
Computer
Vision

Specific
Object

Recognition

è

Computer
Vision

Specific objects vs. class-level objects

A specific object = an instance of an object class
e.g. “my car” instead of “a car”

Computer
Vision

Specific objects vs. class-level objects
Traditionally specific object recognition was easier
than class recognition

Because there is much more variability between the
views of class members

Computer
Vision

Illumination Object pose Clutter

ViewpointOcclusions

ITF 2017

Specific objects vs. class-level objects

Computer
Vision

Illumination Object pose Clutter

ViewpointIntra-class variationOcclusions

On top of factors affecting specific object recognition,
there is added complexity of intra-class variation…

i.e. differences between koala’s in this case

ITF 2017

Specific objects vs. class-level objects

Computer
Vision

Intra-class and inter-class variation

The difference between classes can be as small as that
between instances of the same class …

yet the distinction needs to be made
ITF 2017

Specific objects vs. class-level objects

Computer
Vision

Specific objects vs. class-level objects
Traditionally specific object recognition was easier
than class recognition

Because there is much more variability between the
views of class members

The first reasonably successful class recognition
methods were being developed when deep learning
made its large-scale entry

The capability of deep networks to generalize is so
good that in deep learning class recognition now
dominates.

For deep methods specific object recognition is the
more difficult task (fine-grained classification…)

Computer
Vision

Find these landmarks ...in these images and 1M more
Slide credit: J. Sivic

search photos on the web for particular places

Example app

Computer
Vision Application: Large-Scale Retrieval

[Philbin CVPR’07]

QueryResults from 5k Flickr images (demo available for 100k set)

Computer
Vision Example Applications

Mobile tourist guide
• Self-localization
• Object / landmark recognition
• Augmented reality
• Wine label rec.

(Vivino, 1st CV app in Samsung SmartWatch powered by kooaba

Aachen Cathedral

[Quack, Leibe, Van Gool, CIVR’08]

Computer
Vision

Computer
Vision

Once upon a time...
comparing image features with features of objects in
a database, trying to figure out type + pose

Given image

Image database

Computer
Vision

Once upon a time...
comparing image features with features of objects in
a database, trying to figure out type + pose

Given image

Image database

Slow
hypthesise-and-verify

process

Computer
Vision

Once upon a time...
comparing image features with features of objects in
a database, trying to figure out type + pose

Given image

Image database

Slow
hypthesise-and-verify

process

especially the need to get
both object type and pose

right to formulate a correct
hypothesis is problematic

Computer
Vision Model-based approaches

Wireframe model for 3D objects

Computer
Vision Early attempts…1965

Blocks world model, Roberts et al., 1965

Computer
Vision Early attempts…1985

Dealing with occlusions, Lowe, 1985

Computer
Vision More recent Example:

Invariant-based recognition of planar shapes

The crucial advantage of invariants is that
they decouple object type and pose issues

Computer
Vision Invariant-based recognition of planar shapes

Ex. given here for completely visible planar shapes
- under affine distortions
- using invariant signatures of the outlines

Image on the left is
compared against
database images

of various
animals like that of
the matching swan

on the right

Computer
Vision

Invariants under affine transf. : ex 1

ratios of areas

8 (x,y) point coordinates – 6 parameters affine transf.
→ 2 invariants

affine invariant coordinates (xA, yA) :

xA =
x − x2 x − x3

x1 − x3 x2 − x3 3231

13

xxxx
xxxx

yA - -
- -

=

are affine invariant and the following
invariants are based on this

x

x3

x1 x2

Computer
Vision

(Rel.) inv. under affine transf. : ex 2

() () dtxxabs ÷÷
ø

ö
çç
è

æ
 ò 3

1
21() dtxxx -ò 1

1 As a function of
start pt start pt

Computer
Vision

(Rel.) inv. under affine transf. : ex 2

() () dtxxabs ÷÷
ø

ö
çç
è

æ
 ò 3

1
21() dtxxx -ò 1

1 as a function of
start pt start pt

dt
dy

dt
dx , 2

2

2

2 ,
dt
yd

dt
xd(())

Computer
Vision Early attempts…1992

Projective invariance, Rothwell, 1992

Computer
Vision

Computer
Vision Appearance based methods

The model of an object is simply its image(s).

A simple example: Template matching
Shift the template over the image and compare

(e.g. Normalized Cross-Correlation or Sum of Squared Diff.)

Template

The problem is variation in the appearance
because of changes in viewpoint / lighting

Zillions of
templates!

Computer
Vision The power of Principal Component Anal.

You remember PCA?

