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Abstract— In this paper, we consider the manifold that
describes all feasible power flows in a power system as an
implicit algebraic relation between nodal voltages (in polar
coordinates) and nodal power injections (in rectangular co-
ordinates). We derive the best linear approximant of such a
relation around a generic solution of the power flow equations.
Our linear approximant is sparse, computationally attractive,
and preserves the structure of the power flow. Thanks to the full
generality of this approach, the proposed linear implicit model
can be used to obtain a fast approximate solution of a possibly
unbalanced three phase power system, with either radial or
meshed topology, and with general bus models. We demonstrate
how our approximant includes standard existing linearizations,
we validate the quality of the approximation via simulations on
a standard testbed, and we illustrate its applicability with case
studies in scenario-based optimization and cascading failures.

I. INTRODUCTION

Recent technological advances, together with new envi-
ronmental concerns and economic goals, have driven the
transition toward a new generation of power grids charac-
terized by unprecedented challenges, such as the integration
of intermittent renewable energy sources, the exploitation
of distributed storage devices, the integration of large scale
electric mobility, the protection against cyber-attacks, and a
general requirement of higher efficiency and reliability.

In order to tackle these problems, new and advanced
methodologies have been developed, including (but not
limited to) distributed and robust state estimation [1], [2],
detection and mitigation tools for cyber security [3], [4],
distribution grid and load automation [5]. To enable the
application of these methods, tractable (preferably linear),
computationally efficient, and scalable, models for the power
system are needed. Classical linear models available in
the power systems literature fall short, either because they
rely on some simplifying assumptions that diminish they
descriptiveness, or because they fail to exhibit some of the
desired qualities that we have mentioned. Finally, due to the
growing system volatility, power grids are increasingly op-
erated far away from the operating points [6], which renders
the conventional power flow approximations ineffective.

We approach this challenge based on two key ideas.
First, we consider power grid equations without bus mod-

els, i.e., we consider all power injections and voltages that
are compatible with the network physics independent of bus
models such as PV, PQ, or slack buses. In many applications,
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such as state estimation, learning, and monitoring/fault de-
tection, such a physical relation is everything that is needed.

Second, we aim at an implicit model, i.e., a model in the
form F (x) = 0. In this form, the physical relation precedes
the choice of “inputs” and “outputs” similar to the notion of
behavioral systems [7]. In the vast majority of applications,
having an implicit model is not a disadvantage. On the other
hand, this choice allows to obtain a model which is sparse
(thus computationally attractive) and structure preserving.

The original contribution of the paper will be presented
as follows. In Section II we define the power flow manifold
that describes the set of feasible power flows on a grid. In
Section III we show how an implicit linear approximation
for the power flow manifold can be obtained via geometric
methods. We also illustrate how the proposed model gen-
eralizes all standard linear power flow models, including
polar/rectangular DC power flow and their variations [8]–
[12] as well as LinDistFlow [13]–[15], how to assess and
improve its approximation accuracy, and how to extend it to
three-phase networks. In Section IV we show how to use the
approximation of the power flow manifold to solve a power
flow analysis problem, where bus loads are introduced (the
MatLab/GNU Octave code is available in a public online
repository [16]). In Section V we review some applications
where the features of the proposed model are fruitfully
exploited. Finally, Section VI concludes the paper.

II. THE POWER FLOW MANIFOLD

We define the following quantities for each bus h of an
n-bus power network:1

• complex voltage uh = vhe
jθh ∈ C, where vh, θh ∈ R,

• injected complex power sh = ph + jqh ∈ C, where
ph, qh ∈ R.

In the following, we drop the subscript h whenever we refer
to the vector obtained by stacking the scalar nodal quantities,
for h = 1, . . . , n. Let us also define the nodal admittance
matrix Y ∈ Cn×n via its elements

Yhk =

{
ysh
h +

∑
` 6=h yh` if k = h

−yhk otherwise

where yhk is the admittance of the power line directly
connecting bus h and bus k, and ysh

h is the shunt admittance
(admittance to ground) at bus h.

