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Abstract

Learning regressors from low-resolution patches to high-resolution patches has shown promising results for im-
age super-resolution. We observe that some regressors are better at dealing with certain cases, and others with
different cases. In this paper, we jointly learn a collection of regressors, which collectively yield the smallest super-
resolving error for all training data. After training, each training sample is associated with a label to indicate its
‘best’ regressor, the one yielding the smallest error. During testing, our method bases on the concept of ‘adaptive
selection’ to select the most appropriate regressor for each input patch. We assume that similar patches can be
super-resolved by the same regressor and use a fast, approximate kNN approach to transfer the labels of train-
ing patches to test patches. The method is conceptually simple and computationally efficient, yet very effective.
Experiments on four datasets show that our method outperforms competing methods.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Image Generation—
Display algorithms 1.4.3 [Image Processing and Computer Vision]: Enhancement—Sharpening and deblurring

1. Introduction

Image resizing is one of the most common image operations.
Almost all display and editing software employs this opera-
tion. This is necessary for example when we adapt images to
displaying devices of different dimensions, when we want
to explore in more details some regions of the image (e.g.
in visual surveillance), when we want to map image tex-
tures to 2D/3D shapes, to name a few. The downsampling
of images usually does not pose a challenge, a suitable lin-
ear pre-filtering technique doing the job. However, the up-
sampling of images (image super-resolution) is still an open
problem. This comes from the notorious ambiguity of patch
correspondence — a low-resolution (LR) image patch can
be the down-sampled version of enormous high-resolution
(HR) patches.

In order to reduce the ambiguity, different forms of prior
knowledge have been explored. Some assume that images
are smooth enough and up to some upscaling factors some
interpolation formulas could provide good approximations.
The assumption means that images are limited in band, and
unfortunately it does not hold in most cases. Therefore, for
good results, preserving only the lower frequencies from the
LR image is unsatisfactory (leads to blurry, smoothed HR
images and artifacts) and we need to restore or to halluci-
nate higher frequencies for the high-resolution image. This is
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possible by using more complex models and prior informa-
tion from the image domain, as our proposed method does.

In this paper we focus on the exemplar-based single im-
age super-resolution (SISR). This means that given an up-
scaling factor we super-resolve each input image individu-
ally by using a model which employs prior knowledge under
the form of known samples of LR and corresponding HR
image patches. The input LR image is decomposed over a
grid in local overlapping image patches of fixed size. Each
LR patch is super-resolved to an HR patch. The HR patches
overlap and are averaged to create the HR output image.
The prior information is extracted from natural training im-
ages as samples of LR and corresponding HR patches at
the same upscaling factor. This form of prior information
has been exploited by different techniques. We follow these
works [NNO7,KK10, TDV13,YY13] and learn it by regres-
sion functions.

As known, the regression function from LR patches to HR
patches is highly non-linear. Learning a single, non-linear
function to apply to every patch hardly yields satisfactory re-
sults, due to the richness of real-world image patches. There
exist methods [TDV13,YY13] that address this problem by
approximating this complex, non-linear function by a collec-
tion of local functions. We follow this direction and propose
a novel approach where the collection of local regressors is
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jointly optimized. In particular, we jointly optimize a collec-
tion of local regressors from the LR space to the HR space
such that the overall super-resolving error of all patches is
minimized. By doing so, it is known for sure that for any
individual LR patch, there is at least one regressor which is
able to yield the desired HR patch with a low error. How-
ever, for an input LR patch image the selection of the local
regressor has to rely on the information from the LR image,
the HR image being unknown. To tackle this, we go back to
the training pool of samples for which we know the best re-
gressors and extrapolate this information to local neighbor-
hoods. For a neighborhood of LR patches the best regressor
is the one providing the lowest cumulated super-resolving
error of the LR patches. Our proposed jointly optimized re-
gressors (JOR) together with the adaptive regressor selection
for image super-resolution provide state-of-the-art quantita-
tive performance and visual quality as shown on different
real-world images in comparison with top methods.

