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Abstract— A major transition in the operation of electric
power grids is the replacement of conventional power gener-
ation using synchronous machines by distributed generation
based on renewable sources interfaced by power electronics. In
contrast to synchronous machines, which stabilize the power
system through a combination of their inherent physical prop-
erties and their controls, power converters do not inherently
stabilize the power system. Moreover, the models used for grid-
level stability analysis also crucially depend on the properties of
synchronous machines. As a first step toward addressing these
challenges, we propose a novel reduced-order model for analysis
and control design of low-inertia power systems. Starting from a
detailed nonlinear first-principle model of a low-inertia power
system, including detailed power converter models and their
interactions with the power grid, we use arguments from
singular perturbation theory to obtain a tractable model for
control design. We use insights gained from the reduced model
to bridge the gap between grid-level objectives and device-
level control by introducing an internal model and matching
controller that exploits structural similarities between power
converters and synchronous generators. Moreover, we propose
a nonlinear droop control that stabilizes the power system.

I. INTRODUCTION

Tomorrow’s electric power generation and transmission
is envisioned to be clean, sustainable, and largely based
on renewable sources interfaced with power electronics. In
contrast, today’s power system heavily relies on conventional
power plants with synchronous generators, whose inherent
physical properties are the robust foundation of today’s
power grid. In particular, their rotational inertia and their
controls ensure stability of the power grid [1]. As renewable
generation replaces conventional generation, this foundation
and safeguard of today’s power system is replaced by fluc-
tuating renewable sources. This results in larger and more
frequent frequency deviations and jeopardizes the stability
of the power grid [2]. At the same time, the analysis of
such phenomena is a challenging problem because the power
system physics are highly nonlinear, large-scale, and contain
dynamics on multiple time scales from mechanical and
electrical domains. As a result, the analysis and control of
conventional power system is typically based on reduced-
order models of various degrees of fidelity [1].

A widely accepted reduced-order model of conven-
tional power systems is a structure-preserving multi-machine
model, where each generator model is reduced to the swing
equation describing the interaction between the generator
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rotor and the grid, which is itself modeled at quasi-steady
state via the nonlinear algebraic power balance equations [1].
While this prototypical model has proved itself useful its
validity for conventional power systems has always been a
subject of debate; see [3], [4] for recent discussions. Because
this model crucially relies on inherent physical properties
of synchronous generators its validity for low-inertia power
systems is questionable. In particular, if power electronics
are modeled as a constant power sources and all generators
are removed, then only purely algebraic equations remain.

One approach to mitigate the loss of rotational inertia and,
at the same time, salvage the current tools for system-level
analysis is to use power electronic devices to emulate the in-
herent behavior of synchronous generators to various degrees
of fidelity [5], [6]. However, this device-level emulation is
subject to non-negligible measurement delays due to signal
processing, e.g., phase locked loops, which are known to
have deteriorating effects on the system level [7], [8].

To better understand the challenges arising in low-inertia
power systems, a model for system-level analysis is required
which correctly captures the physics and bridges the gap
between the system and device level. In this work, we follow
a top-down approach based on a first-principles model of
a low-inertia power system, including detailed power con-
verter models and their interactions with the power grid [9].
Based on this model we review the main control objectives
for power systems and pinpoint discrepancies between the
system-level specifications and the device-level control of
power converters. Next, we present a reduced-order model
by exploiting the time-scale separation between the DC
and AC dynamics via a singular perturbation analysis [10].
The reduced-order model preserves the system structure and
approximates the input-output behavior of the power system
so that all system-level specifications, such as frequency and
voltage stability, also apply to the reduced-order model.

Based on the reduced-order model we highlight connec-
tions between synchronous machines and power converters
on the device-level and introduce a virtual oscillator as in
[11] and a controller similar to the one used in [12] that
matches synchronous generators and power converters on
the device level. This controller bridges the gap between
system-level control objectives and device-level control of
power converters. Moreover, we present a nonlinear droop
control that ensures frequency and device-level stability.

This paper is structured as follows: In Section II we
introduce the model of a low-inertia power system, and in
Section III we review the system-level control objectives
for power systems. In Section IV we present a reduced-
order model for low-inertia power systems obtained by using



singular perturbation theory. This model is used in Section V
to bridge the gap between the system-level specifications and
device-level control. In Section VI we present the nonlin-
ear droop control that ensures frequency and device-level
stability for the reduced-order model. Finally, Section VII
concludes the paper.