1In order to keep the presentation concise, a balanced symmetric network
is first considered. The extension to three-phase unbalanced networks is
presented in Section III-E.
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Fig. 1. Example of the power flow manifold F (x) = 0, F : R8 → R4

for a two-bus network. Fixing v1 = 1, θ1 = 0 we obtain a manifold of
dimension 2, that we can represent graphically. The red dot corresponds
to the no-load operating point, where p2 = q2 = 0. The thick blue curve
represents the typical nose curve, with no reactive load.

The following set of nonlinear and complex-valued power
flow equations descends directly from Kirchhoff’s and Ohm’s
laws and thus need to be satisfied by any feasible power flow:

diag(u)Y u = s. (1)

Let us define by x ∈ R4n the grid state

x = (v, θ, p, q), (2)

and let us rewrite (1) in implicit form as F (x) = 02n,
where F : R4n → R2n is obtained by expressing the
complex equations (1) in real and imaginary coordinates.
As the following result states, the constraint F (x) = 02n

implicitly defines a manifold

M := {x |F (x) = 02n} (3)

in the ambient space R4n of voltages and injections.

Lemma 1 (Submanifold property). The power flow manifold
M given in (3) is a regular submanifold of R4n of dimension
equal to 2n.

The proof of Lemma 1 is available in the Appendix.
Lemma 1 is not just a mere technicality but it allows us
to attach a tangent plane to every point ofM, which is how
we derive the best linear approximant in Section III.

Notice that we have not assumed any specific model for
the buses of the grid, such as the prototypical PV, PQ, or
slack buses. The power flow manifold (3) represents all the
voltages and power injections that are compatible with the
physics and yield a feasible power flow; see Figure 1.

III. LINEAR MANIFOLD APPROXIMANT
A. General linear approximant

In the following proposition, we derive a linear local
approximant for the manifoldM of all feasible power flows.
Recall that the best linear approximant at a point x∗ ∈ M
is the tangent plane at x∗ (see Figure 2). We will explicitly
construct the tangent plane in the following proposition.

Proposition 1 (Implicit linear approximant). Let x∗ =
(v∗, θ∗, p∗, q∗) be a point in M, i.e. F (x∗) = 02n. The
linear manifold tangent to M in x∗ is given by

Ax∗(x− x∗) = 02n (4)
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Fig. 2. Illustration of the tangent linear manifold for the two-bus example
introduced in Figure 1. The red dot represents the linearization point (in
this case, the no-load condition).

with

Ax∗ =
[(
〈diag Y u∗〉+ 〈diag u∗〉N〈Y 〉

)
R(u∗) −I

]
,

(5)
where

u∗ := v∗ejθ
∗

N :=

[
In×n 0n×n
0n×n −In×n

]
〈A〉 :=

[
ReA − ImA
ImA ReA

]
R(u) :=

[
diag(cos θ) −diag(v) diag(sin θ)
diag(sin θ) diag(v) diag(cos θ)

]
.

The proof of Proposition 1 is available in the Appendix,
where we also include nodal currents among the explicit
system states, in order to simplify the use of the model
for certain applications, e.g, evaluation of thermal limits and
protection mechanisms.

The linear and implicit approximant (4) exhibits some
relevant features.
Sparsity – Regardless of the linearization point x∗, the
matrix Ax∗ maintains a sparse structure, with a sparsity pat-
tern that descends directly from the network topology. This
sparsity, together with the linearity, makes the approximant
(4) appealing for applications with high computational bur-
den, such as scenario-based optimization approaches, Monte
Carlo simulations, cascading failures, learning methods, state
estimation, and bad-data detection — to mention only a few.
Structure-preserving – In addition to being sparse, the
approximant preserves locality of the parameters, i.e. each
row of Ax∗ that involves quantities of bus h, only contains
grid parameters (admittances) from the neighborhood of h.
Such a structure-preserving model is a key requirement for
developing methods for decentralized or distributed control,
optimization, estimation, and identification.
Geometric methods – Geometric control or optimization
methods explicitly require knowledge of the tangent plane in
the current state of the grid, since the resulting control laws
or iterative optimization algorithms must induce a vector field
on such a tangent plane to be compatible with the physics.



