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Abstract— In this paper we examine the amplitude and phase
dynamics of power-electronic inverters in islanded microgrids
that are controlled to emulate the dynamics of a class of
weakly nonlinear Liénard-type oscillators. The general strategy
of controlling inverters to emulate the behavior of Liénard-type
oscillators is termed Virtual Oscillator Control (VOC), and it
presents a compelling time-domain alternative to ubiquitous
droop control methods which linearly trade off voltage frequen-
cies and magnitudes with active and reactive power injections.
In comparison to droop control, which assumes a priori that the
network operates in a quasi-stationary sinusoidal steady state,
VOC is a time-domain control strategy that globally stabilizes
a desired sinusoidal steady state. The main, and somewhat
surprising, result of this paper is that—when reduced to the
sinusoidal steady state—the VOC dynamics correspond to those
of droop control. Hence, VOC is a globally stabilizing control
strategy that can deal with higher-order harmonics and includes
droop control in the harmonic steady state. The results are
intriguing, in that they suggest that droop control laws can be
recovered from averaging the complex dynamics of a class of
weakly nonlinear limit-cycle oscillators.

I. INTRODUCTION

An islanded inverter-based microgrid is a collection of
heterogeneous DC energy resources, e.g., photovoltaic (PV)
arrays, fuel cells, and energy-storage devices, interfaced
to an AC distribution network and operated independently
from the bulk power system. Energy conversion is typically
managed by power-electronics voltage source inverters. The
vast majority of academic and industrial efforts adopt droop
control [1]–[4] for real-time control of inverters. Drawing
from the control of synchronous generators in bulk power
systems, droop control linearly trades off the active and
reactive power injection with the inverters’ terminal-voltage
amplitude and frequency.

As an alternative to droop control, we have recently pro-
posed a communication-free decentralized control strategy
wherein islanded inverters are regulated to mimic the dynam-
ics of nonlinear deadzone-type limit-cycle oscillators [5]–[7].
This method is inspired by synchronization phenomena in
complex networks of coupled oscillators, and is termed Vir-
tual Oscillator Control (VOC). In general, VOC is executed
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by programming nonlinear differential equations of limit-
cycle oscillators onto inverters’ microcontrollers and utilizing
pertinent sinusoidally varying oscillator dynamic states to
construct the pulse-width modulation (PWM) control signal.
It is worth emphasizing that VOC is a time-domain approach
and stabilizes arbitrary initial conditions to a sinusoidal
steady state; as such it is markedly different from droop
control which operates on phasor quantities and presumes the
existence of a quasi-stationary AC steady state; see Fig. 1.
We refer also to [8], [9] for related time-domain control
strategies in the same vein as VOC.

Extending our previous efforts in [5]–[7] where we have
focused on a nonlinear deadzone oscillator to constitute the
virtual oscillator, in this paper we investigate the voltage
dynamics of power-electronic inverters controlled to emulate
the dynamics of a general class of weakly nonlinear Liénard-
type oscillators. Particular examples of Liénard oscillators in-
clude the deadzone oscillator and the ubiquitous Van der Pol
oscillator. In general, Liénard-type oscillators are described
by the second-order differential equation ẍ+f(x)ẋ+g(x) =
0, where f(·) (respectively g(·)) are differentiable and even
(respectively odd) functions [10], [11]. Under certain condi-
tions on the functions f(·) and g(·), these dynamics admit
a unique and almost globally asymptotically stable limit
cycle (details are in Section III-A). Unless stated otherwise,
in subsequent discussions where we reference VOC, we
imply the control strategy is implemented with Liénard-
type oscillators; also, inverters controlled with this approach
are termed virtual-oscillator-controlled (VO-controlled) in-
verters.
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Fig. 1: VOC stabilizes arbitrary initial conditions to a sinusoidal
steady state, while droop control acts on phasor quantities that
are well defined only in the sinusoidal steady state. The main
contribution of this work is to determine a set of parametric
correspondences such that both control approaches admit identical
dynamics in sinusoidal steady state.