II. NOTATION AND POWER SYSTEM MODEL

A. Mathematical Notation

We use R to denote the set of real numbers, R>0 to denote
the set of strictly positive real numbers, and R[a,b] := {x ∈
R | a ≤ x ≤ b}. The set S1 denotes the unit circle, and
Tn = S1× . . .× S1 denotes the n-torus. For column vectors
x ∈ Rn and y ∈ Rm we use (x, y) := [x> y>]> ∈ Rn+m to
denote a stacked vector. Furthermore, In denotes the identity
matrix of dimension n, ⊗ denotes the Kronecker product,
and ‖x‖ denotes the Euclidean norm. Matrices of zeros of
dimension n×m are denoted by 0n×m. Column vectors of
zeros and ones of length n are denoted by 0n and 1n. Given
θ ∈ S1 we define the rotation matrix R(θ), the 90◦ rotation
matrix j, and the vector r(θ) by

R(θ) :=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, j :=R(π/2), r(θ) :=

[
cos(θ)
sin(θ)

]
.

B. Modeling Assumptions and Preliminaries

The model proposed in [9] that is used in this manuscript
combines a DC/AC converter model proposed in [12] with
a variant of the port-Hamiltonian power system model pro-
posed in [13]. The reader is referred to these references for
detailed derivations and discussions of the models. Based on
the following assumption all three-phase AC signals can be
represented by two dimensional real-valued vectors.

Assumption 1 (Balanced three-phase system)
It is assumed that the electrical components (resistance,
inductance, capacitance) of each device have identical values
for each phase and that all three-phase signals are balanced.

Under Assumption 1, a three-phase voltage vabc ∈ R3 can be
transformed into stationary (α, β) coordinates via the Clarke
transformation Tabc→αβ , i.e., vαβ = Tabc→αβvabc ∈ R2. In
this work, we rewrite the model used in [9] in a reference
frame rotating at the constant nominal frequency ω0 ∈ R>0

of the AC signals. In other words, a voltage v ∈ R2 in
a rotating frame with angle θr = ω0t ∈ S1 is defined by
v = R(θr)vαβ . Note that the 90◦ rotation matrix j = R(π/2)
plays the same role that the imaginary unit

√
−1 plays in

complex coordinates.

C. Power System Topology

The power system considered in this work consists of
ng synchronous generators, nc DC/AC converters, nl con-
stant impedance loads, and nv AC voltage buses that are
interconnected via nt transmission lines. The topology of
the network is described by the (oriented) incidence matrix
E ∈ {−1, 1, 0}nv×nt , where the voltage buses are the nodes
and the transmission lines the edges of the graph induced by
E. The k-th voltage bus is connected to transmission lines

via ideal transformers with winding ratio Nk ∈ R>0. The
resulting weighted incidence matrix of the AC network is
denoted by E ∈ R2nv×2nt and can be partitioned as follows:

E :=EN⊗ I2 = (Ev,1, . . . , Ev,nv
) =

[
Et,1 . . . Et,nt

]
, (1)

where N=diag(N1, . . . , Nnv ) models the transformer gains.
The interconnection of the components is described by indi-
cator matrices Ig ∈ {1, 0}nv×ng , Ic ∈ {1, 0}nv×nc , and Il ∈
{1, 0}nv×nl . The indicator matrices can be partitioned into
column vectors for each device, e.g., Ig =

[
Ig,1, . . . , Ig,ng

]
and n-th entry of Ig,k is 1 if the k-th synchronous generator
is connected to the n-th voltage bus, and 0 otherwise.

