) that depends on the steady-state flow pattern.

Note that in absence of controllable injections {ui}i∈V the
synchronous frequency ωsync is determined by the constant
power injections {Pi}i∈V of possibly slow-ramping generation
units, fluctuating renewable sources, and unknown loads. We
are interested in regulating the frequency deviation (2) to its
nominal (zero) value by scheduling the controllable injections:

Problem 1 (Frequency regulation): Schedule the control-
lable injections {ui ∈ Ui}i∈V to balance load and generation,
that is, so that the frequency deviation ωsync in (2) is zero. �

C. Centralized and competitive resource allocation

A basic feasibility condition to solve Problem 1 is that the
total power imbalance can be met by the controllable and
constrained injections {ui ∈ Ui = [ui , ui]}i∈V .

Assumption 1 (Feasibility): −
∑
i∈V Pi∈

∑
i∈V [ui , ui]. �

If this feasibility condition is met, then there can be many
options to schedule the controllable injections {ui}i∈V to
(asymptotically) regulate ωsync in (2) to zero.

Since we are also interested in solving a resource allocation
problem, we associate to every controllable injection a cost
function to trade-off operating costs, emissions, capacities, and
other levels of preference.

Problem 2 (Optimal economic power dispatch): Schedule
the controllable injections {ui ∈ Ui}i∈V to balance load and
generation, while minimizing the aggregate operational cost

min
u∈RN

∑
i∈V

Ji(ui)

s.t.
∑

i∈V
Pi + ui = 0 ,

(3)

where, for all i ∈ V , Ji : Ui → R is strictly convex and
differentiable on its domain. �

Note that the constraints {ui ∈ Ui = [ui , ui]}i∈V can be
directly incorporated in the domain of the cost functions
{Ji}i∈V , e.g, via barrier functions. The economic dispatch
problem in (3) is typically solved on different time scales and,
in a longer planning horizon, and it often includes binary unit-
commitment constraints and inequality constraints penalizing
power flows violating the thermal constraints. Here we fo-
cus on the reserve scheduling problem, where fast ramping
generation and controllable loads are dispatched to meet the
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real-time net demand indicated by the frequency deviation in
(2).

Let us now consider the Lagrangian function associated with
the economic dispatch optimization problem in (3), that is,

`(u, λ) :=
∑

i∈V
Ji(ui)− λ (ui + Pi) , (4)

where the scalar λ ∈ R is the Lagrange multiplier associated
with the constraint

∑
i∈V ui + Pi = 0 in (3). The necessary

KKT optimality conditions [10] require that
∂`(u,λ)
∂u = 0 =⇒ J ′i(u

?
i ) = λ? ∀i ∈ V , (5)

where J ′i is the derivative of Ji. A basic insight from condition
(5) is the economic dispatch criterion [2] stating that all
marginal utilities must be identical in the unconstrained case:

J ′i(u
?
i ) = J ′j(u

?
j ) ∀ i, j ∈ V . (6)

So far we took the perspective of centralized social welfare
optimization. From a competitive market perspective (in par-
ticular, a spot market), consider the utility maximization (cost
minus benefit minimization) of each market participant i ∈ V

min
ui∈Ui

`(u, λ) = min
ui∈Ui

{Ji(ui)− λui} . (7)

Here, λ is the nodal price which is identical for every
participant (in this setup neglecting network congestion). The
optimal generation as a function of the price is then obtained
by ui(λ?) = J ′i

−1
(λ?). Accordingly, the constraint in (3) can

then be formulated as the intersection of the aggregated supply
bid and demand curves:

0 =
∑

i∈V
Pi + ui =

∑
i∈V

Pi + J ′i
−1

(λ?). (8)

Based upon (8) the market clearing price λ∗ is determined.
Independent of a centralized optimization or competitive

market setup, solving Problem 2 also amounts to asymptot-
ically regulating the frequency, that is, solving Problem 1.
Frequency regulation is often referred to as secondary control,
whereas offline optimization is referred to as tertiary control.
As there are no clear boundaries between these two control
objectives, there are many solutions available in the literature
to solve the optimal economic power dispatch in (3) via online
frequency regulation algorithms. These solutions range from
the classic centralized automatic generation control (AGC)
[1], [2] to distributed optimal frequency regulation based on
continuous-time or discrete-time averaging algorithms. Let us
provide a brief review in the following paragraph.

