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HOT TAKE: WHY NOT GO WITH MODELS?

Florian Dörfler

A recurring question that all authors of this special issue
encounter is “why not go with models?” Two terms need to be
clarified: in this context, a model is understood as a parametric
system representation often endowed with an interpretable struc-
ture, e.g., a state-space representation with a readily discernible
F = m · a equation. Further, the term data-driven control, as
we employ it in this special issue, is not just about using
data from a black box to inform decision-making. Researchers
are exploring different paradigms, among others model-based
control design, where the model and uncertainty estimates are
learnt from data using contemporary system identification and
uncertainty quantification techniques. In classical adaptive con-
trol terminology [1], [2], this two-stage approach is referred to as
indirect. In contrast, direct data-driven control by-passes models
in the decision making; see Figure 1 for a graphical illustration
of the two paradigms. Hence, the more precise question should
be “When to embrace direct or indirect data-driven control?” I
will delve into the expected “it depends” answer in this editorial.

The typical answers one encounters often reason with the
shortcomings of system identification, take the vantage point of
a specific application, or quote the widely recognized success of
reinforcement learning in computer and board games.

Let me put good automatic control practice into use, abstract
the problem, and see more clearly through the lens of mathemat-
ics. Since the minimization of a fitting criterion is the prevalent
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FIGURE 1 Direct and indirect paths from input/output data (ud,yd)
to deciding upon control and output trajectories u and y. In practice,
the design is often iterative (i.e., the diagram contains loops) and
involves further processing steps, such as filtering of the raw data.

formulation in system identification, I will take an optimization
perspective. Allow me to leave the uncertainty aspect aside for
now. In this idealized setup, the indirect paradigm – first identify
a model within a pre-specified class, then perform model-based
control – is abstracted as a nested optimization problem:

indirect data-driven control

minimize control cost(u,y)

subject to trajectory (u,y) compatible with the model

where model ∈ argmin fitting criterion (ud,yd)

subject to model belongs to a certain class

The indirect approach can be first and foremost described
as being modular with two well separated levels. In comparison,
the direct approach is more lean and seeks a decision compatible
with the data. Abstractly, it is an end-to-end monolithic problem:

direct data-driven control

minimize control cost(u,y)

subject to trajectory (u,y) compatible with data (ud,yd)

While the direct versus indirect classification is simple and
useful, the line between both paradigms is often blurred. Let me
now dive into the relative merits of both formulations.

On models: The distinguishing feature of both approaches
is whether to use a model for decision making. Compared to
raw data, models are tidied-up representations, i.e., compressed,
de-noised, and typically also approximate. These features are
most obvious in subspace system identification, where they
are achieved by singular value thresholding of data matrices
[3]. Crucially, models are interpretable, often structured, and
physically intuitive, e.g., think of the class of Port-Hamiltonian
systems [4]. Further, models are amenable to powerful control
design methods (e.g., semidefinite programming for optimal
control in state space [5]), and they are obviously useful beyond
control, e.g., for analysis, simulation, or system design. Hence,
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there will always be a place for models and indirect design.
However, there are indeed arguments to be made against

models. Think about systems with complex physics (e.g., soft
robotics), complex disturbances (e.g., wind farms), complex
sensing modalities (e.g., perception-based control), or operating
in complex environments (e.g., autonomous cars). In such in-
stances, even if first-principle models were available, they might
be too complex to be useful for control design, and one may
argue for the direct approach. This brings to light that “the
main issue in modeling from data is approximation” [6]. To
take it a step further, rather than modeling the possibly complex
data-generating mechanism, the data should be used to directly
inform the decision-making, as argued in [7]–[9]. Of course, the
“should” is debated. More concretely, the ultimate objective is
the control policy, and often it might be easier to learn a control
policy than learning a model. This catchy statement has often
been voiced recently [10], and some historic examples include
the widely deployed Ziegler-Nichols PID tuning from a single
system response [11] or finite-time optimal control design based
on few Markov parameters [12] or step responses [13]. Further,
while persistence of excitation is a necessary identifiability con-
dition in the indirect approach, unstable systems can sometimes
be directly stabilized but not identified with limited data [14].

I close this point with a famous quote from [9] – “When solv-
ing a given problem, try to avoid solving a more general problem
as an intermediate step” – and a simple disarming example:
Consider asymptotic rejection of a constant disturbance. Indirect
approaches require estimates of the model and the disturbance,
whereas a direct approach is simply integral control.

Lack of separation principle: In general, the indirect ap-
proach might be suboptimal since there is no separation principle
between identification and control, i.e., the best model fitting the
data may not be the best model for the ultimate control task. For
example, in classical frequency domain control, the DC gain and
closed-loop bandwidth are often the two key control specifica-
tions, which should again inform at which frequencies to mainly
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FIGURE 2 A control engineer confronted with a stylized black box
model may question whether to adopt a direct data-driven design
(right) or an indirect approach based on a mechanistic model (left).

identify the system. This lack of a separation principle stimulated
many approaches blending the inner identification and outer
control objectives, e.g., dual control [15], [16], identification for
control [17], [18], or approaches blending the identification and
control objectives [19]–[22]. However, in some settings, indirect
design via system identification is optimal, as discussed next.

