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Specific objects vs. class-level objects

A specific object = an instance of an object class
e.g. “my car” instead of “a car”
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Specific objects vs. class-level objects
Traditionally specific object recognition was easier
than class recognition 

Because there is much more variability between the
views of class members
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Illumination Object pose Clutter

ViewpointOcclusions

ITF 2017

Specific objects vs. class-level objects
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Illumination Object pose Clutter

ViewpointIntra-class variationOcclusions

On top of factors affecting specific object recognition, 
there is  added complexity of intra-class variation…

i.e. differences between koala’s in this case

ITF 2017

Specific objects vs. class-level objects
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Intra-class and inter-class variation

The difference between classes can be as small as that 
between instances of the same class … 

yet the distinction needs to be made
ITF 2017

Specific objects vs. class-level objects
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Specific objects vs. class-level objects
Traditionally specific object recognition was easier
than class recognition 

Because there is much more variability between the
views of class members

The first reasonably successful class recognition 
methods were being developed when deep  learning
made its large-scale entry

The capability of deep networks to generalize is so 
good that in deep learning class recognition now 
dominates. 

For deep methods specific object recognition is the 
more difficult task (fine-grained classification…)
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Find these landmarks ...in these images and 1M more
Slide credit: J. Sivic

search photos on the web for particular places 

Example app
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Vision Application: Large-Scale Retrieval

[Philbin CVPR’07]

QueryResults from 5k Flickr images (demo available for 100k set)
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Mobile tourist guide
• Self-localization
• Object / landmark recognition
• Augmented reality
• Wine label rec. 

(Vivino, 1st CV app in Samsung SmartWatch powered by kooaba

Aachen Cathedral

[Quack, Leibe, Van Gool, CIVR’08]
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Once upon a time...
comparing image features with features of objects in 
a database, trying to figure out type + pose

Given image

Image database
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Once upon a time...
comparing image features with features of objects in 
a database, trying to figure out type + pose

Given image

Image database

Slow
hypthesise-and-verify 

process
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Once upon a time...
comparing image features with features of objects in 
a database, trying to figure out type + pose

Given image

Image database

Slow
hypthesise-and-verify 

process

especially the need to get 
both object type and pose 

right to formulate a correct
hypothesis is problematic
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Wireframe model for 3D objects
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Vision Early attempts…1965

Blocks world model, Roberts et al., 1965
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Vision Early attempts…1985

Dealing with occlusions, Lowe, 1985



Computer
Vision More recent Example: 

Invariant-based recognition of planar shapes

The crucial advantage of invariants is that
they decouple object type and pose issues
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Vision Invariant-based recognition of planar shapes

Ex. given here for completely visible planar shapes
- under affine distortions
- using invariant signatures of the outlines 

Image on the left is 
compared against 
database images

of various
animals like that of 
the matching swan

on the right 
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Invariants under affine transf. : ex 1

ratios of areas

8 (x,y) point coordinates – 6 parameters affine transf. 
→ 2 invariants

affine invariant coordinates ( xA, yA) : 

xA =  
x − x2    x − x3

x1 − x3   x2 − x3 3231

13

xxxx
xxxx

yA -  -
-   -

=

are affine invariant and the following 
invariants are based on this

x

x3

x1 x2
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(Rel.) inv. under affine transf. : ex 2

( ) ( ) dtxxabs  ÷÷
ø

ö
çç
è

æ
    ò 3

1
21( ) dtxxx    -ò 1

1 As a function of
start pt start pt



Computer
Vision

(Rel.) inv. under affine transf. : ex 2
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Projective invariance, Rothwell, 1992
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Vision Appearance based methods

The model of an object is simply its image(s).

A simple example: Template matching
Shift the template over the image and compare 

(e.g. Normalized Cross-Correlation or Sum of Squared Diff.)

Template

The problem is variation in the appearance 
because of changes in viewpoint / lighting

Zillions of
templates! 
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Vision The power of Principal Component Anal.

You remember PCA?