Our paper is structured as follows. In Section 2 we briefly
survey the SISR literature, focusing on those related to our
approach. In Section 3 we introduce the jointly optimized
regressors (JOR) technique to super-resolution. The experi-
ments are conducted in Section 4 with discussion, which is
followed by the conclusion in Section 5.

2. Previous Work

There is an impressive amount of literature addressing the
single image super-resolution task. We briefly review some
of the main research directions and the most relevant recent
works related to our approach.

The oldest direction and very popular in commer-
cial software is represented by the data invariant lin-
ear filters. Nearest-Neighbor, Bilinear, Bicubic, Hamming,
NEDI, or Lanczos interpolation kernels are among the best
known [Duc79, TBU0O,LOO1]. As previously said, they as-
sume smoothness or band-limited image data, and exhibit
visual artifacts such as blurring, ringing, blocking, aliasing.
To address these drawbacks, one needs to use stronger prior
information.

Another direction uses a strong prior information un-
der the form of an explicit form of a distribution of en-
ergy functional over the image class. In [TRFO3] the sparse
derivative priors are exploited, in [TDO0S] the regularization
PDE’s, while in [DHX*(07] the edge smoothness prior, and
in [Fat07] the edge statistics are enforced to obtain the HR
solution. Recent approaches try to estimate appropriate blur
kernels instead finding good image priors [EGA* 13, MI13].
Most approaches work on small image patches to then com-
bine them in the HR output image.

In example-based super-resolution, most methods [FJP02,
CYX04, YWHMI10,ZEP12,TDV13, YY13] treat separately
the low-frequency part and the high-frequency part of the

HR image. This is motivated from the fact that the low-
frequency part can be approximated reasonably well by
a fast interpolation kernel such as bicubic, and the prob-
lem reduces to the estimation of the fine details, the high-
frequencies, in addition to the low-frequency part. A basic
way to employ priors is to extract a pool of training samples
of LR and HR corresponding image patches and to infer as
output the HR patch corresponding to the nearest training
LR patch of the input LR patch. This is a nearest exemplar
approach.

The idea of local self similarity or local image patch
redundancy inside the LR image and/or across a pyramid
of downscaled images is exploited in [FF11] and [GBIO9].
These approaches do not need any external image patches,
all the patches extracted from the LR input and used as pri-
ors already fit the image context and are meaningful to the
HR image.

In [FJPO2] the LR image is interpolated to the HR scale
resulting a blurred image, to then add estimated high-
frequency patches corresponding to the LR image and re-
solving their agreement through a maximum-a-posteriori
(MAP) optimization. The MAP formulation provides a self-
consistent solution and leads to a good performance. On the
downside it relies on large training pools of patches, favor-
able patch candidates, and is computationally expensive.

The neighbor embedding direction starts with the method
of Chang et al. [CYXO04]. It assumes that patches naturally
lies on local manifolds and the local manifolds from LR and
HR spaces are in correspondence — for a local LR mani-
fold its local HR manifold will preserve the linear relations
among the samples populating it from LR to HR space.
In [CYXO04], for an input LR patch a local neighborhood
of LR patches, its k-nearest neighbors (kNN), are extracted
from the training pool. Then the input LR patch is embedded
into the local coordinate system of the neighborhood using
the Locally Linear Embedding (LLE) [RSO1]. These coor-
dinates are then used to reconstruct the corresponding HR
output patch but this time in the corresponding HR neigh-
borhood of patches. As shown in [TDV13], many neighbor
embedding approaches which share the local manifold as-
sumption and differ mainly in the way the input LR patch
is encoded over the pool neighborhood, are able to reach
comparable performance under their best settings and gen-
erally improve with the size of the training pool. In the same
category, two recent approaches [TDV13, YY13] anchor the
local manifolds and for each local manifold learn regressors
from low to high resolution space, so that the input LR patch
uses the regressor from the nearest anchored local LR mani-
fold as offline learned. This leads to time efficiency and per-
formance.