D. Dynamical Model of the Transmission System

The transmission network is modeled using the Π-model.
In particular, transmission lines are modeled as series RL
circuits, and voltage buses are modeled as parallel RC
circuits. The input to the network are the currents iin,k ∈ R2

injected (or drawn) at each voltage bus k ∈ {1, . . . , nv}. The
state variables of the transmission system model are the line
currents it ∈ R2nt and bus voltages v ∈ R2nv . The current
it,k ∈ R2 across the k-th transmission line is given by

Lt,k i̇t,k = −Zt,kit,k + E>t,kv, (2)

with line inductance Lt,k = I2⊗ lt,k ∈ R2×2
>0 , line resistance

Rt,k = I2 ⊗ rt,k ∈ R2×2
>0 , and line impedance Zt,k =

Rt,k + jω0Lt,k. The charge dynamics of a voltage bus
k ∈ {1, . . . , nv} with voltage vk ∈ R2 are given by

Ckv̇k = −Yv,kvk + Ev,kit + iin,k, (3)

where Ck = I2 ⊗ ck ∈ R2×2
>0 and Gk = I2 ⊗ gk ∈ R2×2

>0

denote the bus capacitance and conductance, and Yv,k =
Gk + jω0Ck denotes the bus admittance. The port variables
connecting the power grid to the synchronous generators,
DC/AC converters, and loads are the current iin,k flowing in
(or out) of each voltage bus k ∈ {1, . . . , nv} and the voltage
vk at each voltage bus.

E. Model of a Synchronous Machine

Each synchronous generator is described by the rotor angle
θg,k ∈ S1 relative to the angle of the reference frame θr,
the absolute angular rotor velocity ωg,k ∈ R, and the stator
current ig,k ∈ R2. For brevity of the presentation, it is
assumed that the field current if,k ∈ R is a control input.
The k-th synchronous generator is modeled by

θ̇g,k = ωg,k − ω0, (4a)
Mkω̇g,k = −Dkωg,k + τm,k − τe,k, (4b)

Lg,k i̇g,k = −Zg,kig,k + I>g,kv − vind,k, (4c)

where Ig,k := Ig,k ⊗ I2, Mk ∈ R>0 denotes the inertia
constant, Dk ∈ R>0 denotes the damping coefficient, and
τm,k ∈ R is the mechanical torque applied to the rotor.
Moreover, Lg,k = I2 ⊗ lg,k ∈ R2×2

>0 and Rg,k = I2 ⊗ rg,k ∈
R2×2
>0 denote the stator inductance and resistance, and Zg,k =



Rg,k + jω0Lg,k denotes the stator impedance. The electrical
torque τe,k : S1 × R2 × R → R is given by

τe,k(θg,k, ig,k, if,k) = −lm,kif,ki>g,kjr(θg,k), (5)

where lm,k ∈ R>0 is the mutual inductance between the rotor
and the stator. Moreover, the voltage vind,k : S1×R×R → R2

induced in the stator is given by

vind,k(θg,k, ωg,k, if,k) = lm,kif,kωg,kjr(θg,k). (6)

F. Model of a 3-Phase DC/AC Converter

In this work, we consider DC/AC converters consisting of
a DC link capacitor, a switching block that modulates the
DC link capacitor voltage vdc,k ∈ R≥0 into an AC voltage
vsw,k, and a RL output filter. We assume that a controllable
source, e.g., a boost converter connected to photovoltaics
and/or a battery is used to supply the DC link capacitor with
a DC current idc,k ∈ R. By averaging the switched converter
dynamics over one switching period an averaged model of
the converter is obtained. The switching block is controlled
by an averaged modulation signal mk ∈ R2

[−1,1] (see [12]):

Cdc,kv̇dc,k = −Gdc,kvdc,k − isw,k, (7a)

Lc,k i̇c,k = −Zc,kic,k + I>c,kv − vsw,k, (7b)

here Ic,k :=Ic,k⊗I2, Cdc,k∈R>0 is the DC link capacitance,
and Gdc,k ∈R>0 is the DC conductance. Moreover, Lc,k =
I2⊗ls,k∈R2×2

>0 and Rc,k=I2⊗rc,k∈R2×2
>0 denote the output

filter inductance and resistance, and Zc,k =Rc,k + jω0Lc,k
denotes the output filter impedance. The current isw,k : R2×
R2 → R across the switches is given by

isw,k(ic,k,mk) = − 1
2 i
>
c,kmk. (8)

The averaged voltage vsw,k : R × R2 → R2 at the AC side
of the switching block is given by

vsw,k(vdc,k,mk) = 1
2vdc,kmk. (9)

G. Constant Impedance Loads

Throughout this work, constant impedance loads with load
current il,k ∈ R2 are considered. The dynamics are given by

Ll,k i̇l,k = −Zl,kil,k + I>l,kv, (10)

where Il,k := Il,k ⊗ I2, Ll,k = I2 ⊗ ll,k ∈ R2×2
>0 and Rl,k =

I2 ⊗ rl,k ∈ R2×2
>0 denote the load inductance and resistance,

and Zl,k = Rl,k + jω0Ll,k denotes the load impedance.