D. Literature review on (de)centralized frequency regulation

To regulate steady-state deviations in the synchronous fre-
quency, one may consider simple decentralized secondary
integral controllers at every source, that is,

k ṗi = θ̇i, ui = −pi ∀i ∈ V ,

where k > 0 is a constant gain. Such decentralized integral
controllers regulate the frequency, but they induce additional
closed-loop equilibria resulting in undesired injection profiles
violating load sharing and economic dispatch objectives [11].
Indeed, it is well known in power systems [9], as well as

in control theory [12], that multiple decentralized integral
controllers generally fail to achieve frequency regulation while
maintaining a desired injection profile among generating units,
and they may induce internal instabilities [13].

The current industrial standard is the centralized AGC
[1], [2] where a single frequency measurement is integrated
(typically together with the area control error) at a site i? ∈ V ,
and the required generation mismatch is then allocated to
individual generating units according to their participation
factors {1/Ai > 0}i∈V , often selected as inverse ratings of
the sources, which define their individual contribution:

k ṗ = θ̇i? , ui = − 1

Ai
p ∀i ∈ V. (9)

Note that the AGC signal (9) may be written as

k ṗ = θ̇i? , ui = −J ′i
−1

(p) ∀i ∈ V , (10)

if the cost function Ji is defined as Ji(ui) = 1
2Aiu

2
i . Hence,

the AGC strategy (10) achieves identical marginal costs as in
(6) and is thus implicitly optimal for a quadratic cost function.
On the other hand, the above strategy is centralized; in a
distributed generation environment, such a setup is not robust;
additionally, a single node i? may not have the authority to
command the secondary control strategies of all other nodes.

As a remedy to the above problems, distributed secondary
integral controllers have been proposed that average the inte-
gral actions among the generation units through a communi-
cation network between the controllers. Different distributed
secondary integral approaches have been proposed on the
basis of continuous-time consensus averaging with all-to-
all [14]–[16] or nearest-neighbor [17]–[20] communication.
These distributed secondary control approaches can be merged
with the tertiary optimization layer, based on the economic
dispatch criterion (6) that all marginal utilities must be iden-
tical, so the integral control gains can be then adjusted to
this aim. Different approaches realize this objective based on
continuous-time optimization approaches [11], [13], [21]–[27],
game-theoretic ideas [28], nodal pricing algorithms [29], or
discrete-time algorithms [30]–[32]. All of these algorithms
essentially rely on the fact that frequencies and marginal costs
should be identical in an optimal steady state. Accordingly,
for all i ∈ V , distributed integral controllers of the form

k ṗi = θ̇i −
∑

j∈V
wi,j

(
J ′i(ui)− J ′j(uj)

)
, ui = −pi , (11)

are added, where W = W> ∈ RN×N≥0 induces an undirected
and connected communication network. One major drawback
of these distributed strategies in a real-world implementation is
that the existing controllable load and generation units must be
retrofit with massive bidirectional communication architecture
to execute the distributed algorithms. In comparison with the
centralized price-based coordination in (7)-(8), the strategy
in (11) relies on bilateral agreements, and one can imagine
scenarios where individual agents aim to maximize their
benefit by reporting biased marginal costs to their neighbors.
Finally, aside from the above concerns on operational cost and
market power, other issues include vulnerabilities to cyber-
physical security breaches and the utilities’ concern that they
give the power system control out of their hands.
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III. PRICE-BROADCASTING FREQUENCY CONTROL

A. Market-based insight: discrete-time dual decomposition

In the following, we provide an alternative frequency control
algorithm based on a central price update for violating the
power balance, and inspired by the market-based insights to
economic dispatch optimization presented in Subsection II-C.