On system identification: The inner system identification
problem serves two crucial roles. First, system identification
filters the data and reduces variance. If a parameterization of the
data-generation mechanism is known, an indirect approach based
on maximum-likelihood estimation and certainty-equivalence
design is optimal in mean-square error [18] or regret metrics
(for online LQR settings) [23]. Second, one can also interpret
system identification as a projection of the data on a specific
model class which is either a priori known or obtained in pre-
processing. Indeed, this innermost model selection step is often
hard but allows to inject prior knowledge, structure, and any sort
of physical bias, such as stability, dissipativity, or positivity, see
e.g., approaches on kernel-based system identification [24]–[26].

Model selection is evidently absent in the direct approach
which makes it harder to include side information on the plant.
Conversely, no bias error can be incurred due to an erroneously
selected model class or inconsistent parameter estimates. While
this is not a universal statement (e.g., some non-iterative direct
model-reference approaches may also induce an undesired bias),
it has been illustrated for specific settings in [27]–[30]. In a
nutshell, direct approaches with imperfect learning can be more
robust. Especially, in adaptive control settings it is argued that
“the indirect approach [aiming at model matching] is moti-
vated by optimality and the direct approach [aiming at output
matching] is motivated by stability” [31]. Though, obviously no
universal conclusions can be drawn for all methods, especially
since the direct versus indirect distinction is blurry to begin with.

In my opinion, the robustness and bias-variance trade-offs of
both approaches are still to be fully explored and quantified.

On a last note, system identification in practice is often
an art, cumbersome, and may require re-adaptation. Further,
it is argued in [18] and confirmed by the author’s experi-
ence that the engineering cost due to modeling, identification,
and (re)commissioning is significant. The industrial report [32]
bluntly concludes that “about the only place the cost of dynamic
modeling is ever warranted is during MPC implementation.”

On uncertainty: Let me quote [33] – “The most outstanding
point of [direct] approaches is that the twinborn problem of un-
modeled dynamics and robustness in traditional [model-based]
theory do not exist under [the direct] framework” – and illustrate
this insight with an example: Consider a batch of noisy data, fed
through non-convex prediction error identification, and yielding
a nominal model of certain order together with a stochastic
parametric uncertainty estimate accounting for both noise as
well as unmodeled (e.g., higher-order) dynamics. In the indirect
approach, these are then later used for optimal H∞-control
subject to an unstructured worst-case uncertainty. Observe the
twinborn problem of the control design having to be robust due
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to the model being only approximate. Further, in the indirect
approach, uncertainty on the data needs to be propagated through
the inner system identification problem, and the identification
uncertainty estimates may be incompatible with the uncertainty
quantification preferred for control design.

In comparison, direct approaches incorporate uncertainty on
the data directly in the control design [34]–[36], and they do
so in a transparent way without propagating it through system
identification or approximating uncertainty estimates.

Complexity & implementation: There are many other ar-
guments to be brought up. For instance, there is generally
no winning approach in terms of “complexity”, i.e., there are
instances of both methods that are data-efficient (or wasteful),
that are analytically (in)tractable, that have (non)convex problem
formulations, that can be carried out partially or entirely offline
(respectively, online), that are easier (respectively, harder) to
code or debug, and that require more or less human supervision.

While on the topic of implementation, the indirect approach
is obviously modular with well-understood subtasks, which
makes it a reliable and interpretable building block in a layered
architecture. This is in stark contrast with the monolithic nature
of the direct approach. Researchers in academia, in industry, and
in application domains are arguing about the relative merits. For
instance, in robotics this dichotomy is often referred to as end-to-
end versus a layered autonomy stack. Proponents argue in favor
of either approach when it comes to implementations, suitability
for complex specifications, and all the previously listed topics.

This debate is far from settled, it epitomizes the grand
challenge of architecture selection [37], and the infamous middle
road might be the best path forward, as shown in many robotics
implementations blending both paradigms, e.g., [38], [39].

Synopsis: I hope to have illuminated the unsatisfying “it
depends” answer to my opening question from sufficiently many
angles, clarified a few of the paradigms and research gaps, and
gave food for thought for when to implement either approach.
"The Articles of this Special Issue" each have take their own take
on this question and develop a rich data-driven control theory.

Let me conclude with a few personal thoughts. Science
and engineering based on traditional (i.e., first-principle and
parametric) models have brought us far – literally to the moon
and back. However, there are notoriously challenging problems
with the traditional approach, and the impact of contemporary
data-driven methods will be judged (among others) by whether
they will overcome these challenges. For instance, can they take a
stab at hard system classes (nonlinear, infinite dimensional, etc.),
can they be implemented online with streaming data, and are
there applications with a true business case for these methods?
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THE ARTICLES OF THIS SPECIAL ISSUE
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rect data-driven control by Breschi and Formentin addresses
the challenges of automatically optimizing hyperparameters,
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methods to showcase the potential and the limitations of au-
tomatic hyperparameter tuning, namely, virtual reference feed-
back tuning and data-driven predictive control. They illustrate
their strategies with applications from the automotive domain.
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