Another direction is represented by the sparse coding
methods. They employ the sparsity assumption [YWHMOS,
ZEP12], that each LR patch can be sparsely decomposed
over a trained dictionary of LR patches, and the HR can be
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reconstructed applying the coefficients from the decomposi-
tion to the corresponding HR patches of the trained dictio-
nary. These approaches reduce the pool of training samples
to small dictionaries with large generalization capabilities,
but the optimization required by the sparse decomposition
can be a burden. The sparse coding methods generally pro-
duce sharp HR outputs.

A distinct category in example-based super-resolution is
represented by the machine learning approaches such as
Support Vector Regression (SVR) [NNO7] or Convolutional
Neural Networks [DLHT14]. They learn to directly regress
from the LR patches to the HR patches based on a training
pool of samples. Also, some SR models were proposed for
specific domains such as graphics artwork [KL11].

Our proposed method resembles to the neighbor em-
bedding methods as we work with a large pool of train-
ing samples and the local neighborhood is used to deter-
mine the regressor, while the ridge regression formulation
has been already used in different frameworks for super-
resolution [KK10, TDV13]. The novelty is mainly given by
the joint optimization of the regressors. Our joint learning is
guided by the ultimate goal of image super-resolution (min-
imizing the overall super-resolving error) so that the learned
regressors are individually more precise and mutually com-
plementary.

The work also shares similarity with the early work of
Atkins [Atk98] and the work of Darwish and Bedair [DB96]
in terms of using several regression functions based on im-
age content. However, our main contribution is to jointly
learn a collection of good regressors to choose from. Also,
the selection method is different. This idea of method se-
lection has also been used for other topics such as optical
flow [LRROS] and image filtering [FKK* 14].

3. Approach

Our approach consists in two main components: 1) jointly
learning a fixed number of regressors, which collectively
provide the smallest super-resolving error for all training im-
ages from low-resolution (LR) to high-resolution (HR); 2)
adaptively selecting the most appropriate regressor for the
input image patch for the super-resolution.

3.1. Jointly-optimized regressors

Motivation: There are many streams of methods to conduct
image super-resolution, as summarized in Section 2. Our
method follows the spirit of [KK10, TDV13] and tackles the
problem as learning a regression function from LR patches
to HR patches. However, because the richness of real-world
image patches, as shown in [TDV13] for their global re-
gressor, it is difficult to learn a single regressor that yields
satisfactory results throughout the whole patch space. Thus,
we propose to train a set of typical regressors, which collec-
tively provide the least super-resolving error for the training
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set, and to select the most appropriate one for each input LR
patch during test.

Data Collection: Given a set of training images, we take
them as HR images, and their down-sampled versions (by
a fixed factor, e.g. X3, x4) as LR images. We then decom-
pose all LR images to small patches x and look for their cor-
responding HR patches y to collect our training examples:
D ={(x1,¥1),---,(x1,y2)} € RM x RY_ The representation
of x and y will be elaborated in Section 4.3.

Training: Once having the training examples, our goal is
to discover a fixed number of O regressors F = {f1, ..., fo}
that collectively give the least super-resolving error for all
the patches, each patch being reconstructed by its most ap-
propriate regressor. The challenge is that the space of the
regression functions is enormous, and we must sift through
all the data to find the ones which are individually represen-
tative and mutually complementary. We pose this problem as
a clustering problem: given millions of patch pairs, we group
them so that patches in the same cluster can be reconstructed
precisely by the same regressor (one of the O regressors).
Note that we do not impose the constraint that patches in
the same cluster must be similar in appearance; patches can
share the same regression function even they reside far apart
from each other in feature space.

Mathematically, the problem is formulated as follows.
Given the collection of pairs of patches D, our goal is to clus-
ter the data into O clusters and to learn O regressors, one for
each cluster. Cluster o is associated with a regressor f, and
an indicator vector ¢, € {0, l}L with ¢, ; = 1 for instance
[ being in cluster o and zero otherwise. Hard clustering is
performed: each image patch only belongs to one cluster.
Ideally, we would like to minimize the following function:

L O
min )" 3" corllfolx) ~ il ()

I=10=1

where we cumulate the super-resolving error, C denotes the
matrix form of all O membership indicator vectors, i.e. C =

[Cl,...,CO].