Specifically, we exploit the fact that the Lagrangian function
`(u, λ) in (4) associated with the optimization problem in (3)
is separable. Therefore, as the individual costs {Ji}i∈V are
strictly convex and bounded, the optimization problem in (3)
can be solved iteratively via the gather-and-broadcast dual
decomposition method [6, Sections 2.1–2.2]. This reads as
the following iterative primal-dual algorithm, where k ∈ N
denotes a discrete time step, and (αk)k∈N is a sequence of
sufficiently small positive scalars:

ui(k + 1) := arg min
u∈R

Ji(u)− λ(k)u , ∀i ∈ V , (12)

λ(k + 1) := λ(k)− αk
(∑

i∈V
Pi + ui(k + 1)

)
(13)

At every discrete time step k, each node i ∈ V computes
its optimal injection according to (12) as a function of the
current price λ(k). At the same time, the price λ(k) for the
power imbalance is updated in (13) via a discrete-time integral
type control of the power balancing error, that is directly
measurable through the frequency signal

ω(k) :=
∑

i∈V
Pi + ui(k + 1), (14)

thus, the dual update in (13) can drive the frequency error to
zero. The iteration in (12)–(13) can be implemented in a semi-
decentralized fashion. The dual update (or integral control)
in (13) determining the current price λ(k) is performed at a
central site1 using the steady-state frequency error (14), and the
primal update (12) can then be carried out locally as a function
of the current price λ(k) and the generator cost function Ji(·).
In this regard, the gather-and-broadcast update in (12)-(13)
is conceptually similar to AGC in (9), with the advantage of
guaranteed global convergence [33, Chapter 6], [6, Chapter 2],
even for non-quadratic costs and local injection constraints.

Proposition 1 (Discrete-time global convergence): The se-
quence (u1(k), . . . , uN (k); λ(k))k∈N defined iteratively in
(12)–(13) asymptotically converges, from any initial condition,
to the unique primal-dual optimal solution to (3). �

As a final remark, from a market perspective, the updates
(12) and (13) correspond to an iterative local utility maximiza-
tion (12), communication of bids u?i (k+ 1), subsequent price
announcement (13), which is again followed by the optimal
generation response (12), and so on. Such a scheme is referred
as an auction [7]. Auctions are known to be decentralized yet
robust market mechanisms compared to the exchange trade
based on a (central) price (7)-(8) and the bilateral over the

1In principle, the update in (13) can also be carried out locally using θ̇i
instead of (14), since the steady-state frequency error (2) in (14) is identical
throughout the network. On the other hand, if the step sizes {αk}k are
not identical or if the frequencies are not perfectly synchronized in steady
state, then such decentralized integral updates may fail to solve the economic
dispatch problem in (3), see [11] for a continuous-time analysis.

counter trading scheme (11) [34] - all of which lead to a
Pareto-optimal solution to (7) or the optimal solution to (3).

B. Continuous-time price-broadcasting frequency control

Motivated by the dual decomposition algorithm in (12)-
(13), we derive a continuous-time version that acts as a
feedback control law stabilizing the frequency deviations of
the nonlinear differential-algebraic model in (1). The following
setup complements the different centralized and distributed
frequency regulation approaches reviewed in Section II-D.

We assume that a central aggregator collects a set of
frequency measurements in the network and integrates these
measurements to form the overall area frequency error as

k ṗ =
∑

i∈V
Ciθ̇i, (15)

where k > 0 is a scalar gain, and Ci ∈ [0, 1] is a set of convex
coefficients. Next the signal p from (15) is broadcast to the
individual nodes, where it is dispatched according to

ui := −J ′i
−1

(p) ∀i ∈ V. (16)

This feedback control scheme relies on the following mean-
field-type loop [8]: construction of the measurement average∑
i∈V Ciθ̇i as a global variable, that is centrally processed via

an integrator, and then broadcast back to the individual nodes.
Note that the broadcast-topology is “one-to-all”, whereas in
principle the measurement aggregation can include either only
one measurement or possibly all measurements.

We observe that generation allocation in (16) is tran-
siently optimal, that is, it achieves identical marginal costs
J ′i(u

?
i (t)) = J ′j(u

?
j (t)) as in (6) for all t ≥ 0, that is, even

during transients.

C. Comparison with methods proposed in the literature

For specific parameter choices, the price-broadcasting fre-
quency control in (15)–(16) reduces to different control archi-
tectures proposed in the literature, as summarized next.