(… or the Karhunen-Loeve transform ?)

PCA represents data in a lower-dimensional
space keeping most of the variance

It was seen to be powerful for similar patterns
like faces, that exhibit a lot of redundancy

Computer
Vision

-2s +2s

…

-2s +2s

…

Eigenfaces for compact face representation

Computer
Vision

Modes Morphs

Eigenfaces for compact face representation

Computer
Vision

Eigenfaces for compact face representation

(self?-) portrait of the

young

Anthony Van Dijck

Computer
Vision

Eigenfaces for compact face representation

3D PCA-based reconstruction

Computer
Vision Appearance manifold approach

(Nayar et al. �96)

Computer
Vision

Appearance manifold approach
Training

for every object :
- sample the set of viewing conditions

(mainly viewpoints in this ex.)
- use these images as feature vectors

(after manual bounding-box fitting around the object,
rescaling, brightness normalization)

over all objects:
- apply a PCA over all the images of all objects

(directly on the images)
- keep the dominant PCs

(10-20 enough already)
- sequence of views for 1 object represent a manifold

in the space of projections
(fit splines to manifolds + resample if desired)

Computer
Vision

The objects were put on a turntable, and imaged
from a fixed distance and under a fixed elevation
angle; also the illumination remained fixed

hence the manifolds of appearances are simplified
to a 1D, closed curve, but only considering the
elevation angle will normally not suffice… RELATED WORK 5

a

Object Pose

Object Viewpoint Object Elongation

Figure 1.2: Object orientation angle. a) Azimuth and Elevation angles of the
object in the 3D scene. b) Discrete viewpoint angles of the object in the viewing
circle projected over the groundplane. c) Object Elongation angle as observed
by the camera.

Figure 1.3: Car viewpoint estimation output. Note how in addition to the
bounding box, a label indicating the predicted viewpoint is returned.

RELATED WORK 5

0°

45°

90°

135°

180°

-135°

-90°

-45°

90°

b

Object Viewpoint

90

Figure 1.2: Object orientation angle. a) Azimuth and Elevation angles of the
object in the 3D scene. b) Discrete viewpoint angles of the object in the viewing
circle projected over the groundplane. c) Object Elongation angle as observed
by the camera.

Figure 1.3: Car viewpoint estimation output. Note how in addition to the
bounding box, a label indicating the predicted viewpoint is returned.

Appearance manifold approach

Computer
Vision

For the illustration below, the images are shown in
only a 3D space, as only 3 PCs are used in this
case – for reasons of visualization

Sufficient characterization for recognition and pose
estimation

Appearance manifold approach

Computer
Vision

Appearance manifold approach

Recognition stage (aka `Testing’)

Represent the incoming image as a point in the
same PC space

Type: what is the nearest manifold to the point ?

Pose: what is the closest point on that closest
manifold ?

Computer
Vision Real-time system (Nayar et al. �96)

Computer
Vision Comparison between model-based and

appearance-based techniques

Compact model
Can deal with clutter
Slow analysis-by-synthesis
Models difficult to produce
For limited object classes

Pure model-based

Large models
Cannot deal with clutter

Efficient
Models easy to produce

For wide classes of objects

Pure appearance-based

Computer
Vision

Computer
Vision

Euclidean invariant feature
Training
- look for corners

(with the Harris corner detector)

- take circular regions around these points,
of multiple radii
(cope a bit with scale changes)

- calculate from the intensities in the circular regions
. invariants under planar rotation -> feature vectors

- do this from different viewpoints, where the
invariance cuts down on the number of views needed

. (here no in-plane rotations necessary)

- put for every object and for each of its viewpoints the
. list of corner positions and their invariant feature
. vectors (descriptors) in a database

(Schmid and
Mohr �97)

Computer
Vision

Euclidean invariant features
Example (rotation) invariant gradient:

yyxx GGGG +

Where and represent horizontal and
vertical derivatives of intensity weighted by a
Gaussian profile (`Gaussian derivatives’)

xG yG

2nd example invariant:

yyxx GG +

Where and represent 2nd order
Gaussian derivatives

 xxG yyG

Note 1: several other invariants measured, then all put in a vector
Note 2: compute features for circles at different scales, (i.e. take
scale into account explicitly) and each scale gets its own vector

Computer
Vision Euclidean invariant feature

Testing

- extract corners and their invariant descriptors from the
incoming image

- compare these invariants with those stored in the
database -> find matches

- look for consistent placement of candidate
matching corner points (e.g. using epipolar geometry)

- decide which object based on the number of
remaining matches (i.e. consistently placed matches)
(the best matching image yields the object type+appr.pose)