H. Dynamic Model of the Power System

By interconnecting the models of the power system com-
ponents, we obtain a model of the overall power system.
We divide the model into its DC and AC variables. The DC
state variables are x = (θg, ωg, vdc) ∈ X with state space
X := Tng × Rng × Rnc , and the AC state variables are z =
(ig, ic, il, it, v) ∈ R2nac and nac = ng+nc+nl+nt+nv . The
control inputs are u = (τm, if , idc,m) ∈ U := Rnu−2nc ×
R2nc

[−1,1], and nu = 2ng + 3nc. The full interconnected power
system can be expressed as:

ẋ = fdc(x, z, u), ż = fac(x, z, u). (11)

Using the matrices L = diag(Lg, Lc, Ll, Lt) and R =
diag(Rg, Rc, Rl, Rt) collecting all AC inductances and re-
sistances, as well as the overall interconnection matrix I =[
Ig Ic Il E

]
, the induced and modulated AC voltages

vin = (vind, vsw), nL = nac − nv , the matrices Jn = In ⊗ j,
Mz = diag(L,C), Bz = (−Ing+nc

,0nl+nt+nv×ng+nc
), and

Jz =

[
−ω0JnL

L I>
−I −ω0Jnv

C

]
, Rz =

[
R 0
0 G

]
, (12)

the vector field fac : X× R2nac × U→ R2nac is given by

fac(x, z, u) = M−1z
(
Azz +Bzvin(x, u)

)
, (13)

where Az := Jz −Rz . Moreover, the vector field fdc : X×
R2nac × U→ X can be expressed as follows:

θ̇g = ωg − 1ng
ω0, (14a)

Mω̇g = −Dωg + τm − τe(θg, ig, if ), (14b)
Cdcv̇dc = −Gdcvdc + idc − isw(ic,m), (14c)

where the nonlinearities are contained in the interconnection
terms τe and isw. The induced and modulated AC voltages
vin := (vind, vsw) are the outputs of the DC dynamics which
act as the input to the AC dynamics, while the AC currents
iin := (ig, ic, il) are the outputs of the AC dynamics and
inputs to the DC dynamics, i.e., the DC and AC dynamics
are interconnected by the port variables vin and iin.

III. CONTROL SPECIFICATIONS

Historically, control specifications for power systems have
been defined by focusing on different instability scenarios
which arise in practice. This has given rise to a multitude
of definitions of power system stability considering differ-
ent phenomena, time-scales, and system models [1], [14].
Typically, a desired operating point is obtained by solving a
dispatch optimization problem which results in setpoints for
the voltage magnitude and power injection by each device.
Broadly speaking the control objective is to stabilize an
equilibrium corresponding to these specifications.

The dynamical model (11) allows to systematically specify
a wide range of control specifications. In particular, the
specifications with respect to system-level stability (see [14])
and device-level stability are:

Definition 1 (System-Level Stability)
• Frequency Stability: The frequencies of the AC vari-

ables z are stable with respect to the desired syn-
chronous frequency ω0, i.e., the AC variables are stable
with respect to the set {z ∈ Rnz | fac(x, z, u) = 0}.

• Angle Stability: The relative phase angles of the in-
duced and modulated voltages vin = (vind, vsw) converge
to a stable equilibrium at which the power injected into
the network matches power injection setpoints.

• Voltage Stability: The AC voltage magnitudes ‖vk‖ are
stable with respect to magnitude setpoints v̂?k ∈ R>0.

Definition 2 (Device-Level Stability)
• Rotor Frequency Stability: The rotor speeds ωg are

stable with respect to the synchronous frequency ω0.



• DC Voltage Stability: The DC voltages vdc,k are stable
with respect to setpoints v?dc,k ∈ R>0.