Automatic Generation Control [1], [2]: If only a single
measurement coefficient Ci is non-zero and each cost is Ji
is quadratic, then the control scheme in (15)-(16) reduces
exactly to the conventional AGC in (9), where the area control
error is allocated to the individual generators according to their
participation factors corresponding to inverse marginal costs.

All-to-all averaging control [11], [14]–[16]: The gains Ci =
Di for all i ∈ V have been employed for the analysis of
centralized averaging-based PI controllers in [11], [14] whose
experimental implementations can be found in [15], [16].

Mean field control [8]: If all frequencies are measured and
weighted equally, i.e., Ci = 1 for all i ∈ V , then we have a
true mean-field setup where all nodes are treated equally.

Market mechanism [7]: The control scheme in (15)–(16)
corresponds to a continuos auction mechanism, where the
accumulated frequency error in (15) serves as pricing signal.
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IV. CLOSED-LOOP STABILITY ANALYSIS

A. Closed-loop equilibria

The overall closed-loop system in (1), (15)–(16) has the
property that if an equilibrium exists, then, by summing all
steady-state equations (1), (15)–(16), it satisfies∑

i∈V
Pi =

∑
i∈V

J ′i
−1

(p∗). (17)

Due to the strict convexity of the cost functions {Ji}i∈V , it
holds that {J ′i

−1}i∈V are strictly increasing functions, and
therefore (17) admits a unique solution p∗ ∈ R.

In vector form the closed-loop system in (1), (15)–(16) reads
as

θ̇G = ωG (18a)

Mω̇G = −DGωG −
(
∇GU(θ)− PG

)
− J ′G

−1
(p) (18b)

DF θ̇F = −
(
∇FU(θ)− PF

)
− J ′F

−1
(p) (18c)

0|P| = −
(
∇PU(θ)− PP

)
− J ′P

−1
(p) (18d)

k ṗ = 1>NCθ̇ , (18e)

where we used the shorthand notations MG :=
diag({Mi}i∈G), DG := diag({Di}i∈G), DF :=
diag({Di}i∈F ), C := diag({Ci}i∈V), and we introduced the
network potential function

U : Tn → R , U(θ) :=
∑

(i,j)∈E
Bi,j

(
1− cos(θi − θj)

)
satisfying 1>N∇U (θ) = 0 due to the symmetry of the flow.

In steady state, with θ̇ = 0N , ω̇ = 0N , and ṗ = 0, the equi-
libria of the closed-loop system in (18) can be characterized
as follows.

Lemma 1: The equilibria (θ∗, ω∗, p∗) of the closed-loop
system (18) are such that ω∗G = 0|G|, p∗ ∈ R is the
unique solution to (17), and the steady-state injections are
∇U(θ∗) = P − J ′−1(p∗). Moreover, each equilibrium is an
optimal solution to the economic dispatch problem in (3). �

Proof: From (18a) with θ̇G = 0|G|, it immediately follows
that ω∗G = 0|G|. Equations (18b)–(18d) read in steady state as[

I I
] [∇U(θ∗)− P

J ′
−1

(p∗)

]
= 0N .

If we multiply these equations by 1>N , since 1>N∇U(θ∗) = 0,
we obtain equation (17), which admits a unique solution p∗ ∈
R. Finally, optimality of the steady-state injections follows by
construction of the control law in (16).

B. Local asymptotic stability

In the following we perform a stability analysis of the
equilibria of the differential-algebraic closed-loop system in
(18), characterized in Lemma 1. For simplicity and to aim at
a compact presentation, we make the following assumptions.

Assumption 2 (Quadratic cost functions): For all i ∈ V ,
the cost function Ji in (3) is defined as Ji(ui) := 1

2Aiu
2
i ,

for some Ai > 0. �

Assumption 3 (Coefficients): For all i ∈ V , CiAi = 1. �

Assumptions 2 and 3 restrict the design of parameters, yet
they are meaningful in a large-scale decentralized generation
setups with simple quadratic cost functions with identical
coefficients (up to a constant factor) and identically weighted
measurements. We remark that extensive numerical tests in-
dicate that the Assumptions 2 and 3 are not necessary for
closed-loop local asymptotic stability.