(Schmid and
Mohr �97)

Computer
Vision

Local features: main components

1) Detection: Identify
interest points

2) Description: Extract
feature vector
descriptors around
them

3) Matching: Determine
correspondence between
descriptors in two views

],,[)1()1(
11 dxx !=x

],,[)2()2(
12 dxx !=x

Kristen Grauman

Computer
Vision Example

Training examples for one object in the database

Test image

+ deal with cluttered background
+ need less training images
~ problems with uniform objects

Computer
Vision

Example

Computer
Vision

Hybrid techniques

+ Rather compact model

+ Can deal with clutter and partial occlusion

+ Efficient

+ Models easy to produce
(take images, fewer than in pure appearance-based method)

+ For rather wide class of objects
(almost as wide as in pure appearance based,
but there is a problem with untextured objects)

Computer
Vision

Hybrid techniques

The idea of using these local interest points, with
their surroundings characterized by a vector of
features (`descriptor’), became very popular after
Schmid introduced her method.

The invariance of Schmid’s point descriptors was
still quite limited though. Increasing the level of
invariance (larger groups of transformations under which

the descriptor remains unchanged) would further reduce
the number of images that need to be taken as
reference images (fewer viewpoints, for instance)

The descriptors could also be made invariant under
changes of illumination, for instance…

Next we consider affine + photometric invariance

Computer
Vision

Matching with local features, what follows

Computer
Vision

Hybrid approach that aims to deal with
large variations in
Viewpoint

Recognition using local affine and
photometric invariant features

Computer
Vision Recognition using local affine and

photometric invariant features
Hybrid approach that aims to deal with

large variations in
Viewpoint
Illumination

Computer
Vision Recognition using local affine and

photometric invariant features
Hybrid approach that aims to deal with

large variations in
Viewpoint
Illumination
Background

Computer
Vision Recognition using local affine and

photometric invariant features
Hybrid approach that aims to deal with

large variations in
Viewpoint
Illumination
Background
and Occlusions

Computer
Vision Recognition using local affine and

photometric invariant features
Hybrid approach that aims to deal with

large variations in
Viewpoint
Illumination
Background
and Occlusions

⇒ Use local invariant features

Invariant features
= features that are preserved under a
specific group of transformations

Computer
Vision Recognition using local affine and

photometric invariant features
Hybrid approach that aims to deal with

large variations in
Viewpoint
Illumination
Background
and Occlusions

⇒ Use local invariant features

Robust to changes
in viewpoint and illumination

Computer
Vision Recognition using local affine and

photometric invariant features
Hybrid approach that aims to deal with

large variations in
Viewpoint
Illumination
Background
and Occlusions

⇒ Use local invariant features

Robust to occlusions and
changes in background

Robust to changes
in viewpoint and illumination

Computer
Vision

Affine geometric deformations

Linear photometric changes

ú
û

ù
ê
ë

é
+ú
û

ù
ê
ë

é
ú
û

ù
ê
ë

é
=ú

û

ù
ê
ë

é
f
e

y
x

dc
ba

y
x
'
'

ú
ú
ú

û

ù

ê
ê
ê

ë

é
+
ú
ú
ú

û

ù

ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

B

G

R

B

G

R

o
o
o

B
G
R

s
s

s

B
G
R

00
00
00

'
'
'

Transformations for planar objects

Computer
Vision

Local features: desired properties

Repeatability
The same feature can be found in several
images despite geometric and
photometric transformations

Distinctiveness
Each feature has a distinctive descriptor

Thus, we can go further with invariance than
similarities (as in the current example of affine
+ photometric), to increase repeatability, but we
risk to reduce distinctiveness doing so

Computer
Vision Local invariant features

We glossed over another important issue…

Interest points -> neighborhood -> descriptor

The neighborhood should cover the same part of
the scene in the given image and the reference
image that we want to match against… but changing
viewpoint then also changes neighbourhood shape

In Schmid’s method a circle was OK, because only
invariance under in-plane rotation was considered

But how about affine invariance? Eg a circle would
turn into an ellipse under a general affine change

Computer
Vision Local invariant features

… e.g. by going for invariance under
affinities rather than similarity

Computer
Vision The need for variable patch shape

The important thing is to achieve such change in
patch shape without having to compare the images,
i.e. this should happen on the basis of information

in one image only !
As in this ex: if the circle would be selected as neighbourood for the image on
the left, the ellipse should be selected for the image on the right, without any

knowledge of the image on the left

Computer
Vision Example: starting from edge corners

Computer
Vision

1. Harris corner detection

Example: starting from edge corners

Computer
Vision

2. Canny edge detection

Example: starting from edge corners

Computer
Vision

3. Evaluation relative affine invariant parameter
along two edges

Example: starting from edge corners

Moving away from the corner, consider point pairs
that yield equal areas between the curve and the
straight joint between the pts -> 1D family of pairs