Finally, it is to be said that having an implicit model is
never a disadvantage. Indeed, it is of course possible to use
this approximant to derive an approximate solution of the
power flow equations, by completing it with appropriate bus
models (as detailed in Section IV). However, this is often
unnecessary; the linear manifold approximant can also be
used directly in some control design and estimation problems
that do not require the solution of the power flow equations,
as shown in the examples in Section V.

B. Approximation quality

As indicated in Figure 2, the approximation quality de-
pends on the curvature of the power flow manifold, and
can therefore be put in direct relationship with the second
derivatives of the nonlinear equations in F (x).

To see this, let us define the power injection error εi(x) as
the i-th row of F (x), i.e. εi = Fi(x). The name derives from
the fact that ε is, dimensionally speaking, a power flow, and
has a straightforward interpretation in terms of difference
between the injected power in a bus and the power flows
on the lines that leave the node. Observe that for a point
x ∈ M on the power flow manifold, F (x) = 02n and
the power injection error is zero, whereas for a point x on
the approximant (4), we have generally a nonzero power
injection error: Fi(x) = εi. The following result relates the
power injection error to the curvature of the manifold.

Proposition 2 (Approximation quality). Consider a point
x∗ ∈ M on the power flow manifold and the linear
approximant (4) in Proposition 1. Consider a ball B(x∗, δ)
of radius δ > 0 around x∗. Then, for any x in B(x∗, δ) that
belongs to the linear approximant, we have that for any i

|εi| ≤
Bi
2
‖x− x∗‖2, (6)

where Bi is a real number such that∥∥∥∥∂2Fi∂x2

∥∥∥∥ ≤ Bi ∀x ∈ B(x∗, δ).

The proof of Proposition 2 is available in the Appendix.
Besides providing a convenient way to derive numerical

guarantees on the quality of the approximation, this bound
motivates a pre-conditioning approach that has the potential
to improve the proposed model, as detailed in Section III-D.

C. Linearization around the flat voltage solution

In order to derive the parameters Ax∗ of the proposed
linear approximant, a state x∗ corresponding to a feasible
power flow is necessary. In practical terms, and depending
on the application, this can be obtained
• by numerically solving a power flow analysis problem

with the grid equations (1);
• by gathering field measurements from the grid;
• by choosing a linearization point for which an analytic

solution is available, for example, the flat voltage solu-
tion where u = 1 ∈ Cn.
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Fig. 3. Comparison of the DC power flow model (in dashed blue) with
the proposed linear approximant (in solid red), for the two-bus example
introduced in Figure 1. The mesh has been removed to improve readability.
Compared to the best approximant tangent plane, which in this case
corresponds to the kernel of ALC, the heuristic ADC is a rotation thereof, and
fails at modeling the relation between active power and voltage magnitudes.

Indeed in the latter case, notice that diag(1)Y 1 = ysh,
where ysh ∈ Cn is the vector of nodal shunt admittances.
Hence, u = 1n ∈ Cn and s = ysh is a solution to the power
flow equations: F (1n,0n,Re ysh, Im ysh) = 02n.

By using the fact that R(1) = I2n×2n, the linear approx-
imation matrix in (4) reduces to

Aflat =
[
〈diag ysh〉+N〈Y 〉 −I

]
. (7)

Previously proposed approximations can be derived from
the linearization matrix (7) corresponding to the flat voltage
profile. For example, by assuming zero shunt admittances
(ysh = 0), one obtains

ALC =

[
ReY − ImY −I 0
− ImY −ReY 0 −I

]
,

which equals the Linear Coupled power flow model proposed
in [8, (25)-(26)] and in [9, (15)] in rectangular coordinates.

ALC(x− x∗) = 02n ⇔
[

ReY − ImY
− ImY −ReY

] [
v
θ

]
=

[
p
q

]
.

Also, by also assuming purely inductive lines (ReY = 0),
one obtains

ADC =

[
0 − ImY −I 0

− ImY 0 0 −I

]
,

which equals the DC power flow model [11] for the active
power and a corresponding linear DC model for the reactive
power and voltage [12]:

− ImY θ = p, − ImY v = q.

A graphical comparison of the DC power flow model with
the proposed linear approximant is provided in Figure 3.

Finally, when expressing the voltages in rectangular coor-
dinates (Reu , Imu), then the flat voltage linearization (7)
corresponds to a recently proposed rectangular DC power
flow model obtained by fixed-point arguments in [10].