We are now ready to state the main technical result of the
paper, that is, the local asymptotic stability of the equilibria
of the differential-algebraic nonlinear closed-loop system (18),
transient optimality and asymptotic solution to the frequency
regulation (Problem 1) and the optimal economic power dis-
patch (Problem 2).

Theorem 1 (Local asymptotic stability): If Assumptions 2
and 3 hold, then any equilibrium of the closed-loop system
in (18) satisfying |θ∗i − θ∗j | < π/2 for all (i, j) ∈ E is locally
asymptotically stable. The control inputs {ui(·)}i∈V defined
as in (16) satisfy (6) for all t ≥ 0, and asymptotically solve
Problems 1, 2. �

Proof: Motivated by Lemma 1, we consider the error
coordinates p̃ := p − p∗ and, for all i ∈ V , the parameter
change P̃i := Pi − J ′i

−1
(p∗) = Pi − A−1i p∗. This change

of coordinates and Assumptions 2, 3 render the closed-loop
system in (18) to

θ̇G = ωG (19a)

Mω̇G = −DGωG −
(
∇GU(θ)−∇GU(θ∗)

)
−A−1G 1|G|p̃ (19b)

DF θ̇F = −
(
∇FU(θ)−∇FU(θ∗)

)
−A−1F 1|F|p̃ (19c)

0|P| = −
(
∇PU(θ)−∇PU(θ∗)

)
−A−1P 1|P|p̃ (19d)

k ˙̃p = 1>NA
−1θ̇ , (19e)

where we have defined the shorthand notation A =
diag({Ai}i∈V), and ∇U(θ∗) := P̃ , which satisfies
1>N∇U(θ∗) = 1>N P̃ = 0. To analyze the local asymptotic
stability of the closed-loop equilibria, we consider the incre-
mental Lyapunov function

V (ω, θ, p̃) :=
1

2
ω>GMωG +

U(θ)− U(θ∗)−∇U(θ∗) · (θ − θ∗) +
k

2
p̃2 , (20)

whose critical points correspond to the equilibria of the closed-
loop system in (18). The derivative of V in (20) along
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trajectories of the closed-loop system in (19) reads as

V̇ (ω, θ, p̃)

= ω>GMω̇G +
(
∇GU(θ)−∇GU(θ∗)

)>
θ̇G

+
(
∇FU(θ)−∇FU(θ∗)

)>
θ̇F

+
(
∇PU(θ)−∇PU(θ∗)

)>
θ̇P + k p̃ ˙̃p

=− ω>GDGωG − ω>G
(
∇GU(θ)−∇GU(θ∗)

)
− ω>G A−1G 1|G|p̃+

(
∇GU(θ)−∇GU(θ∗)

)>
ωG

−
(
∇FU(θ)−∇FU(θ∗)

)>
D−1F

(
∇FU(θ)−∇FU(θ∗)

)
−
(
∇FU(θ)−∇FU(θ∗)

)>
D−1F A−1F 1|F|p̃

−
(
A−1P 1|P|p̃

)>
ωP + 1>NA

−1ωp̃

= − ω>GDGωG − ω>G A−1G 1|G|p̃

−
(
∇FU(θ)−∇FU(θ∗)

)>
D−1F

(
∇FU(θ)−∇FU(θ∗)

)
−
(
∇FU(θ)−∇FU(θ∗)

)>
D−1F A−1F 1|F|p̃

−
(
A−1P 1|P|p̃

)>
ωP + 1>NA

−1ωp̃

=− ω>GDGωG − ω>G A−1G 1|G|p̃

−
(
∇FU(θ)−∇FU(θ∗)

)>
D−1F

(
∇FU(θ)−∇FU(θ∗)

)
−
(
∇FU(θ)−∇FU(θ∗)

)>
D−1F A−1F 1|F|p̃

−
(
A−1P 1|P|p̃

)>
ωP + 1>|G|A

−1
G ωG p̃

− 1>|F|A
−1
F D−1F

(
∇FU(θ)−∇FU(θ∗) +A−1F 1|F|p̃

)
+ 1>|P|A

−1
P ωP p̃

=− ω>GDGωG
−
(
∇FU(θ)−∇FU(θ∗)