Computer
Vision

4. Construct 1-dimensional family of
parallelogram shaped regions

Example: starting from edge corners

Computer
Vision

f

)(lW

5. Select parallelograms based on invariant extrema of
function

For instance: extrema of average value of a
color band within the patch

Example: starting from edge corners

Computer
Vision

5. Select parallelograms based on local extrema of
invariant function

Example: starting from edge corners

Increasing the level of invariance:
`Invariant Neighbourhoods� are needed

note regions are
extracted based
on local info only

This method
started from
corners on
edge strings

Computer
Vision The need for variable patch shape

Another example

Note the global perspective/projective distortion, dealt with
rather well with the local affine patches that we use !

Computer
Vision Example 1: edge corners + affine moments

Computer
Vision Other approach yielding invariant

neighbourhoods (around intensity extrema)

Computer
Vision

Local invariant features

Once we have such affinely invariant neighbourhoods,
we again characterize them by extracting descriptors
from them – e.g. affine - photometric invariant ones –
that we match

Next we show results for a specific object recognition
system that uses affine invariant regions

Some extra tricks are used to increase the success
of affine region matching, that we do not discuss here
(Ferrari, Tuytelaars, and Van Gool, 2006)

As to the choice of affine-photometric invariants we
refer to the literature…

Computer
Vision

Results: model objects (planar)

1 model view each

Computer
Vision

6 model views

Results: model objects (curved)

Computer
Vision

6 model views

Results: model objects (curved)

Computer
Vision

8 model views

Results: model objects (3D)

Computer
Vision

Results

Computer
Vision

Results

Computer
Vision

Large scale change, heavy occlusion

Results

Computer
Vision

Deformation, illumination change, occlusion

Results

Computer
Vision

Large scale change, perspective
deformation, extensive clutter

Results

Computer
Vision

Extensive clutter, scale, occlusion, blur

Results

Computer
Vision

Extensive clutter, scale, occlusion, blur

Results

Computer
Vision

Computer
Vision

1) Too slow if naively done

2) Will often fail when only based on descriptor
matching

Supporting the matching step

Computer
Vision

1) Too slow if naively done

2) Will often fail when only based on descriptor
matching

Supporting the matching step

Computer
Vision

1) Hierarchical vocabulary tree for speed-up

Supporting the matching step

Computer
Vision

Indexing local features

With potentially thousands of interest pts + their
descriptors per image,
and hundreds to millions of images to search,
how to efficiently find those relevant to a new test
image?

Quantize/cluster the descriptors into `visual words’

And match words hierarchically: vocabulary tree

Use Inverted file indexing schemes

Kristen Grauman

Computer
Vision

Visual words: main idea

• Extract some local features from a number of images

e.g., SIFT descriptor space:

each point is 128-

dimensional

Slide credit: D. Nister, CVPR 2006

Computer
Vision

Visual words: main idea

Computer
Vision Visual words: main idea

Computer
Vision Visual words: main idea

Computer
Vision

Each point is a
local descriptor,
e.g. SIFT vector.

Computer
Vision

Vector quantize
feature space

= cluster the features

Computer
Vision K-means clustering

1. randomly initialize K cluster centers
2. Assign each feature to nearest cluster

center
3. Recompute cluster center (mean)
4. Iterate from 2, until convergence

Computer
Vision Hierarchical K-means clustering

which with the cited number of 2000 stable features per
frame amounts to about 50 training images in the database.
Lowe’s approach has been used on around 5000 objects
in a commercial application, but we are not aware of an
academic reference describing these results.

For the most part, the above approaches keep amounts
of data around in the database that is on the order of
magnitude as large as the image patches themselves, or
at least the region descriptors. However, the compactness
of the database is very important for query efficiency in
a large database. With our vocabulary tree approach, the
representation of an image patch is simply one or two
integers, which should be contrasted to the hundreds of
bytes or floats used for a descriptor vector.

Compactness is also the most important difference
between our approach and the hierarchical approach used
by Grauman and Darrell [5]. They use a pyramid of
histograms, at each level doubling the number of bins along
each axis without considering the distribution of data. By
using a vocabulary adapted to the likely distribution of
data, we can use a much smaller tree, resulting in better
resolution while maintaining a compact representation. We
also estimate that our approach is around a factor 1000
faster.