(… or the Karhunen-Loeve transform ? )

PCA represents data in a lower-dimensional
space keeping most of the variance

It was seen to be powerful for similar patterns
like faces, that exhibit a lot of redundancy 
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-2s +2s

…

-2s +2s

…

Eigenfaces for compact face representation
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Modes Morphs

Eigenfaces for compact face representation
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Eigenfaces for compact face representation

(self?-) portrait of the

young

Anthony Van Dijck
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Eigenfaces for compact face representation

3D PCA-based reconstruction
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Vision Appearance manifold approach

(Nayar et al. �96)
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Appearance manifold approach
Training

for every object :
- sample the set of viewing conditions                 

(mainly viewpoints in this ex.)
- use these images as feature vectors                    

(after manual bounding-box fitting around the object, 
rescaling, brightness normalization)

over all objects:
- apply a PCA over all the images of all objects                      

(directly on the images)
- keep the dominant PCs                                          

(10-20 enough already)
- sequence of views for 1 object represent a manifold 

in the space of projections                                                           
(fit splines to manifolds + resample if desired)
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The objects were put on a turntable, and imaged 
from a fixed distance and under a fixed elevation 
angle; also the illumination remained fixed

hence the manifolds of appearances are simplified 
to a 1D, closed curve, but only considering the 
elevation angle will normally not suffice… RELATED WORK 5

a

Object Pose

Object Viewpoint Object Elongation

Figure 1.2: Object orientation angle. a) Azimuth and Elevation angles of the
object in the 3D scene. b) Discrete viewpoint angles of the object in the viewing
circle projected over the groundplane. c) Object Elongation angle as observed
by the camera.

Figure 1.3: Car viewpoint estimation output. Note how in addition to the
bounding box, a label indicating the predicted viewpoint is returned.

RELATED WORK 5
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Object Viewpoint

90

Figure 1.2: Object orientation angle. a) Azimuth and Elevation angles of the
object in the 3D scene. b) Discrete viewpoint angles of the object in the viewing
circle projected over the groundplane. c) Object Elongation angle as observed
by the camera.

Figure 1.3: Car viewpoint estimation output. Note how in addition to the
bounding box, a label indicating the predicted viewpoint is returned.

Appearance manifold approach



Computer
Vision

For the illustration below, the images are shown in 
only a 3D space, as only 3 PCs are used in this 
case – for reasons of visualization

Sufficient characterization for recognition and pose 
estimation

Appearance manifold approach
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Appearance manifold approach

Recognition stage  (aka `Testing’)

Represent the incoming image as a point in the 
same PC space

Type: what is the nearest manifold to the point ?

Pose: what is the closest point on that closest 
manifold  ?



Computer
Vision Real-time system (Nayar et al. �96)
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Vision Comparison between model-based and 

appearance-based techniques

Compact  model
Can deal with clutter
Slow analysis-by-synthesis
Models difficult to produce
For limited object classes

Pure model-based

Large models
Cannot deal with clutter

Efficient
Models easy to produce

For wide classes of objects

Pure appearance-based
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Euclidean invariant feature
Training
- look for corners                                                           

(with the Harris corner detector)

- take circular regions around these points, 
of multiple radii    
(cope a bit with scale changes)

- calculate from the intensities in the circular regions           
.    invariants under planar rotation -> feature vectors

- do this from different viewpoints, where the 
invariance cuts down on the number of views needed

.    (here no in-plane rotations necessary) 

- put for every object and for each of its viewpoints the    
.    list of corner positions and their invariant feature           
.    vectors (descriptors) in a database

(Schmid and 
Mohr �97)
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Euclidean invariant features
Example (rotation) invariant gradient:

yyxx GGGG       +

Where        and       represent horizontal and
vertical derivatives of intensity weighted by a
Gaussian profile (`Gaussian derivatives’) 

xG yG

2nd example invariant:

yyxx GG     +

Where        and         represent 2nd order 
Gaussian derivatives 

 xxG yyG

Note 1: several other invariants measured, then all put in a vector
Note 2: compute features for circles at different scales, (i.e. take   
scale into account explicitly) and each scale gets its own vector
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Vision Euclidean invariant feature

Testing

- extract corners and their invariant descriptors from the 
incoming image

- compare these invariants with those stored in the 
database -> find matches 

- look for consistent placement of candidate
matching corner points (e.g. using epipolar geometry) 

- decide which object based on the number of      
remaining matches (i.e. consistently placed matches)
(the best matching image yields the object  type+appr.pose) 

(Schmid and 
Mohr �97)
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Local features: main components