)>
D−1F

(
∇FU(θ)−∇FU(θ∗)

)
p̃

−
(
∇FU(θ)−∇FU(θ∗)

)>
D−1F A−1F 1|F|p̃

− 1>|F|A
−1
F D−1F (∇FU(θ)−∇FU(θ∗)) p̃

− 1>|F|A
−1
F D−1F A−1F 1|F|p̃

2 ,

where we introduced the notation ω := (ωG , ωF , ωP) =
(θ̇G , θ̇F , θ̇P) and made use of the algebraic constraint in
(19d). Thus we obtain the compact form in (21), as displayed
on page 7. The matrix Q in (21) is positive semi-definite,
and thus the Lyapunov function V (ω, θ, p̃) is non-increasing
along the trajectories of the closed-loop system.

In the following, we apply the LaSalle invariance principle
for DAE systems [35, Theorem 3]. To do so, we need to
construct a compact set (i) in which the vector field in (19) is
twice continuously differentiable, (ii) that is forward invariant
for the dynamics in (19), and (iii) in which the Jacobian
with respect to θP of the algebraic equations in (18d) is
nonsingular (so that solvability of the algebraic equations
(18d) with respect to θP is guaranteed by the implicit function
theorem). Therefore, we show that, the sublevel set

Ωc :=
{

(ω, θ, p̃) ∈ R2N+1
∣∣V (ω, θ, p̃) ≤ c ,

|θi − θj | < π/2 ∀(i, j) ∈ E} (22)

satisfies all of the above conditions, for sufficiently small c >
0. First, observe that the differential-algebraic vector field (19)

is twice continuously differentiable in Ωc. Next, we show that
the dynamics are bounded in Ωc. Note that the Hessian of
U(·) has (i, j) element

[
∇2U(θ)

]
i,j

equal to

∂2U(θ)

∂θj∂θi
=

{
−Bi,j cos (θi − θj) if j 6= i∑N
k=1,k 6=iBi,k cos (θi − θk) if j = i.

(23)

Therefore, ∇2U(θ∗) is a positive semidefinite and irreducible
Laplacian matrix with nullspace corresponding to the
rotational symmetry, i.e., the dynamics in (19) are invariant
under a rigid rotation of all angles θ. Hence, within Ωc in (22),
U(θ) is locally positive definite (modulo symmetry). Thus,
the Lyapunov function V is locally positive definite and its
sublevel sets are compact (modulo rotational symmetry). The
above reasoning guarantees boundedness of the frequencies ω,
the integral variable p̃, as well as the relative angles θi − θj ,
that is, v>θ is bounded for any v ∈ RN such that v ⊥ 1N .
To show boundedness of the remaining coordinate, the sum
of all angles 1>Nθ, we first note from (21) that p̃ =

∑
iV Ciθi

is bounded. Thus, both 1>NCθ and v>θ are bounded for any
v ⊥ 1n. It follows that 1>Nθ is bounded, and the dynamics
are bounded in the compact set Ωc in (22).

Finally, within Ωc, the Jacobian matrix associated to the
algebraic equation (18d) is a principal submatrix of the ir-
reducible Laplacian matrix in (23). Since submatrices of irre-
ducible Laplacians are nonsingular [36, Lemma 2.1], it follows
that the algebraic equations (18d) are solvable with respect to
θP . Since all the conditions of the LaSalle invariance principle
for DAE systems [35, Theorem 3] are met, we conclude that
the closed-loop dynamics asymptotically converge to largest
invariant set in Ωc satisfying V̇ (ω, θ, p̃) = 0, that is, to the set
of vectors (ω, θ, p̃) such that ωG

∇FU(θ)−∇FU(θ∗)
p̃

 ∈ ker(Q).

