Specific
Object
Recognition



o ad opecific objects vs. class-level objects
Vision

x S

A specific object = an instance of an object class
e.g. “‘my car’ instead of “a car”




o ad opecific objects vs. class-level objects

MECUR Traditionally specific object recognition was easier
than class recognition

Because there is much more variability between the
views of class members




o ad opecific objects vs. class-level objects
Vision

Occlusions Viewpoint

ITF 2017




o ad opecific objects vs. class-level objects
Vision

[

Occlusions Intra-class variation Viewpoint

On top of factors affecting specific object recognition,
there is added complexity of intra-class variation...
I.e. differences between koala’s in this case

ITF 2017




o ad opecific objects vs. class-level objects
Vision

Intra-class and inter-class variation
¢ —— }

T -
N

The difference between classes can be as small as that
between instances of the same class ...
yet the distinction needs to be made

ITF 2017




Computer
Vision

Specific objects vs. class-level objects

Traditionally specific object recognition was easier
than class recognition

Because there is much more variability between the
views of class members

The first reasonably successful class recognition
methods were being developed when deep learning
made its large-scale entry

The capability of deep networks to generalize is so
good that in deep learning class recognition now
dominates.

For deep methods specific object recognition is the
more difficult task (fine-grained classification...)



SeBICE Example a
Vision P PP

search photos on the web for particular places

)

iy
LB B g
o —
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ALy

Find these landmarks ...in these images and 1M more

Slide credit: J. Sivic




Computer

Vision Application: Large-Scale Retrieval

QueryResults from 5k Flickr images (demo available for 100k set) |
[Philbin CVPR’07]
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Vision Example Applications
Aachen C ‘
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Mobile tourist guide
« Self-localization
* Object / landmark recognition
« Augmented reality
* Wine label rec.
(Vivino, 1st CV app in Samsung SmartWatch powered by kooaba

[Quack, Leibe, Van Gool, CIVR’08]



Model-hased




Computer Once upon a time...

Vision comparing image features with features of objects in
a database, trying to figure out type + pose

Given image

Image database




Computer Once upon a time...

Vision comparing image features with features of objects in
a database, trying to figure out type + pose

Slow
Given hypthesise-and-verify
process
O~ |~
O S

Image database




Computer Once upon a time...

Vision comparing image features with features of objects in
a database, trying to figure out type + pose

Slow O

hypthesise-and-verify O
process

O~~~ | A
especially the need to get IO

both object type and pose
right to formulate a correct —
hypothesis is problematic




Computer
Vision Model-based approaches
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Wireframe model for 3D objects




Computer
Vision Early attempts...1965

Blocks world model, Roberts et al., 1965




Computer
Vision Early attempts...1985

Dealing with occlusions, Lowe, 1985




Computer
Vision More recent Example:

Invariant-based recognition of planar shapes

The crucial advantage of invariants is that
they decouple object type and pose issues




Computer
Vision

Invariant-based recognition of planar shapes

EX. given here for completely visible planar shapes
- under affine distortions

- using invariant signatures of the outlines

Image on the left is
compared against
database images
of various
animals like that of
the matching swan
on the right




Invariants under affine transf. : ex 1

Computer
Vision

ratios of areas are affine invariant and the following
Invariants are based on this

8 (x,y) point coordinates — 6 parameters affine transf.
— 2 invariants
affine invariant coordinates ( Xa, Ya) :

- |x-x, x-x x-x x-X|
Xyg = Vi~

‘xl — X3 Xy x3‘

‘xl — X3 X, _xs‘




SRBISE  (Rel.) inv. under affine transf. : ex 2
Vision

1
_ 1) —=(2)|z
HX — X, X ‘ dt As a function of abS ( ) x( IE dt
start pt start pt




SRBISE  (Rel.) inv. under affine transf. : ex 2
Vision



Computer
Vision Early attempts...1992

Projective invariance, Rothwell, 1992




Lmage-based




Computer
Vision Appearance based methods

The model of an object is simply its image(s).