Exactly minimizing the objective function in Eq.1 is very
challenging, as this is a chicken-egg problem: if we know
the optimal membership indicator ¢, 0 € {1,...,0}, we can
compute the optimal regressor f, with all samples in cluster
o0, and if we had the optimal regressors f,, ¢, can be de-
termined by setting 1 to the patches to which f, gives the
smallest super-resolving error among all regressors. In this
paper, we follow the spirit of EM algorithm and propose to
solve this problem iteratively. Given ¢o,0 € {1,...,0}, we
compute the regressor f, using the patch pairs within clus-
ter o (an analogue to the E-step of EM algorithm). Once we
have regressors { fo }, we can refine the membership indica-
tors {¢,} (an analogue to the M-step of EM algorithm). We
repeat the E-M steps until convergence. Note that E-step is
used here with a slight abuse of terminology as there is no
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Algorithm 1: Jointly Optimized Regressors

Data: D, O, and A
Result: 7,C and Z

1 begin
2 Initialize C by running K-means to cluster all LR patches
{x;} to O clusters.

3 while not converged (with tolerance error) do

4 E-step: Estimate the O regressors, { f, }, for each
cluster indicated by C using Eq.(2);

5 M-step: Refine the clusters (C) according to the
regressor f, which provides the minimum error (4)
for each sample (x;,y;);

6 end

7 end

probabilistic expectation to maximize in our E-step. The ini-
tial ¢, are obtained by running K-means clustering method
on all the LR training patches X = [x1,...,Xz].

For the regressors, we follow [KK10, TDV13] and use
Ridge Regression (RR). The main benefit of using Ridge Re-
gression is that it is simple and has a closed-form solution.
By doing this, the learning process can scale easily to mil-
lions of samples, which is challenging for non-linear tech-
niques such as Supported Vector Regression. However, our
framework is agnostic to the type of regressors. The solution
of RR is computed offline and saved as a simple projection
matrix to apply to new image patches. The projection matrix
for f, can be written as:

Py = Yo (XIX, + A1)~ 'X7 2)

where X, are the LR patches from the o-th cluster stacked
column-wise, Y, are the corresponding HR patches, and A is
a regulatory parameter fixed to 0.1 in our experiments. The
identity matrix is added mainly to regularize the solution,
i.e. to avoid overfitting, which is derived from the regular-
ization term of Ridge Regression. The term is also useful in
handling the presence of non-singular matrices, when highly
redundant samples (e.g. smooth ones) occur in the training
set. By doing so, the super-resolving of a LR patch x; by a
regressor fo is reduced to a simple matrix projection:

Yo = fo(x;) =Pox; 3)

and its super-resolving error is signaled as follows:

~ 2
20,1 :” Yo — Y1 ” 4

The super-resolving error of all regressors f to all patches
x is recorded in Z = [z, ...,z1], where z; € R recording the
super-resolving error of x; by all the O regressors. The learn-
ing algorithm is detailed in Algorithm 1. We interchangeably
use P, and f, for the oth regressor.

3.2. Upsampling with JOR

After training, high resolution (HR) patches y in D are dis-
garded. Each low resolution (LR) patch x; of the training
data is associated with a vector z;. During test, our method
decomposes LR images to small patches over a grid (same
size as used in training) and predicts the most appropriate
regressors for each single patch. With labels to the regres-
sors, LR patches are reconstructed to HR ones by perform-
ing the matrix projection as shown in Eq.3. Reconstructed
HR patches are assembled to go back to the desired HR im-
age. Below, we elaborate the method for adaptive selection
of regressors.