Observe that for a network of synchronous machines stability
of ωg implies that the relative rotor angles δn,k = θg,n−θg,k
converge, i.e., device-level stability corresponds to system-
level stability. In contrast, device-level stability of DC/AC
converters (7) does not directly correspond to system-level
stability. This discrepancy will be addressed in Section V-C.

Finally, due to the large-scale nature of the system as well
as the destabilizing impact of communication delays and con-
cerns about privacy and cyber-security, only measurements
of local states can be used to control each device. Moreover,
the angles θg,k of the synchronous generators relative to the
rotating frame cannot be measured locally.

IV. MODEL REDUCTION VIA SINGULAR PERTURBATION
ANALYSIS

While the model (11) allows to consider a wide range of
control objectives, it is also large-scale, highly nonlinear, and
contains dynamics on multiple time scales from mechanical
and electrical domains. Therefore, in this section, we seek
to derive a reduced-order model that is tractable for control
design, preserves the system structure, and approximates the
full behavior of (11) such that all specifications given in
Section III apply to the reduced-order model. To this end,
we first show that the AC dynamics are exponentially stable.

Theorem 1 (Exponential Stability of the AC Dynamics)
Given constant DC states x̄ and constant inputs ū, the AC
dynamics ż = fac(x̄, z, ū) are exponentially stable with
respect to z̄ such that fac(x̄, z̄, ū) = 0.

Proof: Consider the positive definite matrix Mz , as
well as x̄, z̄, ū such that fac(x̄, z̄, ū) = 0 holds, and the
Lyapunov function Vz = 1

2 (z − z̄)>Mz(z − z̄). Taking the
time derivative of Vz along the trajectories of ż = fac(x̄, z, ū)
and noting that fac(x̄, z̄, ū) = 0 implies vin(x̄, ū) = −Az z̄
one obtains V̇z = (z − z̄)>Az(z − z̄). Moreover, because
Jz is skew symmetric, i.e., (z − z̄)>Jz(z − z̄) = 0 for all
(z−z̄), it follows that V̇z = −(z−z̄)>Rz(z−z̄). BecauseRz
and Mz are positive definite diagonal matrices, there exists
α1, α2, α3 ∈ R>0 such that α1‖z− z̄‖2 ≤ Vz ≤ α2‖z− z̄‖2
and V̇z ≤ −α1‖z − z̄‖2. By using standard results from
Lyapunov theory (e.g. Theorem 4.10 in [15]), it follows that
ż = fac(x̄, z, ū) is exponentially stable with respect to z̄.

Next, we exploit the time-scale separation between the DC
and AC variables and define the reduced-order model

˙̂x = fred(x̂, u), ẑ = h(x̂, u), (15)

where h(x, u) := −A−1z Bzvin(x, u) is the steady state of
the AC variables and fred(x, u) := fdc(x, h(x, u), u).
Moreover, we define the time constants γ =
(γL,1, . . . , γL,nL

, γC,1, . . . , γC,nC
) of the nL inductive

and nC capacitive AC components as:

γL,k =
lk√

r2k + (ω0lk)2
, γC,k =

ck√
g2k + (ω0ck)2

. (16)

The next result exploits the time-scale separation between
the DC and AC dynamics to bound the difference between
trajectories of the full-order and reduced-order model. To this
end, we define ε := maxk γk ∈ R>0. Because γk < ω−10

holds for all k we obtain the bound ε < ω−10 (see [1] for a
similar result).

Theorem 2 (Tikhonov’s Theorem)
Consider the dynamic system (11), the reduced-order model
(15), and inputs u = κ(x̂) given by a smooth function κ :
X → U. For any any finite time t1 ∈ R>0 there exists a
constant ε? ∈ R>0 such that for all ε ∈ R(0,ε?) and all initial
conditions x0 − x̂0 = O(ε) and z0 − h(x̂0, κ(x̂0)) = O(ε)
the solutions x(t), z(t) of the system (11) and the solutions
x̂(t) of the reduced-order model (15) satisfy

x(t)− x̂(t) = O(ε), z(t)− h(x̂, κ(x̂)) = O(ε) (17)

uniformly for t ∈ [0, t1].