The main contribution of this paper relates to establishing
a correspondence between VOC and droop control by obtain-
ing conditions under which the respective voltage dynamics
at the inverter terminals—close to the sinusoidal steady
state—are identical. To bridge the temporal gap between
droop control and VOC, the periodic Liénard-oscillator dy-
namics are averaged to focus on AC-cycle time scales [10],
[12]. In addition to yielding insightful interpretations for
droop control, our analysis highlights the choice of droop
coefficients (equivalently, parameters of the Liénard-type os-
cillators) that would ensure droop-controlled inverters mimic
the behavior of VO-controlled inverters close to the quasi-
stationary sinusoidal steady state and vice versa (see Fig. 1).
Furthermore, from a dynamical systems perspective, our
analysis establishes connections between limit-cycle oscilla-
tors (VO-controlled inverters) and phase oscillators (droop-
controlled inverters) which reaffirms similar connections and
synchronization analyses for Van der Pol oscillators that date
back to [13] and are recently surveyed in [14].

The remainder of this manuscript is organized as follows.
Section II establishes notation and relevant mathematical
preliminaries. In Section III, we introduce droop control and
VOC. Next we derive time-averaged dynamics for weakly
nonlinear Liénard type oscillators using tools from averaging
theory in Section IV. Leveraging the averaged model, we
establish a correspondence between droop control and VOC.
We conclude the paper in Section V by highlighting a few
pertinent directions for future work.

II. NOTATION AND PRELIMINARIES

The nominal system frequency is denoted by ω, and for
the power-electronic inverters in the system, we assume that
the instantaneous phase angle, φ, evolves according to

dφ

dt
= ω +

dθ

dt
, (1)

where θ represents the phase offset with respect to the
rotating reference frame established by ω. Denote the in-
stantaneous current injected by the inverter as i(t) and
its instantaneous terminal voltage as v(t). Since we are
primarily interested in sinusoidal signals, we parameterize
the instantaneous voltage as

v(t) := r(t) cos(ωt+ θ(t)), (2)

where r(t) is the instantaneous terminal-voltage amplitude.
With this notation in place, we define the instantaneous
active- and reactive-power injections as follows [15], [16]:

P (t) := v(t)i(t) = r(t) cos(ωt+ θ(t))i(t), (3)
Q(t) := v(t− π/2)i(t) = r(t) sin(ωt+ θ(t))i(t).

Assuming the fundamental frequency of the current injected
by the inverter is ω, the average active and reactive power
over an AC cycle (of period 2π/ω) are then given by

P =
ω

2π

∫ 2π/ω

τ=0

P (τ)dτ, Q =
ω

2π

∫ 2π/ω

τ=0

Q(τ)dτ. (4)

In subsequent developments, the time average of a periodic
signal u(t) with period T is denoted by u, and defined as:

u :=
1

T

∫ T

0

u(t)dt. (5)

III. FUNDAMENTALS OF VOC AND DROOP CONTROL

In this section, we provide a brief introduction to droop
control and VOC. We begin with an overview of Liénard
systems, from which we recover a particular class of weakly
nonlinear Liénard-type oscillators that the inverters are con-
trolled to emulate.

A. Liénard systems

The celebrated Liénard’s equation is a nonlinear second-
order differential equation of the general form

ẍ+ f(x)ẋ+ g(x) = 0. (6)

This equation is commonly employed to study oscillations in
nonlinear dynamical systems, e.g., the Van der Pol oscillator
dynamics can be recovered as a special case of Liénard’s
equation [11]. The following theorem establishes conditions
that the functions f(·) and g(·) have to satisfy such that the
system (6) exhibits a unique and stable limit cycle.