By choosing the special linearization point u∗ = 1, and
by introducing a number of further assumptions on the grid
parameters, we have therefore recovered most of the linear
power flow models proposed in the literature. One notable
exception is mentioned in the next section.



D. Linearization after nonlinear change of coordinates

Let us define an element-wise (thus structure-preserving)
smooth coordinate transformation of the state variables

ṽh = ṽh(vh), θ̃h = θ̃h(θh), p̃h = p̃h(ph), q̃h = q̃h(qh),

which satisfy some properties (for ṽh, and equivalently for
the other coordinates) that will be convenient later on:

ṽh(v∗h) = v∗h,
∂ṽh
∂vh

(v∗h) = 1. (8)

Assume that the functions ṽh are invertible in the domain
of interest. With a slight abuse of notation, we denote the
inverse state transformation as x = x(x̃). The manifold of
feasible power flows is therefore equivalently described by

G(x̃) := F (x(x̃)) = 0.

Because of condition (8), the approximating tangent space
for both G and F is the same since

∂G

∂x̃
=
∂F

∂x
· ∂x̃
∂x

=
∂F

∂x
.

However, the curvature of the manifold G(x̃) = 02n in the
neighborhood of x∗ depends on the specific transformation.
In fact, for each row i of G, the diagonal terms of the Hessian
are affected as

∂2Gi
∂x̃2j

=
∂2Fi
∂x2j

+
∂Fi
∂xj

∂2xj
∂x̃2j

,

while the off-diagonal terms remain the same:

∂2Gi
∂x̃j∂x̃k

=
∂2Fi
∂xj∂xk

∂xj
∂x̃j

∂xk
∂x̃k

=
∂2Fi
∂xj∂xk

.

Hence, by the reasoning in Section III-B, the quality of the
approximation via the linear manifold Ax∗(x − x∗) = 02n

can be improved by a cleverly chosen transformation.
Since the power flow equations (1) are purely quadratic in

the voltage magnitudes, a reasonable transformation is

ṽh = v2h/2, θ̃h = θh, p̃h = ph, q̃h = qh. (9)

By assuming zero shunt admittances, and by adopting the
flat voltage profile as linearization point, as in Section III-C,
one obtains the linear implicit model

[
ReY − ImY −I 0
− ImY −ReY 0 −I

]
ṽ
θ
p
q

 = 02n , (10)

where ṽh = v2h/2 is the transformed voltage coordinate.
Interestingly, the model (10) equals the Simplified Dist-

Flow model proposed in [13] (and called LinDistFlow in
[17]), which however was derived for radial networks –
allowing a straightforward elimination of the voltage angles θ
from the state variables, see [14], [15] for recent expositions.

A comparison of the two linear approximants in Figure 4,
displayed in original v-coordinates, shows as the nonlinear
transformation seems to improve the quality of the linear
approximant. Essentially, the transformation (9) and the
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Fig. 4. Comparison of the linear approximants obtained by applying
Proposition 1 to the original state variables (in red) and to their nonlinear
transformation as suggested by the LinDistFlow model (10) (in blue).

subsequent linearization can be understood as a second-order
approximation that locally matches, at least along the voltage
coordinate v2, the curvature of the power flow manifold.

Future investigation will explore the possibility of us-
ing this degree of freedom (the choice of the nonlinear
transformations preceding the linearization step) in order to
derive better linear approximants in different coordinates to
minimize the approximation error (6).

E. The three-phase case

The same approach adopted to obtain Proposition 1 can
be replicated, in a very similar manner, to derive a linearized
model for an unbalanced three-phase grid. It is sufficient to
augment the notation by defining the three phase voltage at
bus h as

uh = [uah u
b
h u

c
h]T ∈ C3,

where uah ∈ C is the voltage of phase a at bus h, with respect
to ground. Similarly, we redefine θ, p, q.

Each element of the admittance matrix Y is now replaced
by a 3× 3 block. The analysis follows the same step as the
single-phase case, and the result in Proposition 1 holds true.
We omit the analogous but cumbersome formulae here.