Proof: In the following we verify the conditions of
Theorem 11.1 in [15] which states the desired result. Because
the functions fac, fdc, h(x, u), and fred are smooth the
solutions x(t) and x̂(t) are unique, exist, and evolve in a
compact subset of Rnx for all times t1 ≥ 0. Next, we
rewrite the dynamic model (11) into the standard form of
a singular perturbation model. For this, we define Z :=
diag(R + ω0JnL

L,G+ ω0Jnv
C). By recalling Theorem 1,

Az is exponentially stable, thus it is invertible. Moreover,
Az−Z is skew symmetric, and it follows that Z is invertible.
Finally, the AC dynamics (13) can be rewritten as

Z−1Mz ż = Z−1(Azz +Bzvin). (18)

The block-diagonal matrix Z−1L L ∈ R2nL×2nL contains nL
blocks Z−1L,kLk ∈ R2×2 which can be decomposed into the
time constant γL,k and a unitary matrix Uk as follows

Z−1L,kLk =
lk

r2k + (ω0lk)2

[
rk ω0lk
−ω0lk rk

]
= γL,kUk. (19)

The same idea can be used to rewrite the nv blocks Y −1v,kCk
of the block-diagonal matrix Y −1v C ∈ R2nv×2nv . Using
Dγ := diag(γ1, . . . , γnac) ⊗ I2 and U := diag(U1, . . . , Unac),
the AC dynamics are rewritten into

Dγ ż = UTZ−1(Azz +Bzvin). (20)

By definition of ε there exists multipliers λk ∈ R>0 such that
γk can be rewritten as γk = λkε for all k ∈ {1, . . . , nac} and
one obtains the system

εż = (diag(λ1, . . . , λnac)⊗ I2)−1UTZ−1(Azz +Bzvin).

By letting ε → 0, which implies γk → 0 in (20), and
performing some manipulations we obtain the algebraic
equation 0 = Azz+vin(x, κ(x)). Because Az is invertible the
unique solution of this equation is z = h(x, κ(x)). Next, we
define yb = z − h(x, κ(x)) and, by treating x as a constant
parameter, we obtain the boundary layer system

d
d τ yb = (diag(λ1, . . . , λnac)⊗ I2)−1UTZ−1Azyb. (21)



with τ = t/ε. Because the AC dynamics are linear, ex-
ponentially stable by Theorem 1, and U has full rank,
they are exponentially stable with respect to the equilibrium
z̄ = h(x̄, κ(x̄)) induced by fixed states x̄ and the boundary
layer system (21) is exponentially stable with respect to the
origin. Hence, it follows from Theorem 11.1 in [15] that the
trajectories of the power system (11) with u = κ(x) are
approximated by the trajectories of the reduced system (15)
with u = κ(x̂) and the approximation error on any finite
time interval t ∈ [0, t1] is of order O(ε).
It should be noted that the reduced-order model (15) pre-
serves the structure of the DC dynamics (14) and the AC
variables z = h(x, u) are nonlinear outputs of this system.
Moreover, if the reduced-order system (15) is exponentially
stable the bound (17) holds for t1 =∞. Finally, in practice,
the bound on the approximation error given in Theorem 2
holds for any input signal u(t) which varies on the same
time-scale as the DC state variables x.

V. DC/AC CONVERTER CONTROL FOR SYSTEM-LEVEL
OBJECTIVES

As discussed in Section III, device-level stability of power
converters does not directly correspond to system-level sta-
bility. In this section, we bridge this gap.

A. Internal Model Control of DC/AC Converters

It was shown in [9], that a necessary condition for syn-
chronous steady-state operation of the power system with
frequency ω0 is that the modulation signal mαβ,k ∈ R2 in
the stationary (α, β) frame is given by the internal model
ṁαβ,k = ω0jmαβ,k. In this work, the virtual oscillator
θ̇v,k = ωc,k, with internal state θv,k ∈ S1, output mαβ,k =
µkjr(θv,k), and control inputs ωc,k ∈ R and µk ∈ R[0,1]

for absolute frequency and amplitude is used to satisfy
the steady-state conditions of [9]. Relative to the rotating
reference frame, the oscillator dynamics and modulation
signal mk of the k-th converter become

θ̇c,k = ωc,k − ω0, mk = µkjr(θc,k). (22)