For feature extraction, we use our own implementation
of Maximally Stable Extremal Regions (MSERs) [10].
They have been found to perform well in thorough
performance evaluation [13, 4]. We warp an elliptical
patch around each MSER region into a circular patch.
The remaining portion of our feature extraction is then
implemented according to the SIFT feature extraction
pipeline by Lowe [9]. Canonical directions are found based
on an orientation histogram formed on the image gradients.
SIFT descriptors are then extracted relative to the canonical
directions. The SIFT descriptors have been found highly
distinctive in performance evaluation [12]. The normalized
SIFT descriptors are then quantized with the vocabulary
tree. Finally, a hierarchical scoring scheme is applied to
retrieve images from a database.

3. Building and Using the Vocabulary Tree

The vocabulary tree defines a hierarchical quantization
that is built by hierarchical k-means clustering. A large
set of representative descriptor vectors are used in the
unsupervised training of the tree.

Instead of k defining the final number of clusters or
quantization cells, k defines the branch factor (number of
children of each node) of the tree. First, an initial k-
means process is run on the training data, defining k cluster
centers. The training data is then partitioned into k groups,
where each group consists of the descriptor vectors closest
to a particular cluster center.

The same process is then recursively applied to

Figure 2. An illustration of the process of building the vocabulary
tree. The hierarchical quantization is defined at each level by k

centers (in this case k = 3) and their Voronoi regions.

each group of descriptor vectors, recursively defining
quantization cells by splitting each quantization cell into k
new parts. The tree is determined level by level, up to some
maximum number of levels L, and each division into k parts
is only defined by the distribution of the descriptor vectors
that belong to the parent quantization cell. The process is
illustrated in Figure 2.

In the online phase, each descriptor vector is simply
propagated down the tree by at each level comparing
the descriptor vector to the k candidate cluster centers
(represented by k children in the tree) and choosing the
closest one. This is a simple matter of performing k
dot products at each level, resulting in a total of kL dot
products, which is very efficient if k is not too large. The
path down the tree can be encoded by a single integer and
is then available for use in scoring.

Note that the tree directly defines the visual vocabulary
and an efficient search procedure in an integrated
manner. This is different from for example defining a
visual vocabulary non-hierarchically, and then devising
an approximate nearest neighbor search in order to find
visual words efficiently. We find the seamless choice
more appealing, although the latter approach also defines
quantization cells in the original space if used consistently
and deterministically. The hierarchical approach also gives
more flexibility to the subsequent scoring procedure.

While the computational cost of increasing the size of
the vocabulary in a non-hierarchical manner would be very
high, the computational cost in the hierarchical approach is

which with the cited number of 2000 stable features per
frame amounts to about 50 training images in the database.
Lowe’s approach has been used on around 5000 objects
in a commercial application, but we are not aware of an
academic reference describing these results.

For the most part, the above approaches keep amounts
of data around in the database that is on the order of
magnitude as large as the image patches themselves, or
at least the region descriptors. However, the compactness
of the database is very important for query efficiency in
a large database. With our vocabulary tree approach, the
representation of an image patch is simply one or two
integers, which should be contrasted to the hundreds of
bytes or floats used for a descriptor vector.

Compactness is also the most important difference
between our approach and the hierarchical approach used
by Grauman and Darrell [5]. They use a pyramid of
histograms, at each level doubling the number of bins along
each axis without considering the distribution of data. By
using a vocabulary adapted to the likely distribution of
data, we can use a much smaller tree, resulting in better
resolution while maintaining a compact representation. We
also estimate that our approach is around a factor 1000
faster.

For feature extraction, we use our own implementation
of Maximally Stable Extremal Regions (MSERs) [10].
They have been found to perform well in thorough
performance evaluation [13, 4]. We warp an elliptical
patch around each MSER region into a circular patch.
The remaining portion of our feature extraction is then
implemented according to the SIFT feature extraction
pipeline by Lowe [9]. Canonical directions are found based
on an orientation histogram formed on the image gradients.
SIFT descriptors are then extracted relative to the canonical
directions. The SIFT descriptors have been found highly
distinctive in performance evaluation [12]. The normalized
SIFT descriptors are then quantized with the vocabulary
tree. Finally, a hierarchical scoring scheme is applied to
retrieve images from a database.

3. Building and Using the Vocabulary Tree

The vocabulary tree defines a hierarchical quantization
that is built by hierarchical k-means clustering. A large
set of representative descriptor vectors are used in the
unsupervised training of the tree.