1) Detection: Identify  
interest points

2) Description: Extract 
feature vector 
descriptors around
them 

3) Matching: Determine  
correspondence between
descriptors in two views

],,[ )1()1(
11 dxx !=x

],,[ )2()2(
12 dxx !=x

Kristen Grauman
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Vision Example

Training examples for one object in the database

Test image

+ deal with cluttered background
+ need less training images
~ problems with uniform objects
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Example
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Hybrid techniques

+ Rather compact  model

+ Can deal with clutter and partial occlusion

+ Efficient

+ Models easy to produce 
(take images, fewer  than in pure appearance-based method)

+ For rather wide class of objects 
(almost as wide as in pure appearance based,
but there is a problem with untextured objects)
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Hybrid techniques

The idea of using these local interest points, with
their surroundings characterized by a vector of
features (`descriptor’), became very popular after
Schmid introduced her method.

The invariance of Schmid’s point descriptors was
still quite limited though. Increasing the level of
invariance (larger groups of transformations under which

the descriptor remains unchanged) would further reduce
the number of images that need to be taken as
reference images (fewer viewpoints, for instance)

The descriptors could also be made invariant under
changes of illumination, for instance…

Next we consider affine + photometric invariance
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Matching with local features, what follows
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Hybrid approach that aims to deal with 
large variations in
Viewpoint

Recognition using local affine and 
photometric invariant features



Computer
Vision Recognition using local affine and 

photometric invariant features
Hybrid approach that aims to deal with 

large variations in
Viewpoint
Illumination



Computer
Vision Recognition using local affine and 

photometric invariant features
Hybrid approach that aims to deal with 

large variations in
Viewpoint
Illumination
Background



Computer
Vision Recognition using local affine and 

photometric invariant features
Hybrid approach that aims to deal with 

large variations in
Viewpoint
Illumination
Background
and Occlusions



Computer
Vision Recognition using local affine and 

photometric invariant features
Hybrid approach that aims to deal with 

large variations in
Viewpoint
Illumination
Background
and Occlusions

⇒ Use local invariant features

Invariant features
= features that are preserved under a 
specific group of transformations



Computer
Vision Recognition using local affine and 

photometric invariant features
Hybrid approach that aims to deal with 

large variations in
Viewpoint
Illumination
Background
and Occlusions

⇒ Use local invariant features

Robust to changes 
in viewpoint  and illumination



Computer
Vision Recognition using local affine and 

photometric invariant features
Hybrid approach that aims to deal with 

large variations in
Viewpoint
Illumination
Background
and Occlusions

⇒ Use local invariant features

Robust to occlusions and
changes in background

Robust to changes 
in viewpoint  and illumination
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Affine geometric deformations

Linear photometric changes 
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Local features: desired properties

Repeatability
The same feature can be found in several 
images despite geometric and 
photometric transformations 

Distinctiveness
Each feature has a distinctive descriptor

Thus, we can go further with invariance than
similarities (as in the current example of affine
+ photometric), to increase repeatability, but we
risk to reduce distinctiveness doing so



Computer
Vision Local invariant features

We glossed over another important issue…

Interest points -> neighborhood -> descriptor

The neighborhood should cover the same part of 
the scene in the given image and the reference 
image that we want to match against… but changing
viewpoint then also changes neighbourhood shape

In Schmid’s method a circle was OK, because only
invariance under in-plane rotation was considered

But how about affine invariance? Eg a circle would 
turn into an ellipse under a general affine change



Computer
Vision Local invariant features

… e.g. by going for invariance under 
affinities rather than similarity



Computer
Vision The need for variable patch shape

The important thing is to achieve such change in
patch shape without having to compare the images,
i.e. this should happen on the basis of information 

in one image only !
As in this ex: if the circle would be selected as neighbourood for the image on 
the left, the ellipse should be selected for the image on the right, without any 

knowledge of the image on the left
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Vision Example: starting from edge corners 
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1. Harris corner detection

Example: starting from edge corners
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2. Canny edge detection

Example: starting from edge corners
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3. Evaluation relative affine invariant parameter 
along two edges

Example: starting from edge corners

Moving away from the corner, consider point pairs
that yield equal areas between the curve and the 
straight joint between the pts -> 1D family of pairs
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4. Construct 1-dimensional family of 
parallelogram shaped regions

Example: starting from edge corners
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f

)(lW

5. Select parallelograms based on invariant extrema of 
function

For instance: extrema of average value of a 
color band within the patch

Example: starting from edge corners
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5. Select parallelograms based on local extrema of 
invariant function