Using this oscillator as internal model results in the state
and input vectors x̃ := (θg, ωg, θc, vdc) ∈ X̃ and ũ =
(τm, if , idc, ωc, µ) ∈ Ũ, where X̃ := Tng ×Rng ×Tnc ×Rnc

and Ũ := Rnu−nc×Rnc

[0,1]. Next, let îg,k(x̃, ũ) and îc,k(x̃, ũ)
denote the algebraic model for the currents ig,k and ic,k
obtained from the map h(x, u). With a slight abuse of
notation, we re-define the electrical torque τe,k : X̃× Ũ→ R
and the switching current isw,k : X̃× Ũ→ R as

τe,k(x̃, ũ) := −lm,k if,k îg,k(x̃, ũ)>jr(θg,k), (23a)

isw,k(x̃, ũ) := − 1
2 µk îc,k(x̃, ũ)>jr(θc,k). (23b)

Combining the internal model (22) with the reduced-order
dynamics (24) results in ˙̃x = f̃red(x̃, ũ) given by

θ̇g = ωg − 1ng
ω0, (24a)

Mω̇g = −Dωg + τm − τe(x̃, ũ), (24b)

θ̇c = ωc − 1ng
ω0, (24c)

Cdcv̇dc = −Gdcvdc + idc − isw(x̃, ũ). (24d)

B. Parallels Between Generators and DC/AC Converters

The energy stored in a synchronous generators is 1
2Mkω

2
k,

power is supplied to the synchronous machine by the me-
chanical torque input τm, power is transfered to the grid
through the electrical torque τe, and power imbalances
result in deviations of the frequency ωg from ω0. All of
today’s power system operation has been designed around
this inherent property of synchronous generators.

In contrast, the energy stored in the converter is
1
2Cdc,kv

2
dc,k, power is supplied by the DC current idc, power

is transfered to the grid by the current isw, and power im-
balances can be observed in the DC voltage vdc,k. Moreover,
the mechanical torque τm, which acts on ωg , and idc, which
acts on vdc, have the same interpretation. Finally, both if and
µ act on the voltage magnitudes ‖vind,k‖ = lm,kif,k‖ωg,k‖
and ‖vsw,k‖ = 1

2µk‖vdc,k‖. The parallels discussed above
are summarized in Table I. These suggest to use a feedback
of the form ωc ∝ vdc to recover the characteristics of
synchronous generators, to use idc to control vdc (and thereby
ωc), and to use µ to control the magnitude of the AC bus
voltages.

C. Control by Model-Matching

For brevity of the presentation we focus on the relationship
between power imbalance and frequency. Given a set-point
(ω0, v

?
dc) we propose the matching controller

ωc,k = kc,k(vdc,k − v?dc,k) + ω0 (25)

with gain kc,k ∈ R>0. Because vdc,k reflects the power
imbalance, the controller (25) maps power imbalance to
frequency deviations just as synchronous generators do.
Specifically, using (25) and Kc = diag(kc,1, . . . , kc,nc

) the
angle dynamics (24c) become θ̇c = Kc(vdc − v?dc), i.e., the
converter model now matches the generator model (24a)
and (24b). The matching controller proposed in [12] can be
recovered by dropping ω0 in (25) and using kc,k = ω0/v

?
dc,k.

VI. FREQUENCY STABILIZATION VIA DECENTRALIZED
NONLINEAR DROOP CONTROL

In this section, we focus on frequency stability to illustrate
stability analysis and control design based on the reduced
order model (24). To this end, consider the torque setpoints
τ?m,k, the DC current setpoints i?dc,k, DC voltage setpoints
v?dc, and the decentralized nonlinear droop control policies

τm,k = τ?m,k + ω−1g,kPind,k − ω−10 P ?ind,k, (26a)

idc,k = i?dc,k + v−1dc,kPsw,k − (v?dc,k)−1P ?sw,k, (26b)

TABLE I
PARALLELS BETWEEN SYNC. GENERATORS AND DC/AC CONVERTERS

sync. generator DC/AC converter interpretation
1
2
Mω2

g
1
2
Cdcv

2
dc energy stored in device

τm idc primary power supply
τe isw power flow to grid

ωg − ω0 vdc − v?dc,k power imbalance
if µ AC voltage magnitude



where Psw,k = −îc,k(x̃, ũ)>vsw,k is the instantaneous ac-
tive power flowing out of the AC side of the converter
switching block and into the output filter, and Pind,k =
−îg,k(x̃, ũ)>vind,k is the instantaneous active power flowing
out of the generator rotor and into the stator. If the losses
in the output filter and stator are negligible, Psw,k and Pind,k
coincide with the active power injected into the power grid.
Observe that near steady state (i.e., for (ωg, vdc) ≈ (ω0, v