As a particular example, if we assume zero shunt admit-
tances and adopt the flat and balanced voltage profile

u∗ = 1 ⊗
[

0
−2π/3
2π/3

]
as linearization point, then we obtain

Aflat,3-phase =
[
N〈Φ−1Y Φ〉 −I

]
,

where

Φ := diag
(

1 ⊗
[

1
a
a2

])
, a := e−j2π/3,

and where we used the fact that 〈diag u∗〉 = R (u∗) = 〈Φ〉
and that 〈Φ〉N = N〈Φ−1〉.
Remark 1. If the network is symmetric but the power flow is
possibly unbalanced, then the block N〈Φ−1Y Φ〉 in Aflat is a
matrix of circulant blocks. Circulant blocks are diagonalized
by the Discrete Fourier Transform matrix, which in principle
allows for a faster solution of the corresponding system of
linear equations [18]. Although we haven’t explored this



possibility in this paper, it is interesting to notice how the
resulting diagonalized model corresponds in spirit to the
classical method of symmetrical components for the analysis
of unbalanced power systems [19].

IV. LINEARIZED POWER FLOW ANALYSIS

The linear approximant (4) of the manifold of feasible
power flows (3) can be used in order to derive an approximate
solution to a power flow analysis problem. To do so, we
introduce the following standard models for the buses of the
grid. For each bus h we consider the implicit relation

gh(xh) = 02 , (11)

where gh : R4 → R2 describes the steady state behavior
of the bus and specifies the fixed and free variables. The
common models typically include (but are not limited to)
• PQ buses

gh(xh) =
[
ph−Ph
qh−Qh

]
= 02

• PV buses
gh(xh) =

[
ph−Ph
vh−Vh

]
= 02

• slack bus
gh(xh) =

[
vh−Vh
θh

]
= 02

• exponential loads

gh(xh) =

[
ph−Phv

αh
h

qh−Qhv
βh
h

]
= 02.

Likewise, if certain quantities are known by direct mea-
surements, then those can be considered as fixed quantities
in an analogous fashion; see Section V-B for an example.
By stacking all the implicit functions gh(xh) we obtain the
constraint G(x) = 02n, where G : R4n → R2n.

Adopting the same linearization point x∗ as in Proposi-
tion 1, let us consider the tangent linear manifold to the
(possibly nonlinear) manifold G(x) = 0:

Cx∗(x− x∗) = dx∗

where

Cx∗ :=
∂G

∂x

∣∣∣∣
x∗
, dx∗ := −G(x∗). (12)

This directly returns the following approximate power
flow, as a solution of a sparse system of linear equations.

First-order AC power flow solution

Let the state x of the grid be defined as in (2), and let x∗

be a state that satisfies the nonlinear grid equations (1).
Then a first-order approximation x̂ of the state x that

solves (1) together with the bus models (11), is given by
the implicit relation[

Ax∗

Cx∗

]
(x̂− x∗) =

[
0
dx∗

]
(13)

where Ax∗ ,Cx∗ , and dx∗ are defined in (5) and (12).
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Fig. 5. Comparison of first-order AC power flow solution proposed in
Section IV (stars), with the true state of the IEEE 13 test feeder (circles).
Voltage magnitudes and angles are plotted for all the three phases. Missing
markers correspond to missing phases in some nodes.

A numerical validation of the quality of the approximation
is reported in Figure 5, based on the IEEE 13 test feeder
[20], a small distribution grid which is relatively highly
loaded, exhibits overhead and underground lines, shunt
capacitors, and unbalanced loading. It can be observed that
the approximation (13) (centered around the flat voltage
power flow solution) is indeed highly accurate despite the
high loading and the unbalanced nature of the grid.

For the reader’s convenience we provide the MatLab/GNU
Octave source code to generate the approximation (13) for
a three-phase system as well as the example in Figure 5 in
the online repository [16]:

https://github.com/saveriob/1ACPF

V. APPLICATIONS

In this section, we briefly review some possible appli-
cations of the proposed approach, in order to illustrate its
potential use and to highlight its prominent features.

A. Scenario based decision-making in distribution networks

As a first application, taken from [21], we consider a
distribution network with intermittent renewable-based mi-
crogeneration and fluctuating loads. The operator aims at
maintaining the state x in a feasible region X (defined
for example by under/over voltage limits) by controlling a
relatively small number of actuators, such as reactive power
compensators, tap changers, and so on.