The selection is performed in two steps for a given LR
patch: 1) the super-resolving error of all regressors for the
patch is estimated; 2) the regressor with the smallest er-
ror is then chosen for super-resolving. In order to handle
the intricate dependencies between patch content and re-
gressor annotations, we employ non-parametric methods.
The k-nearest neighbor method is used in this work. The
selection is based on local super-resolving accuracies in
a ‘neighborhood’ of the input patch x. The neighborhood
N (x) = {ny,...,nk} is defined with respect to the training
sets X = {xy,...,xp}, where ny € {1,...,L} is the index of
a training patch and K denotes the size of neighborhood.
Specifically, the super-resolving error for patch x by regres-
sor f, is estimated as

K 1
Y= % <o,k
o="¢Kk 1
Yicix

where % is used to modulate the contribution of neighbors,
and it improves performance slightly over uniform weights.
The regressor with smallest error is used to super-resolve
the patch x. Our adaptive selection is based on the super-
resolving error accumulated over a small neighborhood,
which can be taken as a ‘soft’ version of the normal kNN
method. It is especially useful for samples which are close
to borders of the clusters. We use k-d tree (the implemen-
tation in the VLFeat library [VFO08]) to organize the traing
samples for fast, approximate kNN search.

) (&)

4. Experiments
4.1. Datasets

For training, we follow existing work [YWHMOS, ZEP12,
TDV13,DLHT14] and use the standard training set, which
contains 91 images. For test, we use four datasets, includ-
ing three from [TDV13] and a newly compiled one. The
three datasets are Set5, Setl4 and BD100, containing 5,
14, and 100 images respectively. Setl4 was proposed by
Zeyde et al. [ZEP12], while BD100 dataset contains the
100 testing images from the Berkeley Segmentation Dataset
(BSDS300) [MFTMO1]. In order to further evaluate the abil-
ity of all methods for texture recovery, a highly-desired prop-
erty for image super-resolution, we created a new dataset
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by selecting 136 diverse texture images from the ETH-
Synthesizability dataset [DRV14]. The dataset is named Su-
perTex136. The textures were chosen to cover a large range
of materials (e.g. metal, plastic, glass, water) and geometri-
cal properties (e.g. stochastic, lined, structured) of textures.

4.2. Compared methods

In our comparison we consider all the methods consid-
ered in [TDV13], and in addition we compare with the
Convolutional Neural Network method (SRCNN) proposed
by Dong et al. [DLHT14]. The methods in [TDV13] are:
Neighbor Embedding with Least Squares decomposition
(NE+LS), Neighbor Embedding with Locally Linear Em-
bedding (NE+LLE) [CYXO04], Neighbor Embedding with
Non-Negative Least Squares decomposition (NE+NNLS),
Zeyde et al. [ZEP12], and the Global Regression (GR)
and Anchored Neighborhood Regression (ANR) methods of
Timofte et al. [TDV13]. All these methods share the same
training material and share the same training dictionary with
an exception to SRCNN where no dictionary is used. Our
JOR method uses the same training dataset as these meth-
ods. The methods are compared quantitatively in terms of
Peak Signal-to-Noise Ratio (PSNR) of their HR output im-
ages. PSNR usually correlates well with the visual quality.

4.3. Features

We follow the data representation and the general frame-
work from [ZEP12, TDV13]. The basic idea is that the low-
frequency part can be approximated reasonably well by a
fast interpolation kernel such as bicubic, thus the problem
reduces to the estimation of the fine details. It has also
been found that gradient features are most relevant to high-
resolution details. Therefore, the LR and HR patches are rep-
resented as follows. In the training, the HR images are down-
scaled to the LR corresponding images for a given upscaling
factor. Then, the LR image is bicubically interpolated by the
same factor to get to an interpolated HR image. The first and
second order gradient filters are applied vertically and hori-
zontally to this image, and the LR image patches x are rep-
resented as the concatenation of corresponding gradient re-
sponses. Note that the interpolated HR images are also called
LR images, as the high-frequency details are still missing.