Due to the block-diagonal structure of Q, from the
(1, 1)−block we conclude that limt→∞ ωG(t) = 0, that is,
the generator states converge to the set of equilibria. Thus,
as ω̇G = 0|G| and ωG(t) → 0|G|, by (19b), we get that
limt→∞∇GU(θ(t))−∇GU(θ∗) = −A−1G 1|G|p̃(t).
Then, due to the second block row of Q, we have that
limt→∞∇FU(θ(t)) − ∇FU(θ∗) = −A−1F 1|F|p̃(t). In ad-
dition, by the algebraic constraint in (19d), we have that
∇PU(θ)−∇PU(θ∗) = −A−1P 1|P|p̃(t).

Finally, since 1>N (∇U(θ(t))−∇U(θ∗)) = 0 for
all t ≥ 0, and limt→∞ 1>N (∇U(θ(t))−∇U(θ∗)) =
limt→∞−

(
A−1G 1|G| +A−1F 1|F| +A−1P 1|P|

)
p̃(t) = 0, we

conclude that limt→∞ p̃(t) = 0. Hence, asymptotically we
have that ω(t) → 0|G|, p̃(t) → 0, and ∇U(θ(t)) → ∇U(θ∗),
therefore the set of equilibria inside Ωc, that correspond to
the critical points of the Lyapunov function V , are locally
asymptotically stable.

Condition (6) on the identical marginal costs follows di-
rectly by (16), as Ji (ui) = −p for all i ∈ V , which implies
that the control inputs limt→∞{ui(t)}i∈V solve Problem 2.
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V̇ (ω, θ, p̃) = −

 ωG
∇FU(θ)−∇FU(θ∗)

p̃

>  DG 0 0|G|
? D−1F D−1F A−1F 1|F|
? ? 1>|F|A

−1
F D−1F A−1F 1|F|


︸ ︷︷ ︸

=:Q<0

 ωG
∇FU(θ)−∇FU(θ∗)

p̃

 (21)

Fig. 1: IEEE New England test power system.

V. NUMERICAL SIMULATIONS

We evaluate the performance of our proposed controller on
the IEEE New England test power system shown in Figure 1.
The system has 10 generators and 39 buses, serving a total
load of about 6 GW. The generator inertia coefficients {Mi}i
and line susceptances {Bi,j}(i,j) are obtained from the Power
System Toolbox. The droop coefficients are chosen uniformly,
as Di = 1 for all the buses i. The cost coefficients {Ai}i are
randomly generated, uniformly in (0, 1).

We simulate a scenario in which at time t = 1 s, the
energy demand changes by 33 MW at the buses 4, 12 and 20,
creating a power imbalance and causing the bus frequencies
to drop below the nominal value of 60 Hz. We compare our
control strategy with the fully decentralized integral control
[20, Section III] and with the recently introduced distributed
averaging integral (DAI) control [20, Section IV], where we
use the same communication graph as in [20, Section V].
Figure 2 shows the frequencies and the marginal costs of five
generators for the three control schemes.

We note that all controllers drive the system frequency to
its nominal value. As expected, the decentralised integral con-
troller does not achieve convergence of the marginal cost; on
the other hand, both the DAI controller and the proposed one
asymptotically solve the optimal economic dispatch problem.
In addition, our controller guarantees identical marginal costs
even during the transient. The main benefit of our controller is
that, as Figure 2 shows, the closed-loop frequency responses
induced are qualitatively at least as good as the ones due to
the DAI controller, despite the communication requirements
are significantly lower.

VI. CONCLUSIONS

We have proposed a novel frequency control approach
that achieves both local asymptotic stability of the closed-

loop equilibria of power systems, modeled as a nonlin-
ear, differential-algebraic, dynamical system, and economic-
dispatch optimality. The control architecture is semi-
decentralized, hence the communication requirements are sig-
nificantly lower than those of distributed architectures.

Open problems

Extensive numeric simulations show that the closed-loop
system in (18) has locally asymptotically stable equilibria for
any non-negative convex-combination selection of the mea-
surement coefficients {Ci}i, and also for convex non-quadratic
cost functions {Ji}i, including the conventional (non-smooth)
dead-zones and saturation nonlinearities for J ′i

−1. Formal
proofs of these claims are currently not available.

An important extension would be the inclusion of forecasts
and inter-temporal constraints into our frequency control archi-
tecture, with the aim of designing predictive control actions,
while maintaining minimal communication requirements.
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