A simple example: Template matching

Shift the template over the image and compare
(e.g. Normalized Cross-Correlation or Sum of Squared Diff.)

Template

The problem is variation in the appearance Zillions of
because of changes in viewpoint / lighting templates!




Computer
UECURE The power of Principal Component Anal.

You remember PCA?

(... or the Karhunen-Loeve transform ? )
PCA represents data in a lower-dimensional
space keeping most of the variance

It was seen to be powerful for similar patterns
like faces, that exhibit a lot of redundancy




Eigenfaces for compact face representation

Computer
Vision




Computer il _
Vel Eigenfaces for compact face representation




Eigenfaces for compact face representation

Computer
Vision

(self?-) portrait of the
young

Anthony Van Dijck




Eigenfaces for compact face representation

Computer

Vision 3D PCA-based reconstruction




Computer
Vision Appearance manifold approach

(Nayar et al. ‘96)




Computer Appearance manifold approach

\USICW Training

for every object :

- sample the set of viewing conditions
(mainly viewpoints in this ex.)

- use these images as feature vectors

(after manual bounding-box fitting around the object,
rescaling, brightness normalization)

over all objects:

- apply a PCA over all the images of all objects
(directly on the images)

- keep the dominant PCs
(10-20 enough already)

- sequence of views for 1 object represent a manifold

in the space of projections
(fit splines to manifolds + resample if desired)




Computer Appearance manifold approach
Vision

The objects were put on a turntable, and imaged
from a fixed distance and under a fixed elevation
angle; also the illumination remained fixed

hence the manifolds of appearances are simplified
to a 1D, closed curve, but only considering the
elevation angle will normally not suffice...

Object Pose ()

distance
elevation




Computer Appearance manifold approach
Vision

For the illustration below, the images are shown in
only a 3D space, as only 3 PCs are used in this
case — for reasons of visualization

Sufficient characterization for recognition and pose
estimation




Computer
Vision

Appearance manifold approach

Recognition stage (aka Testing’)

Represent the incoming image as a point in the
same PC space

Type: what is the nearest manifold to the point ?

Pose: what is the closest point on that closest
manifold ?



Computer
Vision Real-time system (Nayar et al. ‘96)




Computer

Comparison between model-based and
appearance-based techniques

Vision

Pure model-based Pure appearance-based

Compact model Large models
Can deal with clutter Cannot deal with clutter
Slow analysis-by-synthesis Efficient
Models difficult to produce Models easy to produce

For limited object classes For wide classes of objects







o4 Euclidean invariant feature (schmid anc
Mohr ‘97)

Vision

Training
- look for corners
(with the Harris corner detector)

take circular regions around these points,
of multiple radii
(cope a bit with scale changes)

calculate from the intensities in the circular regions
invariants under planar rotation -> feature vectors

do this from different viewpoints, where the
invariance cuts down on the number of views needed
(here no in-plane rotations necessary)

put for every object and for each of its viewpoints the
list of corner positions and their invariant feature
vectors (descriptors) in a database




Euclidean invariant features
Computer

Vision Example (rotation) invariant gradient:
G.G, +G,G,

Where Gx and Gy represent horizontal and
vertical derivatives of intensity weighted by a
Gaussian profile (‘Gaussian derivatives’)

2nd example invariant:

Gxx + ny :. et

A

e "7!.-" g 1
~ 18

Where G, and G, represent 2nd order -
Gaussian derivatives

Note 1: several other invariants measured, then all put in a vector
Note 2: compute features for circles at different scales, (i.e. take
scale into account explicitly) and each scale gets its own vector




_ _ _ (Schmid and
Euclidean invariant feature yionr ‘97)

Computer
Vision

Testing

extract corners and their invariant descriptors from the
incoming image

compare these invariants with those stored in the
database -> find matches

- look for consistent placement of candidate
matching corner points (e.g. using epipolar geometry)

- decide which object based on the number of

remaining matches (i.e. consistently placed matches)
(the best matching image yields the object type+appr.pose)