Theorem 1 (Liénard’s Theorem [17]). Consider the
second-order nonlinear dynamical system (6). Assume that
the functions f(x) and g(x) satisfy the following properties:
(A1) f(x) and g(x) are continuously differentiable ∀x;
(A2) g(x) > 0,∀x > 0; and g(x) is an odd function, i.e.,

g(−x) = −g(x),∀x;
(A3) f(x) is an even function, i.e., f(−x) = f(x),∀x;
(A4) The odd function F (x) :=

∫ x
0
f(τ)dτ has exactly one

positive zero at x = z, is negative for 0 < x < z, is
positive and nondecreasing for x > z, and F (x)→∞
as x→∞.

Then, the system (6) has a unique and stable limit cycle
surrounding the origin in the phase plane.

We next utilize the observations in Theorem 1 to syn-
thesize a class of weakly nonlinear Liénard oscillators that
the inverters are controlled to emulate. In particular, we
focus on a parametric regime under which the trajectories of
VO-controlled inverters approximate circular limit cycles to
guarantee high power quality, i.e., the waveforms are almost
sinusoidal with arbitrarily small higher-order harmonics.
Furthermore, it is under this regime that we are able to
establish correspondences with droop control.

B. VOC implemented with a class of Liénard-type oscillators

The implementation of VOC is accomplished with a
class of weakly nonlinear and externally forced Liénard-type
oscillators with dynamics of the general form

ẍ+ εf(x)ẋ+ ω2x = εωu̇(t), (7)

where f : R → R satisfies the conditions in Theorem 1,
ω and ε are positive real constants, and u(t) is a driving
input by virtue of coupling the oscillator to the network.
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Fig. 2: Implementation of VOC for a single-phase power-electronic
inverter. The inverter terminal current, i, is the driving term for the
Liénard system, and the state x is utilized as the PWM modulation
signal.

For an unforced oscillator, nearly sinusoidal oscillations with
frequency approximately equal to ω are recovered in the so-
called quasi-harmonic regime characterized by ε ↘ 0 [10],
[11]. A detailed discussion on the properties of forced
Liénard systems can be found in [18].

Remark. The implementation of the proposed controller
is depicted in Fig. 2. In particular, notice that the state
variable x takes the connotation of a voltage that the inverter
terminals are controlled to emulate (this is accomplished
through a pulse-width modulation block, see, e.g., [19] for
more details). Furthermore, the input u corresponds to the
current that is injected into the inverter output terminals.
To respect circuit laws, the forcing term in the Liénard
oscillator is therefore picked to be u̇. (See also Fig. 3 and
Corollary 1, where we discuss the Van der Pol oscillator
circuit, a particular type of Liénard oscillator.)

C. Droop control

For resistive networks, droop control linearly trades off
frequency deviation versus reactive-power injection; and
inverter terminal-voltage amplitude versus active-power in-
jection as follows [2], [20]:

θ̇ = n
(
Q−Q∗)

,

r − r∗ = m
(
P

∗ − P
)
.

(8)

Here Q
∗

and P
∗

are the per-phase average reactive-power
and active-power setpoints, respectively; r∗ is the terminal-
voltage-amplitude setpoint; and n,m > 0 are reactive-
power and active-power droop coefficients, respectively. As
expressed in (8), we assume that the droop laws are executed
with AC-cycle averages of active and reactive power for each
inverter.

IV. UNCOVERING DROOP LAWS IN AVERAGED VOC
DYNAMICS

To bridge the time-scale separation between VOC (that is
implemented in real-time) and droop control (that presumes
the existence of a quasi-stationary sinusoidal steady state),
we average the dynamics of the Liénard-type oscillator in (7).
This averaging analysis allows us to focus on AC-cycle

time scales and facilitates the derivation of correspondences
with the droop laws in (8). To this end, we first uncover
the voltage-amplitude and phase dynamics of VO-controlled
inverters by transitioning to polar coordinates.

A. Polar-coordinates representation of Liénard-type oscilla-
tor dynamics

We begin by establishing a state-space model in Cartesian
coordinates; in this regard we choose y := ω

∫ t
0
xdt, and

z := x as states and write (7) as:

ẏ = ωz, ż = −ωy + εg(z) + εωu(t), (9)

where (with a slight abuse of notation with regard to (6)) we
denote g(z) := −

∫
f(z)dz in all subsequent developments.