Example: starting from edge corners



Increasing the level of invariance: 
`Invariant Neighbourhoods� are needed

note regions are
extracted based
on local info only

This method
started from 
corners on 
edge strings



Computer
Vision The need for variable patch shape

Another example

Note the global perspective/projective distortion, dealt with
rather well with the local affine patches that we use !
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Vision Example 1: edge corners + affine moments



Computer
Vision Other approach yielding invariant 

neighbourhoods (around intensity extrema)
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Local invariant features

Once we have such affinely invariant neighbourhoods,
we again characterize them by extracting descriptors
from them – e.g. affine - photometric invariant ones –
that we match

Next we show results for a specific object recognition 
system that uses affine invariant regions

Some extra tricks are used to increase the success
of affine region matching, that we do not discuss here
(Ferrari, Tuytelaars, and Van Gool, 2006)

As to the choice of affine-photometric invariants we
refer to the literature…
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Results: model objects (planar)

1 model view each
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6 model views

Results: model objects (curved)
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6 model views

Results: model objects (curved)
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8 model views

Results: model objects (3D)
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Results
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Results
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Large scale change, heavy occlusion

Results
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Deformation, illumination change, occlusion

Results
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Large scale change, perspective 
deformation, extensive clutter

Results
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Extensive clutter, scale, occlusion, blur

Results
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Extensive clutter, scale, occlusion, blur

Results
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1) Too slow if naively done

2) Will often fail when only based on descriptor 
matching

Supporting the matching step
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1) Too slow if naively done

2) Will often fail when only based on descriptor 
matching

Supporting the matching step
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1) Hierarchical vocabulary tree for speed-up

Supporting the matching step
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Indexing local features

With potentially thousands of interest pts + their 
descriptors  per image,
and hundreds to millions of images to search, 
how to efficiently find those relevant to a new test
image?

Quantize/cluster the descriptors into `visual words’

And match words hierarchically: vocabulary tree

Use Inverted file indexing schemes

Kristen Grauman
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Visual words: main idea

• Extract some local features from a number of images 

e.g., SIFT descriptor space: 

each point is 128-

dimensional

Slide credit: D. Nister, CVPR 2006
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Visual words: main idea
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Each point is a 
local descriptor, 
e.g. SIFT vector. 
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Vector quantize 
feature space

= cluster the features



Computer
Vision K-means clustering

1. randomly initialize K cluster centers
2. Assign each feature to nearest cluster 

center
3. Recompute cluster center (mean)
4. Iterate from 2, until convergence
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Vision Hierarchical K-means clustering

which with the cited number of 2000 stable features per
frame amounts to about 50 training images in the database.
Lowe’s approach has been used on around 5000 objects
in a commercial application, but we are not aware of an
academic reference describing these results.

For the most part, the above approaches keep amounts
of data around in the database that is on the order of
magnitude as large as the image patches themselves, or
at least the region descriptors. However, the compactness
of the database is very important for query efficiency in
a large database. With our vocabulary tree approach, the
representation of an image patch is simply one or two
integers, which should be contrasted to the hundreds of
bytes or floats used for a descriptor vector.

Compactness is also the most important difference
between our approach and the hierarchical approach used
by Grauman and Darrell [5]. They use a pyramid of
histograms, at each level doubling the number of bins along
each axis without considering the distribution of data. By
using a vocabulary adapted to the likely distribution of
data, we can use a much smaller tree, resulting in better
resolution while maintaining a compact representation. We
also estimate that our approach is around a factor 1000
faster.

For feature extraction, we use our own implementation
of Maximally Stable Extremal Regions (MSERs) [10].
They have been found to perform well in thorough
performance evaluation [13, 4]. We warp an elliptical
patch around each MSER region into a circular patch.
The remaining portion of our feature extraction is then
implemented according to the SIFT feature extraction
pipeline by Lowe [9]. Canonical directions are found based
on an orientation histogram formed on the image gradients.
SIFT descriptors are then extracted relative to the canonical
directions. The SIFT descriptors have been found highly
distinctive in performance evaluation [12]. The normalized
SIFT descriptors are then quantized with the vocabulary
tree. Finally, a hierarchical scoring scheme is applied to
retrieve images from a database.