The HR patches y are represented by the difference be-
tween the true HR image patches and the interpolated ones
from their corresponding LR patches. The LR patches are of
3 x 3 pixels, i.e. for upscaling factors of x2, x3, and x4
we work with patches of 6 X 6, 9 x 9, and 12 x 12 pixels,
respectively. Since, the representation of LR patches is quite
high-dimensional, we apply the PCA projection to reduce
the dimensionality by preserving 99.9% of the average en-
ergy. The PCA is learned over the training patches, and the
same PCA projection is applied during testing. This typically
leads to 30 dimensions for an initial 324-dimensional rep-
resentation, for upscaling factor x3. The 3 x 3 patches are
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Figure 1: PSNR as a function of the number of training
patches, on Set5 with factor X 3.
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Figure 2: PSNR as a function of the number of regressors,
on Set5 with factor x3.
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Figure 3: PSNR as a function of K on Set5 with factor X3,
where our soft kNN is compared with the normal kNN in
regressor selection.

extracted over a regular grid with an overlap of 2 pixels. For
training samples, we first extract from the original training
images and then repeat the extraction procedure after bicu-
bically downscaling the images with a factor of 0.98 until
we achieve the desired number of training patches. Note the
down-sampling step is not necessary if a large number of
training images are used. During testing, the LR input image
is first bicubically interpolated, and then over a dense grid
the LR patch features are computed. Then the LR features
are super-resolved to the HR outputs and added to the inter-
polated content to form the HR output image. All the meth-
ods we compare with share the same features and pipeline,
except for SRCNN [DLHT14].
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Figure 4: PSNR as a function of the number of iterations
of the EM-optimization, on Set5 with factor X3. Iteration
0 denotes its initialization, which is performed by k-means
with a comparison here to a random initialization.

4.4. Parameters

Our JOR method comes with a number of parameters. Here,
we investigate the influence of four main parameters on the
performance. They are the number of training patches L,
the number of regressors O, K of the KNN method, and the
number of iterations of our EM-optimization. The results are
shown in Fig. 1, Fig. 2, Fig. 3, and Fig. 4, respectively.

In Fig. 1 we vary the amount of training samples extracted
from the training images from as few as 1000 samples to 5
million samples and report the PSNR average performance
on Set5 dataset. As expected, the larger the number of sam-
ples are, the better is the coverage of the LR space and the
more accurate is the prediction of the HR output. JOR im-
proves from 31.7dB when 1000 samples are used to over
32.55 for 5 million samples. In comparison we report the
performance of two neighbor embedding methods (NE+LS
and NE+RR) with the same set of training patches. The
NE+LS as defined in [TDV13] uses the least squares to en-
code the input LR patch, and then to reconstruct the HR out-
put patch from the corresponding HR patches of the neigh-
borhood. The NE+RR is a variant of NE+LS, using instead
a ridge regression decomposition as in ANR [TDV13] and
in our method. The figure shows that NE+LS and NE+RR
benefit as well from the increased number of samples, and,
given sufficient training samples (e.g. 5 million samples)
will eventually converge to a performance comparable to our
JOR method. However, both NE+LS and NE+RR are more
computational demanding. In comparison with JOR, NE+LS
needs to retrieve a neighborhood and solve the least squares
online for every LR input patch, while NE+RR needs to
solve a RR. This renders them much slower than JOR when
the same number of training samples are used. Furthermore,
JOR is more efficient by handling orders of magnitude fewer
samples for comparable performance to NE+LS or NE+RR.

The number of joint regressors is another parameter of
JOR, the more regressors the smaller the theoretical achiev-
able errors between the estimated HR patches and the ground

truth ones. As shown in Fig. 2, JOR is quite robust with re-
spect to the number of regressors. JOR’s performance faces
a plateau at 32 joint regressors, above this, a larger number
of regressors does not improve significantly. This early con-
vergence is due to the fact that the adaptive selection of re-
gressors is more challenging when the number of regressors
increases. However, JOR working with 32 regressors signif-
icantly outperforms the most similar method ANR [TDV13]
and yields comparable results with A+ [TDV14], both of
which work with 1024 regressors (See details in Sec.4.5).
This suggests that the regressors learned by our joint learn-
ing are more powerful than the regressors trained in previous
works. In order to use more regressors, a more sophisticated
classification system is needed. For instance, one can learn a
more accurate distance metric by the Metric Learning tech-
nique instead of using the Euclidean distance directly.