Consider the following bijective transformation of the states
of the Liénard-type oscillator (7) to polar coordinates [r, θ]T

in a rotating frame at frequency ω:

y = r sin(ωt+ θ), z = r cos(ωt+ θ). (10)

This bijective change of coordinates is well-defined (and
leads to smooth dynamics) whenever r 6= 0 or equivalently
[y, z]T 6= 0. Since the origin [y, z]T = 0 is unstable for
the Liénard dynamics (7) [10] and not of interest to our
application in AC microgrid networks, we assume in the
following that [y(0), z(0)]T 6= 0 and thus [y(t), z(t)]T 6= 0
for all t ≥ 0.

With the dynamical model (in polar coordinates) in place,
we will leverage notions of averaging to focus on AC-
cycle time scales. Given a time-varying dynamical system
ẋ = εf(x, t, ε) with time-periodic vector field f(x, t, ε) =
f(x, t + T, ε) with period T > 0 and a small parameter
ε > 0, we denote by ˙̄x = εfavg(x̄) the associated time-
averaged dynamical system with vector field favg(x̄) =

(1/T )
∫ T
0
f(x̄, τ, 0)dτ . The following result is an adaptation

of the analysis of weakly nonlinear oscillators in [10, Chapter
10.5] and [12].

Lemma 1. Consider the class of weakly nonlinear Liénard-
type oscillators with dynamics in Cartesian coordinates
expressed as in (7). Let [r, θ]T ∈ R>0 × S (S is the
unit circle) denote the corresponding dynamics in polar
coordinates in a rotating reference frame established by ω.
Then, the time-averaged dynamics in polar coordinates in
the quasi-harmonic limit, ε↘ 0, are given by[

ṙ

θ̇

]
=

ε

2π

[
−f(r) + ω2

∫ 2π
ω

0
u(t) cos(ωt+ θ)dt

−ω2
∫ 2π

ω

0
u(t)
r sin(ωt+ θ)dt

]
, (11)

where

f(r) := 4

∫ r

0

f(σ)

√
1− σ2

r2
dσ. (12)

Proof. To study the dynamics in the quasi-harmonic limit,
i.e., ε↘ 0, we begin by rewriting the dynamics (9) in polar
coordinates. The dynamics in this new set of coordinates
can then be simplified by leveraging tools from averaging
theory [10, Theorem 10.4].



1) Change of coordinates: We begin by transforming (9) to
polar coordinates (10) resulting in the following dynamics:

ṙ =ε

(
g(r cos(ωt+ θ)) + ωu(t)

)
cos(ωt+ θ),

θ̇ = − ε

r

(
g(r cos(ωt+ θ)) + ωu(t)

)
sin(ωt+ θ). (13)

2) Averaging: Note that the dynamical systems in (13) are
2π/ω-periodic functions in t. Using ε as the small parameter,
we obtain the averaged dynamics[

ṙ

θ̇

]
=
εω

2π

∫ 2π/ω

0

[
g(r cos(ωt+ θ))) cos(ωt+ θ)

− 1
r g(r cos(ωt+ θ)) sin(ωt+ θ)

]
dt

+
εω2

2π

∫ 2π/ω

0

[
u(t) cos(ωt+ θ)

− 1
ru(t) sin(ωt+ θ)

]
dt. (14)

We introduce a change of variable on the right hand side,
φ = ωt+ θ to obtain:[

ṙ

θ̇

]
=

ε

2π

∫ 2π

0

[
g(r cosφ)) cosφ

− 1
r g(r cosφ) sinφ

]
dφ

+
εω

2π

∫ 2π

0

[
u(t) cosφ

− 1
ru(t) sinφ)

]
dφ. (15)