Instead of k defining the final number of clusters or
quantization cells, k defines the branch factor (number of
children of each node) of the tree. First, an initial k-
means process is run on the training data, defining k cluster
centers. The training data is then partitioned into k groups,
where each group consists of the descriptor vectors closest
to a particular cluster center.

The same process is then recursively applied to

Figure 2. An illustration of the process of building the vocabulary
tree. The hierarchical quantization is defined at each level by k

centers (in this case k = 3) and their Voronoi regions.

each group of descriptor vectors, recursively defining
quantization cells by splitting each quantization cell into k
new parts. The tree is determined level by level, up to some
maximum number of levels L, and each division into k parts
is only defined by the distribution of the descriptor vectors
that belong to the parent quantization cell. The process is
illustrated in Figure 2.

In the online phase, each descriptor vector is simply
propagated down the tree by at each level comparing
the descriptor vector to the k candidate cluster centers
(represented by k children in the tree) and choosing the
closest one. This is a simple matter of performing k
dot products at each level, resulting in a total of kL dot
products, which is very efficient if k is not too large. The
path down the tree can be encoded by a single integer and
is then available for use in scoring.

Note that the tree directly defines the visual vocabulary
and an efficient search procedure in an integrated
manner. This is different from for example defining a
visual vocabulary non-hierarchically, and then devising
an approximate nearest neighbor search in order to find
visual words efficiently. We find the seamless choice
more appealing, although the latter approach also defines
quantization cells in the original space if used consistently
and deterministically. The hierarchical approach also gives
more flexibility to the subsequent scoring procedure.

While the computational cost of increasing the size of
the vocabulary in a non-hierarchical manner would be very
high, the computational cost in the hierarchical approach is

Allows to use larger vocabularies and thereby yields
better results
In the example k=3, but typically it is chosen higher, e.g. k=10 and
6 layers could be used for search in about 1M images

Computer

Vision Hierarchical K-means clustering

which with the cited number of 2000 stable features per
frame amounts to about 50 training images in the database.
Lowe’s approach has been used on around 5000 objects
in a commercial application, but we are not aware of an
academic reference describing these results.

For the most part, the above approaches keep amounts
of data around in the database that is on the order of
magnitude as large as the image patches themselves, or
at least the region descriptors. However, the compactness
of the database is very important for query efficiency in
a large database. With our vocabulary tree approach, the
representation of an image patch is simply one or two
integers, which should be contrasted to the hundreds of
bytes or floats used for a descriptor vector.

Compactness is also the most important difference
between our approach and the hierarchical approach used
by Grauman and Darrell [5]. They use a pyramid of
histograms, at each level doubling the number of bins along
each axis without considering the distribution of data. By
using a vocabulary adapted to the likely distribution of
data, we can use a much smaller tree, resulting in better
resolution while maintaining a compact representation. We
also estimate that our approach is around a factor 1000
faster.

For feature extraction, we use our own implementation
of Maximally Stable Extremal Regions (MSERs) [10].
They have been found to perform well in thorough
performance evaluation [13, 4]. We warp an elliptical
patch around each MSER region into a circular patch.
The remaining portion of our feature extraction is then
implemented according to the SIFT feature extraction
pipeline by Lowe [9]. Canonical directions are found based
on an orientation histogram formed on the image gradients.
SIFT descriptors are then extracted relative to the canonical
directions. The SIFT descriptors have been found highly
distinctive in performance evaluation [12]. The normalized
SIFT descriptors are then quantized with the vocabulary
tree. Finally, a hierarchical scoring scheme is applied to
retrieve images from a database.

3. Building and Using the Vocabulary Tree

The vocabulary tree defines a hierarchical quantization
that is built by hierarchical k-means clustering. A large
set of representative descriptor vectors are used in the
unsupervised training of the tree.

Instead of k defining the final number of clusters or
quantization cells, k defines the branch factor (number of
children of each node) of the tree. First, an initial k-
means process is run on the training data, defining k cluster
centers. The training data is then partitioned into k groups,
where each group consists of the descriptor vectors closest
to a particular cluster center.

The same process is then recursively applied to

Figure 2. An illustration of the process of building the vocabulary
tree. The hierarchical quantization is defined at each level by k

centers (in this case k = 3) and their Voronoi regions.

each group of descriptor vectors, recursively defining
quantization cells by splitting each quantization cell into k
new parts. The tree is determined level by level, up to some
maximum number of levels L, and each division into k parts
is only defined by the distribution of the descriptor vectors
that belong to the parent quantization cell. The process is
illustrated in Figure 2.