Let us define by xexo the components of the state x
that are directly driven by exogeneous factors (e.g., power
injections of loads and microgenerators), and by xdec the
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Fig. 6. Example of the feasible region computed according to the method
proposed in Section V-A. In this example, the decision variables are the
power injection of a curtailable microgenerator, and the voltage level of the
tap changer. M = 362 feasible regions had to be computed and intersected
in order to obtain a confidence level of 95%, resulting in a feasible region
(in red) that is described by just 5 linear inequalities.

components that the distribution operator can directly control
(e.g., injection of the reactive power compensators).

Assuming that the operator can derive or learn a probabil-
ity distribution for xexo, we formulate the chance-constrained
decision problem of selecting xdec = δ such that

Probη

[
x ∈ X

∣∣∣∣ xdec=δ
xexo=η
F (x)=0

]
≥ 1− ε. (14)

The explicit computation of the set of decisions δ where
this is satisfied is generally hopeless, due to the general prob-
ability distribution of the disturbances and to the nonlinear
nature of both the power flow equations and the constraints.
We therefore adopt the scenario approach [22], in which
the chance-constraint (14) is replaced by a sufficiently large
number M of deterministic constraints, obtained by gener-
ating M samples η(i) of the stochastic disturbance xexo. By
adopting the linear approximant proposed in Section III, and
by expressing the feasible set X as {V x ≤ w}, the set of
feasible decisions becomes the intersection of M polytopes⋂

i=1,...,M

{
δ

∣∣∣∣∣
xdec=δ
xexo=η(i)

Ax∗ (x−x∗)=0
V x≤w

}
.

This approach allows to employ fast computational meth-
ods for this otherwise intractable problem, and returns a com-
pact representation via a minimal set of linear inequalities
(Figure 6). We remark that this approach critically hinges
upon the computational tractability of the sparse and linear
(et accurate) model (13). We refer to [21] for further details.

B. Fault / energy theft detection

As second application of the linear implicit model (4), we
focus on a state estimation and detection problem. Consider
a distribution grid equipped via a metering/measurement
infrastructure. We model the measured data y at time k as

y(k) = Hx(k) + ε(k) + d(k), k = 1, . . . ,K,

where H is the measurement matrix, ε(k) is measurement
noise, and d(k) is an error term that could model sensor
failures, cyber attacks, or energy theft via meter tampering.

We consider the problem of jointly computing estimates
d̂(k) and x̂(k) of the attack vector d(k) and of the state x(k),
such that F (x̂) = 02n, given the measurements {y(k)}Kk=1.
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perfect.

30

Fig. 7. In this simulations, the smart meter of 56 consumers in a power
distribution network are monitored in order to identify energy theft. A
relatively short sequence of 48 samples is collected, and (15) is solved
numerically. The matrix D is represented above (zero elements in dark
blue). Because low rank of D is promoted, the algorithm returns a candidate
solution where few users report false measurements, for long time intervals.

The preliminary results in [23] show how, by approximat-
ing the power flow equations F (x̂) = 02n with the linear
equality Ax∗(x − x∗) = 02n, it is possible to tackle the
problem as a tractable optimization program in the form

min
D,X

‖Y −HX −D‖22 + γ‖D‖∗
subject to Ax∗(x− x∗) = 0.

(15)

where Y,X, and D are n×K matrices that contains all time
samples of y, x, and d, respectively. The last term with the
nuclear norm ‖D‖∗ is intended to promote a low rank D,
corresponding to the more likely scenario of few attackers
(or faults) acting at the same time in the grid.

The simulation results in [23] show that, using the linear
approximant for the power flow manifold, it is possible
to identify attacks even with relatively few samples, and
measurements of only voltage magnitudes and active power
(see Figure 7). We remark that these results could not have
been attained with a DC power flow model neglecting voltage
magnitudes and their coupling to active power. Finally,
observe that for an optimization problem with power flow
equations as in (15), a set of sparse and implicit constraints
may actually be preferable to explicit yet dense linear equa-
tions, as obtained by a standard power flow linearization.