Since g(r cosφ) is an even function in φ, it follows that
g(r cosφ) sinφ is an odd function in φ, and g(r cosφ) cosφ
is an even function in φ. Using these observations, for the
integral in (15) involving g(r cosφ) sinφ, we get:∫ 2π

0

g(r cosφ) sinφdφ = 0. (16)

Similarly, for the integral in (15) involving g(r cosφ) cosφ,
we get∫ 2π

0

g(r cosφ) cosφdφ

= 4

∫ π/2

0

g(r cosφ) cosφdφ

= 4g(r cosφ) sinφ
∣∣π/2
0

+ 4

∫ π/2

0

f(r cosφ)r sin2 φdφ

= −4

∫ r

0

f(σ)

√
1− σ2

r2
dσ = −f(r), (17)

where the last line in (17) follows from applying the change
of variables σ = r cosφ [12]. Applying the change of time
coordinates, φ = ωt + θ, and leveraging the observations
in (16) and (17), we see that the averaged dynamics in polar
coordinates of the Liénard-type oscillators in (7) admit the
representation in (11).

B. Uncovering droop laws in Liénard oscillator dynamics

In this section, we derive the conditions under which
the droop control laws (8) closely match those of VO-
controlled inverters with dynamics represented by Liénard’s
equation (7). To establish the connection between the virtual
oscillator and the physical inverter, we assume that the
inverter terminal voltage is controlled to follow the signal

r(t) cos(ωt+ θ) (2); similarly, to close the loop, the inverter
output current i(t) is extracted from the virtual oscillator, i.e.,
u(t) = −i(t). This allows us to make the connection between
the polar-coordinate system-dynamics representation in (13)
and the notions of average active and reactive power in (4).
In particular, from (11), we see that the averaged voltage
amplitude dynamics can be written as

ṙ = ε

(
− 1

2π
f(r) +

ω2

2π

∫ 2π
ω

0

−i(t)
r

r cos(ωt+ θ)dt

)
,

= − ε

2π
f(r)− εωP

r
, (18)

where we have used the definition of average active power,
P , from (4). Similarly, the averaged voltage phase dynamics
can be written as

θ̇ = −εω
2

2π

∫ 2π
ω

0

−i(t)
r2

r sin(ωt+ θ)dt =
εω

r2
Q, (19)

where we have used the definition of average reactive power,
Q, from (4). Therefore, the averaged VOC dynamics in the
quasi-harmonic limit, ε↘ 0, can be written as:

ṙ =

(
−2ε

π

∫ r

0

f(σ)

√
1− σ2

r2
dσ

)
− εωP

r
, (20a)

θ̇ = +
εω

r2
Q. (20b)

In the following, we analyze how the droop laws and
coefficients should be designed so that the difference in the
phase dynamics and steady-state equilibrium voltage profile
of the two inverters (controlled with VOC and droop) is of
order O(ε). When comparing the droop control law (8) with
the averaged VOC dynamics (20) (reduced to the limit cycle),
we arrive at the following correspondence:

Theorem 2 (Correspondence between Droop Control and
VOC). Consider two identical inverters one of which is
controlled with VOC (13), and the other is controlled with
droop control (8). Let r̄ and θ̄(t) denote the amplitudes and
phases as used in droop control, and r(t) and θ(t) are the
amplitudes and phases in VOC. Assume that

(A1) unique solutions to the droop-controlled system (8) and
the averaged VOC system (20) exist in a time interval
t ∈ [0, t∗] of strictly positive length; and

(A2) the initial signal differences (at time t = 0) are of order
O(ε), that is,

r̄ − r(0) ≈ O(ε) and θ̄(0)− θ(0) ≈ O(ε).