3. Building and Using the Vocabulary Tree

The vocabulary tree defines a hierarchical quantization
that is built by hierarchical k-means clustering. A large
set of representative descriptor vectors are used in the
unsupervised training of the tree.

Instead of k defining the final number of clusters or
quantization cells, k defines the branch factor (number of
children of each node) of the tree. First, an initial k-
means process is run on the training data, defining k cluster
centers. The training data is then partitioned into k groups,
where each group consists of the descriptor vectors closest
to a particular cluster center.

The same process is then recursively applied to

Figure 2. An illustration of the process of building the vocabulary
tree. The hierarchical quantization is defined at each level by k

centers (in this case k = 3) and their Voronoi regions.

each group of descriptor vectors, recursively defining
quantization cells by splitting each quantization cell into k
new parts. The tree is determined level by level, up to some
maximum number of levels L, and each division into k parts
is only defined by the distribution of the descriptor vectors
that belong to the parent quantization cell. The process is
illustrated in Figure 2.

In the online phase, each descriptor vector is simply
propagated down the tree by at each level comparing
the descriptor vector to the k candidate cluster centers
(represented by k children in the tree) and choosing the
closest one. This is a simple matter of performing k
dot products at each level, resulting in a total of kL dot
products, which is very efficient if k is not too large. The
path down the tree can be encoded by a single integer and
is then available for use in scoring.

Note that the tree directly defines the visual vocabulary
and an efficient search procedure in an integrated
manner. This is different from for example defining a
visual vocabulary non-hierarchically, and then devising
an approximate nearest neighbor search in order to find
visual words efficiently. We find the seamless choice
more appealing, although the latter approach also defines
quantization cells in the original space if used consistently
and deterministically. The hierarchical approach also gives
more flexibility to the subsequent scoring procedure.

While the computational cost of increasing the size of
the vocabulary in a non-hierarchical manner would be very
high, the computational cost in the hierarchical approach is

which with the cited number of 2000 stable features per
frame amounts to about 50 training images in the database.
Lowe’s approach has been used on around 5000 objects
in a commercial application, but we are not aware of an
academic reference describing these results.

For the most part, the above approaches keep amounts
of data around in the database that is on the order of
magnitude as large as the image patches themselves, or
at least the region descriptors. However, the compactness
of the database is very important for query efficiency in
a large database. With our vocabulary tree approach, the
representation of an image patch is simply one or two
integers, which should be contrasted to the hundreds of
bytes or floats used for a descriptor vector.

Compactness is also the most important difference
between our approach and the hierarchical approach used
by Grauman and Darrell [5]. They use a pyramid of
histograms, at each level doubling the number of bins along
each axis without considering the distribution of data. By
using a vocabulary adapted to the likely distribution of
data, we can use a much smaller tree, resulting in better
resolution while maintaining a compact representation. We
also estimate that our approach is around a factor 1000
faster.

For feature extraction, we use our own implementation
of Maximally Stable Extremal Regions (MSERs) [10].
They have been found to perform well in thorough
performance evaluation [13, 4]. We warp an elliptical
patch around each MSER region into a circular patch.
The remaining portion of our feature extraction is then
implemented according to the SIFT feature extraction
pipeline by Lowe [9]. Canonical directions are found based
on an orientation histogram formed on the image gradients.
SIFT descriptors are then extracted relative to the canonical
directions. The SIFT descriptors have been found highly
distinctive in performance evaluation [12]. The normalized
SIFT descriptors are then quantized with the vocabulary
tree. Finally, a hierarchical scoring scheme is applied to
retrieve images from a database.

3. Building and Using the Vocabulary Tree

The vocabulary tree defines a hierarchical quantization
that is built by hierarchical k-means clustering. A large
set of representative descriptor vectors are used in the
unsupervised training of the tree.

Instead of k defining the final number of clusters or
quantization cells, k defines the branch factor (number of
children of each node) of the tree. First, an initial k-
means process is run on the training data, defining k cluster
centers. The training data is then partitioned into k groups,
where each group consists of the descriptor vectors closest
to a particular cluster center.

The same process is then recursively applied to

Figure 2. An illustration of the process of building the vocabulary
tree. The hierarchical quantization is defined at each level by k

centers (in this case k = 3) and their Voronoi regions.

each group of descriptor vectors, recursively defining
quantization cells by splitting each quantization cell into k
new parts. The tree is determined level by level, up to some
maximum number of levels L, and each division into k parts
is only defined by the distribution of the descriptor vectors
that belong to the parent quantization cell. The process is
illustrated in Figure 2.