C‘\’/ﬁnPUter Local features: main components
ISIoN

F

1) Detection: Identify
interest points

2) Description: Extract
feature vector
descriptors around
them

3) Matching: Determine
correspondence between
descriptors in two views X, =[x7,..., X,

Kristen Grauman



Computer
Vision Example

Training examples for one object in the database

£
B

£ £k

Test image =

+ deal with cluttered background
+ need less training images
~ problems with uniform objects




Computer Example
Vision

The Goal




Computer
Vision

Hybrid techniques

+ Rather compact model

+ Can deal with clutter and partial occlusion

+ Efficient

+ Models easy to produce

(take images, fewer than in pure appearance-based method)

+ For rather wide class of objects

(almost as wide as in pure appearance based,
but there is a problem with untextured objects)



Computer
Vision

Hybrid techniques

The idea of using these local interest points, with
their surroundings characterized by a vector of
features (‘descriptor’), became very popular after
Schmid introduced her method.

The invariance of Schmid’s point descriptors was
still quite limited though. Increasing the level of
Invariance (larger groups of transformations under which
the descriptor remains unchanged) would further reduce
the number of images that need to be taken as
reference images (fewer viewpoints, for instance)

The descriptors could also be made invariant under
changes of illumination, for instance...

Next we consider affine + photometric invariance



Matching with local features, what follows

Computer
Vision

* Detect and describe features in model image(s)
(done: scale invariant features; next: affine invariant ones)

* Detect and describe features for test image
* Match features (including geometric verification, e.g. RANSAC)

* Count matches
- many? 2 object recognized and localized
- few? = object not present in test image

2

~N
k‘

s

4
\

test




Computer
Vision

Recognition using local affine and
photometric invariant features

Hybrid approach that aims to deal with
large variations in
Viewpoint




Computer
Vision

Recognition using local affine and
photometric invariant features

Hybrid approach that aims to deal with
large variations in
Viewpoint
lllumination




Computer
Vision

Recognition using local affine and
photometric invariant features

Hybrid approach that aims to deal with
large variations in
Viewpoint
lllumination
Background

P e
E S
[S— S~




Computer
Vision

Recognition using local affine and
photometric invariant features

Hybrid approach that aims to deal with
large variations in
Viewpoint
lllumination
Background
and Occlusions




Computer
Vision

Recognition using local affine and
photometric invariant features

Hybrid approach that aims to deal with
large variations in
Viewpoint
lllumination
Background
and Occlusions

= Use local invariant features




Computer
Vision

Recognition using local affine and
photometric invariant features

Hybrid approach that aims to deal with
large variations in
Viewpoint
lllumination
Background
and Occlusions

= Use local invariant features

Robust to changes
In viewpoint and illumination




Computer
Vision

Recognition using local affine and
photometric invariant features

Hybrid approach that aims to deal with
large variations in
Viewpoint
lllumination
Background
and Occlusions

= Use local invariant features

Robust to changes
In viewpoint and illumination

Robust to occlusions and
changes in background
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Vision

Transformations for planar objects

Affine geometric deformations

a bl x
y

_I_

e

/

Linear photometric changes

R'
G'

s, O
0 s,
0 O

0
0

Sp
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Vision

Local features: desired properties

Repeatability

The same feature can be found in several
Images despite geometric and
photometric transformations

Distinctiveness
Each feature has a distinctive descriptor

Thus, we can go further with invariance than
similarities (as in the current example of affine
+ photometric), to increase repeatability, but we
risk to reduce distinctiveness doing so




Computer
Vision Local invariant features

We glossed over another important issue...
Interest points -> neighborhood -> descriptor

The neighborhood should cover the same part of
the scene in the given image and the reference
Image that we want to match against... but changing
viewpoint then also changes neighbourhood shape

In Schmid’s method a circle was OK, because only
iInvariance under in-plane rotation was considered

But how about affine invariance? Eg a circle would
turn into an ellipse under a general affine change




Computer

Vision | ocal invariant features
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... €.g. by going for invariance under
affinities rather than similarity