In the online phase, each descriptor vector is simply
propagated down the tree by at each level comparing
the descriptor vector to the k candidate cluster centers
(represented by k children in the tree) and choosing the
closest one. This is a simple matter of performing k
dot products at each level, resulting in a total of kL dot
products, which is very efficient if k is not too large. The
path down the tree can be encoded by a single integer and
is then available for use in scoring.

Note that the tree directly defines the visual vocabulary
and an efficient search procedure in an integrated
manner. This is different from for example defining a
visual vocabulary non-hierarchically, and then devising
an approximate nearest neighbor search in order to find
visual words efficiently. We find the seamless choice
more appealing, although the latter approach also defines
quantization cells in the original space if used consistently
and deterministically. The hierarchical approach also gives
more flexibility to the subsequent scoring procedure.

While the computational cost of increasing the size of
the vocabulary in a non-hierarchical manner would be very
high, the computational cost in the hierarchical approach is

which with the cited number of 2000 stable features per
frame amounts to about 50 training images in the database.
Lowe’s approach has been used on around 5000 objects
in a commercial application, but we are not aware of an
academic reference describing these results.

For the most part, the above approaches keep amounts
of data around in the database that is on the order of
magnitude as large as the image patches themselves, or
at least the region descriptors. However, the compactness
of the database is very important for query efficiency in
a large database. With our vocabulary tree approach, the
representation of an image patch is simply one or two
integers, which should be contrasted to the hundreds of
bytes or floats used for a descriptor vector.

Compactness is also the most important difference
between our approach and the hierarchical approach used
by Grauman and Darrell [5]. They use a pyramid of
histograms, at each level doubling the number of bins along
each axis without considering the distribution of data. By
using a vocabulary adapted to the likely distribution of
data, we can use a much smaller tree, resulting in better
resolution while maintaining a compact representation. We
also estimate that our approach is around a factor 1000
faster.

For feature extraction, we use our own implementation
of Maximally Stable Extremal Regions (MSERs) [10].
They have been found to perform well in thorough
performance evaluation [13, 4]. We warp an elliptical
patch around each MSER region into a circular patch.
The remaining portion of our feature extraction is then
implemented according to the SIFT feature extraction
pipeline by Lowe [9]. Canonical directions are found based
on an orientation histogram formed on the image gradients.
SIFT descriptors are then extracted relative to the canonical
directions. The SIFT descriptors have been found highly
distinctive in performance evaluation [12]. The normalized
SIFT descriptors are then quantized with the vocabulary
tree. Finally, a hierarchical scoring scheme is applied to
retrieve images from a database.

3. Building and Using the Vocabulary Tree

The vocabulary tree defines a hierarchical quantization
that is built by hierarchical k-means clustering. A large
set of representative descriptor vectors are used in the
unsupervised training of the tree.

Instead of k defining the final number of clusters or
quantization cells, k defines the branch factor (number of
children of each node) of the tree. First, an initial k-
means process is run on the training data, defining k cluster
centers. The training data is then partitioned into k groups,
where each group consists of the descriptor vectors closest
to a particular cluster center.

The same process is then recursively applied to

Figure 2. An illustration of the process of building the vocabulary
tree. The hierarchical quantization is defined at each level by k

centers (in this case k = 3) and their Voronoi regions.

each group of descriptor vectors, recursively defining
quantization cells by splitting each quantization cell into k
new parts. The tree is determined level by level, up to some
maximum number of levels L, and each division into k parts
is only defined by the distribution of the descriptor vectors
that belong to the parent quantization cell. The process is
illustrated in Figure 2.

In the online phase, each descriptor vector is simply
propagated down the tree by at each level comparing
the descriptor vector to the k candidate cluster centers
(represented by k children in the tree) and choosing the
closest one. This is a simple matter of performing k
dot products at each level, resulting in a total of kL dot
products, which is very efficient if k is not too large. The
path down the tree can be encoded by a single integer and
is then available for use in scoring.

Note that the tree directly defines the visual vocabulary
and an efficient search procedure in an integrated
manner. This is different from for example defining a
visual vocabulary non-hierarchically, and then devising
an approximate nearest neighbor search in order to find
visual words efficiently. We find the seamless choice
more appealing, although the latter approach also defines
quantization cells in the original space if used consistently
and deterministically. The hierarchical approach also gives
more flexibility to the subsequent scoring procedure.