In the online phase, each descriptor vector is simply
propagated down the tree by at each level comparing
the descriptor vector to the k candidate cluster centers
(represented by k children in the tree) and choosing the
closest one. This is a simple matter of performing k
dot products at each level, resulting in a total of kL dot
products, which is very efficient if k is not too large. The
path down the tree can be encoded by a single integer and
is then available for use in scoring.

Note that the tree directly defines the visual vocabulary
and an efficient search procedure in an integrated
manner. This is different from for example defining a
visual vocabulary non-hierarchically, and then devising
an approximate nearest neighbor search in order to find
visual words efficiently. We find the seamless choice
more appealing, although the latter approach also defines
quantization cells in the original space if used consistently
and deterministically. The hierarchical approach also gives
more flexibility to the subsequent scoring procedure.

While the computational cost of increasing the size of
the vocabulary in a non-hierarchical manner would be very
high, the computational cost in the hierarchical approach is

Allows to use larger vocabularies  and thereby yields 
better results
In the example k=3, but typically it is chosen higher, e.g. k=10 and
6 layers could be used for search in about 1M images
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Vision Hierarchical K-means clustering

which with the cited number of 2000 stable features per
frame amounts to about 50 training images in the database.
Lowe’s approach has been used on around 5000 objects
in a commercial application, but we are not aware of an
academic reference describing these results.

For the most part, the above approaches keep amounts
of data around in the database that is on the order of
magnitude as large as the image patches themselves, or
at least the region descriptors. However, the compactness
of the database is very important for query efficiency in
a large database. With our vocabulary tree approach, the
representation of an image patch is simply one or two
integers, which should be contrasted to the hundreds of
bytes or floats used for a descriptor vector.

Compactness is also the most important difference
between our approach and the hierarchical approach used
by Grauman and Darrell [5]. They use a pyramid of
histograms, at each level doubling the number of bins along
each axis without considering the distribution of data. By
using a vocabulary adapted to the likely distribution of
data, we can use a much smaller tree, resulting in better
resolution while maintaining a compact representation. We
also estimate that our approach is around a factor 1000
faster.

For feature extraction, we use our own implementation
of Maximally Stable Extremal Regions (MSERs) [10].
They have been found to perform well in thorough
performance evaluation [13, 4]. We warp an elliptical
patch around each MSER region into a circular patch.
The remaining portion of our feature extraction is then
implemented according to the SIFT feature extraction
pipeline by Lowe [9]. Canonical directions are found based
on an orientation histogram formed on the image gradients.
SIFT descriptors are then extracted relative to the canonical
directions. The SIFT descriptors have been found highly
distinctive in performance evaluation [12]. The normalized
SIFT descriptors are then quantized with the vocabulary
tree. Finally, a hierarchical scoring scheme is applied to
retrieve images from a database.

3. Building and Using the Vocabulary Tree

The vocabulary tree defines a hierarchical quantization
that is built by hierarchical k-means clustering. A large
set of representative descriptor vectors are used in the
unsupervised training of the tree.

Instead of k defining the final number of clusters or
quantization cells, k defines the branch factor (number of
children of each node) of the tree. First, an initial k-
means process is run on the training data, defining k cluster
centers. The training data is then partitioned into k groups,
where each group consists of the descriptor vectors closest
to a particular cluster center.

The same process is then recursively applied to

Figure 2. An illustration of the process of building the vocabulary
tree. The hierarchical quantization is defined at each level by k

centers (in this case k = 3) and their Voronoi regions.

each group of descriptor vectors, recursively defining
quantization cells by splitting each quantization cell into k
new parts. The tree is determined level by level, up to some
maximum number of levels L, and each division into k parts
is only defined by the distribution of the descriptor vectors
that belong to the parent quantization cell. The process is
illustrated in Figure 2.

In the online phase, each descriptor vector is simply
propagated down the tree by at each level comparing
the descriptor vector to the k candidate cluster centers
(represented by k children in the tree) and choosing the
closest one. This is a simple matter of performing k
dot products at each level, resulting in a total of kL dot
products, which is very efficient if k is not too large. The
path down the tree can be encoded by a single integer and
is then available for use in scoring.