Denote the equilibrium terminal-voltage amplitude and av-
erage active-power injection of the VO-controlled inverter
by req and P eq, respectively. Suppose the frequency-droop
coefficient is picked as

n =
εω

r2eq
, (21)



and the average reactive-power setpoint is set to zero, Q
∗

=
0. Suppose the voltage-droop coefficient is picked as

m =

2req
ωπ

∫ req

0

f(σ)√
r2eq − σ2

dσ

−1

, (22)

and the average active-power and amplitude setpoints are
set as P

∗
= P eq and r∗ = req. Then, there exists an ε∗,

such that for all 0 < ε < ε∗, for all t ∈ [0, t∗]

r̄ − r(t) ≈ O(ε) and θ̄(t)− θ(t) ≈ O(ε).

Since the droop coefficients themselves depend on req and
P eq in the quasi-harmonic limit ε ↘ 0, close to the quasi-
stationary sinusoidal steady state, VOC can be thought of
as an adaptive droop controller with load-dependent droop
coefficients. The correspondences derived in Theorem 2 are
asymptotic results based on a perturbation and averaging
analysis for sufficiently small ε.

Proof of Theorem 2. Under the given assumptions (A1) and
(A2), by standard averaging arguments [10, Theorem 10.4],
there exists an ε∗1 sufficiently small so that for all 0 < ε < ε∗1,
the solution of the averaged VOC dynamics (20) is O(ε)
close to the solution of the original VOC dynamics (7) for
times t ∈ [0, t∗/ε]. We proceed by comparing the averaged
VOC system (20) with the droop control system (8).

1) Correspondence of phase dynamics: We first study the
phase dynamics (20b). The VOC system (7) is assumed to
evolve in quasi-stationary sinusoidal steady state with a small
initial (at time t = 0) difference from the harmonic droop
signals. Recall that in the quasi-harmonic limit, there exists
an ε∗2 sufficiently small so that for all 0 < ε < ε∗2, the
solution of the VOC dynamics (7) is O(ε) close to the
solution of the harmonic oscillator with constant radius req
for t ∈ [0, t∗]; see [10, Theorem 10.1 and Example 10.3].
Hence, for t ∈ [0, t∗], the solution θ(t) of the averaged phase
dynamics (20b) is O(ε) close to the solution of

θ̇ =
εω

r2eq
Q ,

where we disregard the amplitude dynamics (20a), and
replace r(t) in (20b) by req.

For the following arguments, let 0 ≤ ε ≤ min{ε∗1, ε∗2}.
Observe that the phase dynamics of a droop-controlled
inverter (8) correspond with the AC-cycle-averaged dynam-
ics of a VO-controlled inverter (7)—up to an order O(ε)
mismatch—if we pick the reactive-power setpoint, Q

∗
, and

the frequency-droop coefficient, n, as follows:

Q
∗

= 0, n =
εω

r2eq
. (23)

2) Correspondence of equilibrium voltage amplitudes:
Next, we consider the amplitude dynamics (20a) and
its equilibrium terminal-voltage profile. The steady-state
voltage amplitude of the VO-controlled inverter is recovered
from the solution of the following nonlinear equation:

0 =

(
−2ε

π

∫ r

0

f(σ)

√
1− σ2

r2
dσ

)
− εωP

r
(24)

Around the solution of (24), which we denote by req, we
obtain the sensitivity of the active-power injection with
respect to a change in amplitude:

dP eq

dreq

∣∣∣∣
req

= −2req
ωπ

∫ req

0

f(σ)√
r2eq − σ2

dσ. (25)

The equation (25) can be placed in correspondence with the
amplitude control law of a droop-controlled inverter (8). By
an analogous reasoning as for the phase dynamics, there
exists an ε∗3 sufficiently small so that for all 0 < ε < ε∗3,
the solution r(t) of the averaged amplitude dynamics (20a)
satisfies—up to an O(ε) mismatch—the conditions of the
stationary solution (25) (with fixed radius req) for strictly
positive times t ∈ [0, t∗]. For the following arguments,
let 0 ≤ ε ≤ min{ε∗1, ε∗3}. Observe that the amplitude
dynamics of a droop-controlled inverter (8) correspond with
that of a VO-controlled inverter in (25)—up to an order
O(ε) mismatch—if we pick the active-power setpoint, P

∗
,

terminal-voltage setpoint, r∗, and the voltage-droop coeffi-
cient, m, as follows:

P
∗

= P eq, r
∗ = req,

m =

2req
ωπ

∫ req

0

f(σ)√
r2eq − σ2

dσ

−1

. (26)

Finally, to complete the proof let ε∗ = min{ε∗1, ε∗2, ε∗3}, and
note that all arguments hold for the time scales [0, t∗/ε∗] ∩
[0, t∗] which equals [0, t∗] for ε∗ sufficiently small.