The size of neighborhood K also influences the perfor-
mance, but we found that JOR is quite robust to it. See Fig. 3
for the results. We tested a wide range of its values from 1
to 1024 and found K = 16 yields the best performance, but
the difference from different values of K falls within 0.3. We
also compared our soft KNN with the normal kNN, where
the labels are directly used for regressor selection. The fig-
ure shows that our soft strategy by accumulating error over a
small neighborhood consistently improves the performance
of kNN for all values of K, e.g. by 0.25 dB when K = 16. It
is mainly because a large amount of information is lost when
the reconstruction errors of regressors are converted to crisp
labels of regressors. It has also been observed in other vision
tasks, e.g. in the feature learning of bag-of-words, that the
soft-version of kNN beats its hard-version.

As to the influence of the EM-optimization, Fig. 4 shows
that the performance improves with the number of the itera-
tion of the EM. The performance grows very quickly at the
beginning and starts to plateau after 10 iterations. The total
improvement is around 1 dB. We also tested the influence of
our initialization by k-means by a comparison to a random
initialization. It is found that k-means performs only slightly
better than the random one, and the benefit has vanished af-
ter several rounds of iterations. This suggests that our EM
method is robust to the initialization, and is able to gener-
ate good results even with a totally random initialization. It
also suggests that a simple clustering (e.g. k-means ) based
on general features cannot partition well the space of the
regression functions. Our optimization (clustering), which
is guided by the ultimate goal of image super-resolution
— minimizing the overall super-resolving error of all train-
ing patches — performs significantly better than conventional
clustering methods.

From these observations, in all our following experiments,
JOR is by default set to use 5 million training samples, 32
joint regressors learned by our EM method with 10 itera-
tions, and a soft KNN method with neighborhood size of 16.
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Table 1: Average PSNR on Set5, Set14, BD100, and SuperTex136.

Benchmark Bicubic | Zeyde et al. GR ANR NE+LS | NE+NNLS | NE+LLE SRCNN JOR
[ZEP12] [TDV13] | [TDV13] | [TDV13] [TDV13] [TDV13] | [DLHT14] | (Ours)

Set5 x3 30.39 31.90 3141 31.92 31.78 31.60 31.84 32.39 32.55
x4 28.42 29.69 29.34 29.69 29.55 29.47 29.61 30.09 30.19

Setl4 x3 27.54 28.67 28.31 28.65 28.59 28.44 28.60 29.00 29.09
x4 26.00 26.88 26.60 26.85 26.81 26.72 26.81 27.20 27.26

BD100 x3 27.15 27.87 27.70 27.89 27.83 27.73 27.85 28.10 28.17
x4 25.92 26.51 26.37 26.51 26.45 26.41 26.47 26.66 26.74

SuperTex136 | x3 24.63 25.33 2497 25.38 25.34 25.31 25.36 25.47 25.59
x4 23.90 24.52 24.22 24.54 24.51 24.48 24.45 24.61 24.73

4.5. Performance

To asses the performance of our JOR method, we use up-
scaling factors of x3 and x4, and report PSNR results on
the four datasets. The average results of JOR and other state-
of-the-art methods are reported in Table 1. Note that due to
the computational demands we decided not to report results
of NE+RR. However, the previous experiment shown that
NE+RR and NE+LS in our settings can reach comparable
performance with JOR but at much higher computational
cost. The table shows that JOR consistently improves over
all of the compared methods. The improvements over them
are also very considerable, except for SRCNN. However, for
factor x3, the gap between JOR and SRCNN are still 0.16dB
on Set5, 0.09dB on Setl4, 0.07 on BD100, and 0.12 on Su-
perTex136. For factor x4, they are 0.10dB, 0.06dB, 0.08dB,
and 0.12dB, respectively. The differences show clear im-
provement. Also, we should be aware that making further
improvement is very hard when the performance has already
been pushed very high by previous methods, e.g. by SRCNN
method here. The table also shows that JOR performs es-
pecially well for textures. This is mainly because JOR par-
titions training patches into groups of specific patches and
trains specialized regressors. The strategy is more helpful
for complex visual patterns such as textures where a univer-
sal transformation function hardly works well for all sam-
ples. Performance on textures is important as enriching the
missing textures of LR images is one of the ultimate goal of
image super-resolution.