Note that the tree directly defines the visual vocabulary
and an efficient search procedure in an integrated
manner. This is different from for example defining a
visual vocabulary non-hierarchically, and then devising
an approximate nearest neighbor search in order to find
visual words efficiently. We find the seamless choice
more appealing, although the latter approach also defines
quantization cells in the original space if used consistently
and deterministically. The hierarchical approach also gives
more flexibility to the subsequent scoring procedure.

While the computational cost of increasing the size of
the vocabulary in a non-hierarchical manner would be very
high, the computational cost in the hierarchical approach is

which with the cited number of 2000 stable features per
frame amounts to about 50 training images in the database.
Lowe’s approach has been used on around 5000 objects
in a commercial application, but we are not aware of an
academic reference describing these results.

For the most part, the above approaches keep amounts
of data around in the database that is on the order of
magnitude as large as the image patches themselves, or
at least the region descriptors. However, the compactness
of the database is very important for query efficiency in
a large database. With our vocabulary tree approach, the
representation of an image patch is simply one or two
integers, which should be contrasted to the hundreds of
bytes or floats used for a descriptor vector.

Compactness is also the most important difference
between our approach and the hierarchical approach used
by Grauman and Darrell [5]. They use a pyramid of
histograms, at each level doubling the number of bins along
each axis without considering the distribution of data. By
using a vocabulary adapted to the likely distribution of
data, we can use a much smaller tree, resulting in better
resolution while maintaining a compact representation. We
also estimate that our approach is around a factor 1000
faster.

For feature extraction, we use our own implementation
of Maximally Stable Extremal Regions (MSERs) [10].
They have been found to perform well in thorough
performance evaluation [13, 4]. We warp an elliptical
patch around each MSER region into a circular patch.
The remaining portion of our feature extraction is then
implemented according to the SIFT feature extraction
pipeline by Lowe [9]. Canonical directions are found based
on an orientation histogram formed on the image gradients.
SIFT descriptors are then extracted relative to the canonical
directions. The SIFT descriptors have been found highly
distinctive in performance evaluation [12]. The normalized
SIFT descriptors are then quantized with the vocabulary
tree. Finally, a hierarchical scoring scheme is applied to
retrieve images from a database.

3. Building and Using the Vocabulary Tree

The vocabulary tree defines a hierarchical quantization
that is built by hierarchical k-means clustering. A large
set of representative descriptor vectors are used in the
unsupervised training of the tree.

Instead of k defining the final number of clusters or
quantization cells, k defines the branch factor (number of
children of each node) of the tree. First, an initial k-
means process is run on the training data, defining k cluster
centers. The training data is then partitioned into k groups,
where each group consists of the descriptor vectors closest
to a particular cluster center.

The same process is then recursively applied to

Figure 2. An illustration of the process of building the vocabulary
tree. The hierarchical quantization is defined at each level by k

centers (in this case k = 3) and their Voronoi regions.

each group of descriptor vectors, recursively defining
quantization cells by splitting each quantization cell into k
new parts. The tree is determined level by level, up to some
maximum number of levels L, and each division into k parts
is only defined by the distribution of the descriptor vectors
that belong to the parent quantization cell. The process is
illustrated in Figure 2.

In the online phase, each descriptor vector is simply
propagated down the tree by at each level comparing
the descriptor vector to the k candidate cluster centers
(represented by k children in the tree) and choosing the
closest one. This is a simple matter of performing k
dot products at each level, resulting in a total of kL dot
products, which is very efficient if k is not too large. The
path down the tree can be encoded by a single integer and
is then available for use in scoring.

Note that the tree directly defines the visual vocabulary
and an efficient search procedure in an integrated
manner. This is different from for example defining a
visual vocabulary non-hierarchically, and then devising
an approximate nearest neighbor search in order to find
visual words efficiently. We find the seamless choice
more appealing, although the latter approach also defines
quantization cells in the original space if used consistently
and deterministically. The hierarchical approach also gives
more flexibility to the subsequent scoring procedure.

While the computational cost of increasing the size of
the vocabulary in a non-hierarchical manner would be very
high, the computational cost in the hierarchical approach is

Allows to use larger vocabularies  and thereby yields 

better results

In the example k=3, but typically it is chosen higher, e.g. k=10 and

6 layers could be used for search in about 1M images

Here subdivisions for only one cluster

at each layer… actually done for all 
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Visual words

Ex: each group of 
patches belongs to 

same visual word

Figure from  Sivic & Zisserman, ICCV 2003 Kristen Grauman
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Indexing local features: inverted file index

For text documents, 
an efficient way to 
find all pages on 
which a word
occurs is to use an 
index…

We want to find all 
images in which a 
visual word occurs.