C. Randomized simulation of cascading failures

As a third application, we consider the problem of simulat-
ing cascading failures in a large-scale power system, where
the cascade is triggered by a localized fault and propagates
because of the overloading of transmission lines [24]. Large-
scale randomized simulations allow to assess the probability
of this cascading phenomenon, and the impact in terms of
size of the resulting blackout [25]. Due to the large number of
simulations needed in this approach, approximate fast solvers
of the power flow equations are typically employed, and in
most cases the DC power flow model is adopted.

Our preliminary results in ongoing work [26] show that
by using the first-order AC model proposed in Section IV, it
is possible to obtain significantly more accurate results at the



expense of a minimal increase in the computational effort.
In particular, the proposed first-order AC model properly
includes the important effect of post-fault reactive power
flows on the line overloading, a phenomenon that is neglected
in the DC power flow approach. Furthermore, voltage con-
straints and under-voltage load shedding can be incorporated
as well. As a result, we observe actually quite different (and
much more accurate) cascading paths compared to a DC
power flow model, which appears to be overly optimistic.

Again, these results critically rely upon the computational
tractability and accuracy of our power flow approximation
(13), and they will be detailed in a forthcoming submission.

D. Iterative optimization over the power flow manifold

In this final application, we interpret an optimal power
flow problem as an optimization problem where the decision
variable is the state x, and the solution is constrained to
belong to the power flow manifold M as defined in (3). We
therefore have, in full generality, a program of the form

minimizex∈M J(x)

where J(x) is the objective, and (for simplicity of presen-
tation) we removed any constraints aside from the power
flow equations x ∈ M. Formulated in this way (where the
model for individual buses is not yet specified), an optimal
power flow problem is an instance of optimization over a
manifold, for which iterative methods have been derived [27]
and recently improved for numerical implementability [28].

In order to implement these methods, it is required to be
able to produce state trajectories that remain on the manifold,
and therefore a tractable formulation of the linear tangent
manifold is needed. Based on the results proposed in this
paper, we therefore consider an iterative approach based on
the alternation of two stages, as illustrated in Figure 8.

First, the gradient of the cost function in the ambient space
is projected to the linear space that is tangent to the manifold
in the current operating point. By exploiting the sparse and
structure-preserving properties of the approximant derived in
Section III, this step can be completed in a distributed fashion
by the agents in the grid. The update vector along the tangent
manifold is then translated into updates for the set points of
the agents, e.g., for their active power injections.

In a second stage, the physical system is actuated ac-
cording to these set points, and reaches a new steady state
operating point. By including the physical system in this
feedback loop, we do not have to solve the power flow
equations, and the operating point for the next iteration can
be obtained by the agents via grid measurements.

Our preliminary results are encouraging and show the
efficacy of this online and feedback optimization approach.
These results will be detailed in a forthcoming submission.

VI. CONCLUSIONS

In this paper we presented a geometric approach to the
derivation of a linear approximant for the set of feasible
power flows on a grid. The proposed approximant generalizes
existing standard linear models, extends them to general

power flow manifold

linear approximant

x∗

cost gradient

projected gradient

new operating point

gradient projection

(distributed algorithm)

new operating point

(physical system)

set pointsmeasurements

Fig. 8. Schematic representation of the iterative method proposed in Sec-
tion V-D for the distributed solution of optimal power flow problems, based
on the linear power flow manifold approximant proposed in Section III.

linearization points and three phase networks, and is both
sparse and structure-preserving. We illustrated the potential
of the proposed model via a series of relevant applications,
and we discussed some open questions regarding how to
assess and possibly improve the quality of the approximation.

APPENDIX

A. Proof of Proposition 1
In order to simplify the derivation, we introduce an additional

state corresponding to the nodal injected currents ih so that we can
characterize feasible power flows via the implicit complex equations

Y u = i (16)

diag(u)i = s. (17)

Aside from simplifying the calculations, the current is also criti-
cal state in certain applications (e.g., thermal limits and protection),
and it may be desirable to represent it explicitly.