Computer

Vision The need for variable patch shape
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The important thing is to achieve such change in
patch shape without having to compare the images,
l.e. this should happen on the basis of information

In one image only !
As in this ex: if the circle would be selected as neighbourood for the image on
the left, the ellipse should be selected for the image on the right, without any
knowledge of the image on the left




Computer
Vision Example: starting from edge corners




Computer
Vision Example: starting from edge corners

1. Harris corner detection




Computer
Vision Example: starting from edge corners

2. Canny edge detection




Computer
Vision Example: starting from edge corners

3. Evaluation relative affine invariant parameter
along two edges

Moving away from the corner, consider point pairs
that yield equal areas between the curve and the
straight joint between the pts -> 1D family of pairs




Computer
Vision Example: starting from edge corners

4. Construct 1-dimensional family of
parallelogram shaped regions




Computer
Vision Example: starting from edge corners

5. Select parallelograms based on invariant extrema of
function

For instance: extrema of average value of a
color band within the patch

fa

Q)




Computer
Vision Example: starting from edge corners

5. Select parallelograms based on local extrema of
invariant function




Increasing the level of invariance:
“Invariant Nelghbourhoods are needed

note regions are
extracted based

on local info only
This method
started from
corners on

edge strings



Computer
Vision

The need for variable patch shape

Another example

Note the global perspective/projective distortion, dealt with
rather well with the local affine patches that we use !




Computer
S Example 1: edge corners + affine moments




Computer

Vision Other approach yielding invariant

neighbourhoods (around intensity extrema)




Computer | ocal invariant features
Vision

Once we have such affinely invariant neighbourhoods,
we again characterize them by extracting descriptors
from them — e.g. affine - photometric invariant ones —
that we match

Next we show results for a specific object recognition
system that uses affine invariant regions

Some extra tricks are used to increase the success

of affine region matching, that we do not discuss here
(Ferrari, Tuytelaars, and Van Gool, 2006)

As to the choice of affine-photometric invariants we
refer to the literature...




il Results: model objects (planar)

Vision

1 model view each



Results: model objects (curved)

Computer



il Results: model objects (curved)

Vision

6 model views



el  Results: model objects (3D)

Vision
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Results
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Vision

Results
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heavy occlusion

Large scale change,



Computer Resu |tS

Vision
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Deformation, illumination change, occlusion



Computer Resu |tS

Vision

Large scale change, perspective
deformation, extensive clutter



Computer Results

Vision

Extensive clutter, scale, occlusion, blur



Computer Results

Vision

Extensive clutter, scale, occlusion, blur




Robustitying
Hybrid techniques




Computer
Vision Supporting the matching step

1) Too slow if naively done

2) Will often fail when only based on descriptor
matching




Computer
Vision Supporting the matching step

1) Too slow if naively done

2) Will often fail when only based on descriptor
matching




Computer
Vision Supporting the matching step

1) Hierarchical vocabulary tree for speed-up




Computer Indexing local features
Vision

With potentially thousands of interest pts + their
descriptors per image,
and hundreds to millions of images to search,

how to efficiently find those relevant to a new test
image”?

Quantize/cluster the descriptors into ‘visual words’
And match words hierarchically: vocabulary tree

Use Inverted file indexing schemes

Kristen Grauman



Computer Visual words: main idea
Vision
Extract some local features from a number of images

e.g., SIFT descriptor space:
each point is 128-
dimensional

Slide credit: D. Nister, CVPR 2006



CompAley Visual words: main idea
Vision




Computer
Vision

Visual words: main idea
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Each pointis a
* . e local descriptor,
e.g. SIFT vector.