C. The Van der Pol oscillator

Consider the ubiquitous Van der Pol oscillator to con-
stitute the virtual oscillator circuit for inverter control. The
equivalent circuit of this oscillator is composed of an RLC
circuit connected in parallel to a nonlinear voltage-dependent
current source (see Fig. 3). The dynamics of the oscillator
are captured by the following second-order nonlinear ODE:

ẍ− εωα
(
1− βx2

)
ẋ+ ω2x = εωu̇(t), (27)
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Fig. 3: Implementation of VOC for a single-phase power-electronic
inverter with a Van der Pol oscillator. The oscillator is composed of
a parallel RLC circuit, and a nonlinear voltage-dependent current
source, g(x). The inverter terminal current, i, is the driving term,
and the sinusoidal capacitor voltage, x, is utilized as the PWM
modulation signal.
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Fig. 4: (Red limit cycle): Droop control before load step; (Green
limit cycle): Droop control post load step; (Dashed-blue line): Evo-
lution of VOC starting from the initial condition illustrated as a
blue square. Simulation parameters: ε = 0.09, σ = 1S, R = 10Ω,
L = 250µH, C = 30.9mF. Load step: 0.2Ω → 500Ω.

where x is the voltage that develops across the capacitor
C, and we have the following parameters: ε :=

√
L/C,

α := σ−(1/R), and β := 3k/(σ− 1
R ) for some k > 0. With

reference to the model in (7), we see that f(x) = (βx2 −
1)αω, and subsequently, g(x) = −

∫
f(x)dx = αω(x −

βx3/3). Notice that g(x) is the nonlinear voltage-dependent
current source in the circuit representation. Furthermore, for
ε↘ 0 and no input, u = 0, the Van der Pol oscillator exhibits
near sinusoidal oscillations with frequency ω = 1/

√
LC. For

an islanded inverter controlled as a Van der Pol oscillator,
we have the following corollary to Theorem 2.

Corollary 1 (VOC with Van der Pol oscillator). The
droop coefficients that would ensure droop-controlled invert-
ers mimic the behavior of Van der Pol oscillator-controlled
inverters close to the quasi-stationary sinusoidal steady state
are given by:

n =
1

r2eqC
, m = − 1

α
(
req − β

2 r
3
eq

) . (28)

Proof. The result follows from substituting ε =
√
L/C, ω =

1/
√
LC, and f(x) = (βx2 − 1)αω in (21) and (22).

Numerical Simulation. Consider two inverters serving a
resistive load; one controlled with droop control and the other
controlled to emulate the Van der Pol oscillator dynamics
in (27). The droop coefficients are picked based on (28).
Trajectories from a numerical simulation are plotted in polar
coordinates in Fig. 4. The red and green limit cycles are
obtained for the droop-controlled inverter before and after
a load step. The trajectory in blue (starting from an initial
condition illustrated as a blue square) results from the
dynamics in (27). The simulations indicate that with the
droop control parameters chosen based on (28), the dynamics
of VOC correspond to that of droop control when reduced
to the sinusoidal steady state.

V. CONCLUSIONS

For a system of power-electronic inverters controlled as
a class of weakly nonlinear Liénard-type oscillators, we
characterized the voltage dynamics in polar coordinates to

establish a set of conditions for which the dynamics of
the Liénard-type oscillators match the classical droop laws.
Leveraging the obtained averaged dynamics to design control
strategies for general microgrid networks remain the focus
of ongoing investigations.
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