By introducing the aggregate state vector z =
(v, θ,Re i, Im i, p, q), we express (16) and (17) as

04n = F (z) =

[
F grid(z)
F bus(z)

]
=

[
Re(Y u−i)
Im(Y u−i)

Re(diag(u)i−s)
Im(diag(u)i−s)

]
,

where F grid and F bus are mappings from R6n to R2n.
We obtain the voltage, current, and injection manifold

M := {z ∈ R6n |F (z) = 04n} . (18)

Let z∗ be such that F grid(z∗) = 02n and F bus(z∗) = 02n. We
compute the plane that is tangent to the manifold in z∗ as the
subspace orthogonal to the rows of ∂F/∂z in z∗.

Before working out the explicit tangent plane, we briefly re-
view how complex-valued functions and their derivatives can be
expressed in real-valued coordinates. Adopting the notation in
Proposition 1, observe that, if x ∈ Cn and we consider the
function f(x) := Ax as a real-valued function from R2n to
R2n, then we have that ∂f

∂x
= 〈A〉. Notice moreover that the the

function g(x) := x satisfies ∂g/∂x = N and we have the identity
〈A〉 = N〈A〉N. For ease of notation, we denote

ν :=

[
v
θ

]
and ι :=

[
Re i
Im i

]
.

Notice that

∂

[
Reu
Imu

]/
∂

[
v
θ

]
= R(u), and therefore

∂ ·
∂ν

=
∂ ·
∂u

R(u).

With the above shorthands, we obtain

∂F grid

∂ν
= 〈Y 〉R(u) ∂F grid

∂ι
= −I ∂F grid

∂s
= 0

∂F bus

∂ν
= 〈diag i〉R(u) ∂F bus

∂ι
= 〈diag u〉N ∂F bus

∂s
= −I.



The complete Jacobian in z∗ is therefore ∂F grid

∂z

∣∣∣
z∗

∂F bus

∂z

∣∣∣
z∗

 =

[
〈Y 〉R(u∗) −I 0

〈diag i∗〉R(u∗) 〈diag u∗〉N −I

]
.

The tangent plane is therefore defined as ∂F grid

∂z

∣∣∣
z∗

∂F bus

∂z

∣∣∣
z∗

 (z − z∗) = 0.

By eliminating the variables corresponding to the nodal currents,
we obtain the result (4) in Proposition 1.

B. Proof of Lemma 1
According to the statement of Proposition 1, the gradient ∂F/∂x

of defining function F : R4n → R2n is surjective, as it has constant
full rank 2n. F is therefore a submersion, and according to [29,
Corollary 8.9 (Submersion Level Set Theorem)] the level set of a
submersion is an embedded 2n-dimensional submanifold.

C. Proof of Proposition 2
Let us introduce a function h(α) defined as

h(α) = Fi(x
∗ + α(x− x∗)).

The function h returns the value of Fi on the line segment that
connects x∗ on the manifold M (for α = 0) to a point x on
the tangent space of M at x∗ (for α = 1), and admits a Taylor
expansion in α = 0. We therefore have

h(α) = h(0) + α h′(α)
∣∣
α=0

+
α2

2
h′′(α)

∣∣
α=β

,

where β ∈ [0, α]. Using the fact that

h′(α) =
∂Fi
∂x

∣∣∣∣
x∗+α(x−x∗)

(x− x∗)

h′′(α) = (x− x∗)T ∂2Fi
∂x2

∣∣∣∣
x∗+α(x−x∗)

(x− x∗),

we obtain

h(α) = Fi(x
∗) + α

∂Fi
∂x

∣∣∣∣
x∗

(x− x∗)

+
α2

2
(x− x∗)T ∂2Fi

∂x2

∣∣∣∣
x∗+β(x−x∗)

(x− x∗).

Finally, by using the fact that εi(x) = Fi(x) = h(1), and by using
the fact that Fi(x∗) = 0 and ∂Fi

∂x

∣∣∣
x∗

(x − x∗) = 0 (because x
belongs to the tangent plane), we have

εi(x) =
1

2
(x− x∗)T ∂2Fi

∂x2

∣∣∣∣
x∗+β(x−x∗)

(x− x∗).

If
∥∥∥ ∂2Fi∂x2

∥∥∥ ≤ Bi for all x ∈ B(x∗, δ), then

|εi| ≤
Bi
2
‖x− x∗‖2.
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