Computer
Vision

Vector quantize
feature space
= cluster the features



Computer
Vision

K-means clustering

randomly initialize K cluster centers

Assign each feature to nearest cluster
center

Recompute cluster center (mean)
lterate from 2, until convergence



Computer
Vision Hierarchical K-means clustering

Allows to use larger vocabularies and thereby yields

better results
In the example k=3, but typically it is chosen higher, e.g. k=10 and
6 layers could be used for search in about 1M images




Computer
Vision Hierarchical K-means clustering

Here subdivisions for only one cluster
h at each layer... actually done for all

Allows to use larger vocabularies and thereby yields

better results
In the example k=3, but typically it is chosen higher, e.g. k=10 and
6 layers could be used for search in about 1M images




Computer Visual words
Vision

Ex: each group of uunnuuuuuu
patches belongs to Enuu,uuuuuu
same visual word Euuuuunuuu
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Indexing local features: inverted file index

Computer

Vision

[ I
“Along -75,* From Detroft to Buttertty Center, McGuire; 134 Drvving Lanes; 85
Florida; inside back cover CAA (see AAA) Duval County; 163

"Drive 1-95,* From Boston 1o
Florida; inside back cover
1929 Spanish Trall Roadway:
101-102,104
511 Tealfic Information; 83
ATA (Barrier isl) - |-85 Access; 86
AAA (and CAA); 83
AAA National Office; 88
Abbreviations,
Colored 25 mile Maps; cover
Exit Services; 196
Travelogue; 85
Alica; 177
Agricultral Inspection Stns; 126
Ah-Tah-Thi-Ki Museum; 180
Air Conditioning, First; 112
Alabama; 124
Alachua; 132
County; 131
Aafia River; 143
Alapaha, Name; 126
Alfred B Maclay Gardens; 106
Alligator Alley; 154-158
Alligator Farm, St Augustine; 169
Alligator Hole (dedinition); 157
Alligator, Buddy; 155
Alligators; 100,135,138,147,156
Anastasia lsland; 170
Anhaica; 108-109,146
Apalachicola River: 112
Appleton Mus of Arl; 1356
Aquifer; 102
Arablan Nights; 94
Art Musoum, Ringing; 147
Aruba Beach Cale; 183
Auclla River Project; 106
Babcock-Web WMA; 151
Bahia Mar Marina; 184
Baker County; 99
Barafoot Mallmen; 182
Barge Canal; 137
Bae Line Expy, 80
Balz Cutiet Mai; 89

CCC, The; 111,1132,115,135,142

Ca 0'Zan; 147

Caloosahaichee River; 152
Name; 150

Canaveral Natnl Seashore; 173

Cannon Creek Airpark; 130

Canopy Read; 106,160

Cape Canaverak 174

Cassllo San Marcos; 169

Cave Diving: 131

Cayo Costa, Name; 150

Colebration; 53

Charlotte County, 149

Chariotte Harbor; 150

Choctawatches, Nama; 115
Circus Museum, Ringling; 147
Citrus; 88,97,130,136,140,180
CityPiace, W Palm Beach; 180
City Maps,
Ft Lauderdale Expwys; 194195
Jacksorville, 163
Kissimmes Expwys; 192-183
Miami Expressways; 194-195
Ovlando Expressways; 182-183
Pansacola; 26
Tallahassea; 191
Tampa-St, Petersburg; 63
SN, Augsutine; 191
Civil War; 100,108,127,138,141
Clearwater Marine Aquarkum; 187
Coffier County; 154
Collier, Barron, 152
Colonial Spanizh Quarters; 168
Columbia County; 101,128
Coquina Building Material; 165
Corkscrew Swamp, Name; 154
Cowbaoys; 95
Crab Trap 1I; 144
Cracker, Florida; 88,685,132
Crosstown Expy: 11,35,98.143

Eau Galie; 175
Edison, Thomas; 152
Eglin AFB; 116-118
Eight Reale; 176
Ellenton; 144-145
Emanue! Point Wreck; 120
Emergency Calboxes; 63
Epiptiyles; 142,148,157,159
Escambia Bay; 119
Bridge (I-10); 119
County; 120
Estoro; 153
Everglade 90,95,139-140,154-160
Draining of; 156,181
Wikdlifo MA; 160
Wonder Gardens; 154
Falling Waters SP; 115
Fantasy of Flight; 95
Fayer Dykes SP; 171
Fires, Forest; 166
Fires, Prescribed ; 148
Fisherman's Vilage; 151
Flagler County; 171
Flagler, Heary; 97,165,167,171
Florida Agquarism; 166
Flocida,
12,000 years ago; 187
Cavern SP; 114
Mag of all Expressways: 2-3
Mus of Natural History; 134
National Cemetery ; 141
Part of Africa; 177
Piatform; 187
Sheriff's Boys Camp; 126
Sports Hall of Fame; 130
Sun ‘'n Fun Museum; 97
Supreme Court; 107
Florida's Turnpike (FTP), 178,189
25 mile Strip Maps: 66
Administration; 189
Con System; 190
Exit Services; 185
HEFT: 76,161,120