Kristen Grauman
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Inverted file index

Database images are loaded into the index,  
mapping words to image numbers

Kristen Grauman
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New query image is mapped to indices of database 
images that share a word.

Inverted file index

Kristen Grauman
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Retrieval with 
vocabulary tree + inverted file index

Slide credit: David Nister

[Nister & Stewenius, CVPR’06]
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Performance

Evaluated on large databases
Indexing with up to 1M images

Online recognition for database
of 50,000 CD covers
Retrieval in ~1s

Best with very large 
visual vocabularies

NOTE: object class recognition
typically done with smaller
vocabularies

[Nister & Stewenius, CVPR’06]
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1) Too slow if naively done

2) Will often fail when only based on descriptor 
matching

Supporting the matching step
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Matching can start from interest points and their 
descriptors, but such matching is rather fragile.

Typically, several `matches’ are wrong, so-called 
outliers, and one needs to add a test on the 
configuration of the matches in order to remove the 
outliers and keep the correct inliers.

Epipolar geometry and projective matching are often 
used tests, using RANSAC to withstand unavoidable 
mismatches.

We describe RANSAC after the next slide

RANSAC - intermezzo
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Vision The RANSAC test on epipolar geometry assumes 

that there is a fundamental matrix that matches are in 
agreement with, and 
The RANSAC test on projectivities that there is a 
projectivity that maps points in the first image onto 
the matching points in the second
Such tests allow for the elimination of many outliers

but these tests make strong assumptions about the 
scene:
Epipolar geometry: rigidity of the scene (i.e. objects 
in the scene do not move with respect to each other)
Projectivity: the scene is not only rigid, but also 
(largely) planar
Nonetheless such tests help !

RANSAC
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Vision algorithm (full name RANdom SAmple Consensus) that 

assumes the data consists of "inliers", i.e. correct matches, 
and "outliers”, i.e. incorrect matches.

From a set of match candidates, RANSAC  
1.randomly select the minimal nmb of matches to 
formulate an initial test hypothesis (e.g. 7 for epipolar 
geometry or 4 for a projectivity; this nmb better be small since the 
selected tuple must not contain any outlier match for it to work)

2.check how consistent other matches are with this          
hypothesis, i.e. in how far it is supported
3.use all supporting matches to refine the                             
hypothesis and discard the rest
Finally, RANSAC selects the hypothesis with maximal 
support after a fixed number of trials or after sufficient 
support was reached

RANSAC
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Vision How often should we draw?....  Suppose 

n - minimum number of data required to fit the model 
k - nmb of iterations / trials performed by the algorithm 
t – threshold to determine when a match fits a model 
d - nmb of `inliers’ needed for a model to be OK

t and d are typically chosen beforehand. The nmb of 
iterations k can then be calculated. Let p be the 
probability that RANSAC only selects inliers for the n 
data units generating a valid test at least once, i.e. the 
probability that the algorithm gets a good output. 
When w is the proportion of inliers (estimated),

is the probability that NO good hypothesis is selected  

1− p = 1−wn( )k

RANSAC
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Ex. cleaning matches based on RANSAC-Ep.Geom.

Supporting the matching step

Juice Shelf Valbonne

Great Wall Leuven Corridor

Figure 1: The experimental settings. Inliers and outliers are superimposed over the first and second images respectively.
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Juice Shelf Valbonne

Great Wall Leuven Corridor

Figure 1: The experimental settings. Inliers and outliers are superimposed over the first and second images respectively.
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[Chum, Werner, Matas]

Matches are sought between the left and the right image. 
On the left one sees all matches found by matching corner
descriptors only… on the right after RANSAC check spatial
consistency; quite some pruning !
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… but remember that these tests 
make quite strong assumptions 
like rigidity (epipolar geometry) 
or planarity (proj.) – even if they
tend to work quite well also in 
conditions where they hold only
partially

Supporting the matching step

RISK!   

There are alternative schemes like topological filtering
that do not have these issues, 

but the large majority of systems are RANSAC-based.
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