JOR is efficient at testing, as the regression functions
are computed offline and the system only searches k-
nearest neighbors (kNN) during test time. This significantly
speedups the system, as searching kNN can be done effi-
ciently with the help of organized data structures. We use
k-d tree in our experiment. For the case of 5 million patches,
the speed of our system is around 2 ~ 3 seconds for an im-
age of 400 x 400 pixels for upscaling factor x3, which is on
par with the speed of SRCNN method.

As to training time, we see a clear advantage for our JOR
method over the SRCNN. JOR takes tens of minutes to train
the regressors on a desktop PC without using any GPU,
while SRCNN takes 3 days with a GPU. Also, our method is

(© 2015 The Author(s)
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conceptually simpler than SRCNN. The framework is flex-
ible for adaptation, i.e. it is easy to replace some parts by
more sophisticated alternatives, such as the linear regressors
by non-linear ones, the k-d tree by hashing functions.

4.6. Visual Quality

As most of the methods of image super-resolution, JOR is
introduced using a single luminance channel. The RGB im-
ages were converted to YCbCr color space, and the HR out-
put color image is reconstructed by bicubically interpolating
the chrominance channels (Cb and Cr) and super-resolving
the luminance information (Y) of the input LR image.

In Fig. 5, Fig. 6 and Fig. 7, we show results with an up-
scaling factor x3 for natural images and textures from the
four datasets. In Fig. 8 we show the results with an upscal-
ing factor x4. In most cases, JOR is compared to ANR and
SRCNN, as they perform the best among all existing meth-
ods. The figures show that JOR generally yields better visual
results, which is consistent with the PSNR results. Taking
the ‘Foreman’ image in Fig. 5 and the ‘210088’ in Fig. § as
examples, JOR generates sharper edges with fewer ringing
artifacts. As the PSNR shows, JOR also works well for tex-
tures. This can be verified by the results in Fig. 7 and Fig. 8.
For instance, JOR is better in recovering the details of the
woven fabric and the beans, the last two images in Fig. 8.

5. Conclusions

We have introduced a simple and efficient method for im-
age super-resolution. Under the guidance of the ultimate
goal of image super-resolution, we have proposed to jointly
learn a collection of local functions (regressors) which min-
imize the overall super-resolving error of all training data,
and to re-solve each test patch by its most appropriate re-
gressor. Results on four datasets show that the method out-
performs competing methods. The code, the dataset Super-
Tex136, and more results are available at www.vision.
ee.ethz.ch/~daid/JOR.

Acknowledgement. The work is supported by the ERC Ad-
vanced Grant VarCity and the ETH-Singapore project Future
Cities.


www.vision.ee.ethz.ch/~daid/JOR
www.vision.ee.ethz.ch/~daid/JOR

D. Dai & R. Timofte & L. Van Gool / Jointly Optimized Regressors for Image Super-resolution

Original / PSNR Bicubic/31.2

SRCNN/33.3

Original / PSNR Bicubic/32.4 SRCNN/34.4

JOR /34.7

Figure 5: Top to Bottom: the ‘Bird’ from Set5, and the 'Foreman’ and the ‘Pepper’ from Setl14 with an upscaling factor x3.

Original / PSNR Bicubic / 27.9

ANR/28.8 SRCNN/29.0 JOR/29.3
Figure 6: The results of image 37073 from BD100 with an upscaling factor X3.
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Y Y Y Y Y )
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Figure 7: Top to Bottom: Stone_235 and Metal_68 from SuperTex136. with an upscaling factor x 3.
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