While the computational cost of increasing the size of
the vocabulary in a non-hierarchical manner would be very
high, the computational cost in the hierarchical approach is

Allows to use larger vocabularies and thereby yields

better results

In the example k=3, but typically it is chosen higher, e.g. k=10 and

6 layers could be used for search in about 1M images

Here subdivisions for only one cluster

at each layer… actually done for all

Computer
Vision

Visual words

Ex: each group of
patches belongs to

same visual word

Figure from Sivic & Zisserman, ICCV 2003 Kristen Grauman

Computer
Vision

Indexing local features: inverted file index

For text documents,
an efficient way to
find all pages on
which a word
occurs is to use an
index…

We want to find all
images in which a
visual word occurs.

Kristen Grauman

Computer
Vision

Inverted file index

Database images are loaded into the index,
mapping words to image numbers

Kristen Grauman

Computer
Vision

New query image is mapped to indices of database
images that share a word.

Inverted file index

Kristen Grauman

Computer
Vision

Retrieval with
vocabulary tree + inverted file index

Slide credit: David Nister

[Nister & Stewenius, CVPR’06]

Computer
Vision

Performance

Evaluated on large databases
Indexing with up to 1M images

Online recognition for database
of 50,000 CD covers
Retrieval in ~1s

Best with very large
visual vocabularies

NOTE: object class recognition
typically done with smaller
vocabularies

[Nister & Stewenius, CVPR’06]

Computer
Vision

1) Too slow if naively done

2) Will often fail when only based on descriptor
matching

Supporting the matching step

Computer
Vision

Matching can start from interest points and their
descriptors, but such matching is rather fragile.

Typically, several `matches’ are wrong, so-called
outliers, and one needs to add a test on the
configuration of the matches in order to remove the
outliers and keep the correct inliers.

Epipolar geometry and projective matching are often
used tests, using RANSAC to withstand unavoidable
mismatches.

We describe RANSAC after the next slide

RANSAC - intermezzo

Computer
Vision The RANSAC test on epipolar geometry assumes

that there is a fundamental matrix that matches are in
agreement with, and
The RANSAC test on projectivities that there is a
projectivity that maps points in the first image onto
the matching points in the second
Such tests allow for the elimination of many outliers

but these tests make strong assumptions about the
scene:
Epipolar geometry: rigidity of the scene (i.e. objects
in the scene do not move with respect to each other)
Projectivity: the scene is not only rigid, but also
(largely) planar
Nonetheless such tests help !

RANSAC

Computer
Vision algorithm (full name RANdom SAmple Consensus) that

assumes the data consists of "inliers", i.e. correct matches,
and "outliers”, i.e. incorrect matches.

From a set of match candidates, RANSAC
1.randomly select the minimal nmb of matches to
formulate an initial test hypothesis (e.g. 7 for epipolar
geometry or 4 for a projectivity; this nmb better be small since the
selected tuple must not contain any outlier match for it to work)

2.check how consistent other matches are with this
hypothesis, i.e. in how far it is supported
3.use all supporting matches to refine the
hypothesis and discard the rest
Finally, RANSAC selects the hypothesis with maximal
support after a fixed number of trials or after sufficient
support was reached

RANSAC

Computer
Vision How often should we draw?.... Suppose

n - minimum number of data required to fit the model
k - nmb of iterations / trials performed by the algorithm
t – threshold to determine when a match fits a model
d - nmb of `inliers’ needed for a model to be OK

t and d are typically chosen beforehand. The nmb of
iterations k can then be calculated. Let p be the
probability that RANSAC only selects inliers for the n
data units generating a valid test at least once, i.e. the
probability that the algorithm gets a good output.
When w is the proportion of inliers (estimated),

is the probability that NO good hypothesis is selected

1− p = 1−wn()k

RANSAC

Computer
Vision

Ex. cleaning matches based on RANSAC-Ep.Geom.

Supporting the matching step

Juice Shelf Valbonne

Great Wall Leuven Corridor

Figure 1: The experimental settings. Inliers and outliers are superimposed over the first and second images respectively.

4

Juice Shelf Valbonne

Great Wall Leuven Corridor

Figure 1: The experimental settings. Inliers and outliers are superimposed over the first and second images respectively.

4

[Chum, Werner, Matas]

Matches are sought between the left and the right image.
On the left one sees all matches found by matching corner
descriptors only… on the right after RANSAC check spatial
consistency; quite some pruning !

Computer
Vision

… but remember that these tests
make quite strong assumptions
like rigidity (epipolar geometry)
or planarity (proj.) – even if they
tend to work quite well also in
conditions where they hold only
partially

Supporting the matching step

RISK!

There are alternative schemes like topological filtering
that do not have these issues,

but the large majority of systems are RANSAC-based.

Computer
Vision