?
dc))

the controller (26) resembles an active power droop char-
acteristics (see [16]) that relates the active power injection
by the primary control to the frequency ωg and the DC
voltage vdc and, via the matching controller, to the converter
frequency ωc. Finally, we define the vector ỹ = (ωg, vdc) ∈
Rng+nc and the incremental Lyapunov function

V (ỹ)=(ωg−ω0)>M(ωg−ω0) + (vdc−v?dc)
>Cdc(vdc−v?dc),

as well as the level set Ω(c) := {ỹ ∈ Rng+nc |V (ỹ) ≤ c}.
Using the controllers (25) and (26) we obtain the following
stability result. We emphasize that only local and measurable
outputs are needed to evaluate the controller for each device.

Theorem 3 (Local Frequency Stabilization)
Consider the power system model (24) in closed loop with
(25) and (26). Given ω0 ∈ R>0 and v?dc ∈ Rnc

>0 pick
c ∈ R>0 such that Ω(c) is a subset of the positive orthant,
i.e., Ω(c) ⊆ Rng+nc

>0 . For any matching gain kc,k ∈ R>0,
any inputs if ∈ R and µ ∈ R[0,1], and all initial states
x̃0 such that ỹ0 ∈ Ω(c), the frequencies ω = (ωg, ωc) are
asymptotically stable with respect to ω0, and the DC voltages
v?dc are asymptotically stable with respect to v?dc. Moreover,
the angles θ = (θg, θc) converge to constant values.

Proof: Assuming that ωg∈R
ng

>0 it follows from (6) that
ω−1g,kvind,k = if,kjr(θc,k). Substituting into (23a) results in

τe,k = −ω−1g,k îg,k(x̃, ũ)>vind,k = ω−1g,kPind,k, (27)

i.e., by using the algebraic relation (6) the electrical torque
can be expressed in terms of the active power injection
Pind,k and synchronous generator frequency ωg,k. The same
approach can be used to express the current isw,k in terms of
the active power injection and the DC voltage vdc,k. Using
this reformulation it can be verified that the derivative of
the Lyapunov function V along the trajectories of ˙̃x =
f̃red(x̃, ũ), ũ) in closed loop with (26), and (25) is given by

V̇ = −(ωg−ω0)>D(ωg−ω0)− (vdc−v?dc)
>Gdc(vdc−v?dc).

Because D and Gdc are positive definite diagonal matrices it
follows that the level sets of V are invariant. Using invariance
of the level sets of V and ỹ0 ∈ Ω(c) it immediately
follows that that ỹ ∈ Ω(c) ⊆ Rng+nc

>0 for all times, i.e., the
control laws (26a), and (26b) are well defined for all times.
Moreover, using standard results from Lyapunov theory it
can be shown that ωg is asymptotically stable with respect to
ω0, vdc is asymptotically stable with respect to v?dc, and (25)
implies that ωc is asymptotically stable with respect to ω0

for any kc,k ∈ R. Considering ωg → ω0 and vdc → v?dc the
angle dynamics (24a) and (24c) converge to constant angles.

Observe that the nonlinear droop control (26) ensure
device-level and, with the exception of voltage stability,
system-level stability. Moreover, (26) decouples the fre-
quency dynamics from the inputs if and µ. These inputs are
a remaining degree of freedom that can be used for voltage
magnitude control.

VII. CONCLUSIONS

In this paper we studied low-inertia power systems con-
sisting of DC/AC converters and synchronous machines. We
present a reduced-order model suitable for control design and
analysis that preserves the system structure and bridges the
gap between system-level control objectives and device-level
control of power converters by using an internal model and a
controller that matches the reduced-order models of DC/AC
converters and synchronous machines. Moreover, we provide
results on a nonlinear droop control that ensures frequency
stability. A detailed investigation of a controller that uses
the observations made in Section V-B to fully match the
control of DC/AC converters and synchronous generators is
the subject of ongoing work.
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