For text documents,
an efficient way to
find all pages on
which a word
occurs is to use an
index...

We want to find all
images in which a
visual word occurs.

Kristen Grauman



Computer Inverted file index
Vision
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Database images are loaded into the index,
mapping words to image numbers

Kristen Grauman



Computer Inverted file index
Vision

New query image

New query image is mappea to indices of database
iImages that share a word.

Kristen Grauman



Retrieval with
vocabulary tree + inverted file index

Computer
Vision

rg. [Nister & Stewenius, CVPR’06]
Slide credit: David Nister




Computer Performance
Vision

Evaluated on large databases
Indexing with up to 1M images
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of 50,000 CD covers

Retrieval in ~1s

Best with very large
visual vocabularies
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NOTE: object class recognition
typically done with smaller
vocabularies




Computer
Vision Supporting the matching step

1) Too slow if naively done

2) Will often fail when only based on descriptor
matching
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Vision

RANSAC - intermezzo

Matching can start from interest points and their
descriptors, but such matching is rather fragile.

Typically, several matches’ are wrong, so-called
outliers, and one needs to add a test on the
configuration of the matches in order to remove the
outliers and keep the correct inliers.

Epipolar geometry and projective matching are often
used tests, using RANSAC to withstand unavoidable
mismatches.

We describe RANSAC after the next slide




Computer
Vision

RANSAC

The RANSAC test on epipolar geometry assumes
that there is a fundamental matrix that matches are in
agreement with, and

The RANSAC test on projectivities that there is a
projectivity that maps points in the first image onto
the matching points in the second

Such tests allow for the elimination of many outliers

but these tests make strong assumptions about the
scene:

Epipolar geometry: rigidity of the scene (i.e. objects
iIn the scene do not move with respect to each other)

Projectivity: the scene is not only rigid, but also
(largely) planar

Nonetheless such tests help !



Computer
Vision

RANSAC

algorithm (full name RANdom SAmple Consensus) that
assumes the data consists of "inliers", 1.e. correct matches,
and "outliers”, 1.e. incorrect matches.

From a set of match candidates, RANSAC

1.randomly select the minimal nmb of matches to

formulate an initial test hypothesis (e.g. 7 for epipolar
geometry or 4 for a projectivity; this nmb better be small since the
selected tuple must not contain any outlier match for it to work)

2.check how consistent other matches are with this
hypothesis, i.e. in how far it is supported

3.use all supporting matches to refine the
hypothesis and discard the rest

Finally, RANSAC selects the hypothesis with maximal
support after a fixed number of trials or after sufficient
support was reached



Computer RANSAC

\ViISle]a How often should we draw?.... Suppose

n - minimum number of data required to fit the model
k - nmb of iterations / trials performed by the algorithm
t — threshold to determine when a match fits a model
d - nmb of “inliers’ needed for a model to be OK

t and d are typically chosen beforehand. The nmb of
iterations k can then be calculated. Let p be the
probability that RANSAC only selects inliers for the n
data units generating a valid test at least once, i.e. the
probability that the algorithm gets a good output.
When w is the proportion of inliers (estimated),

l—pz(l—w”)k

Is the probability that NO good hypothesis is selected




Computer
Vision Supporting the matching step

Ex. cleaning matches based on RANSAC-Ep.Geom.

Matches are sought between the left and the right image.
On the left one sees all matches found by matching corner
descriptors only... on the right after RANSAC check spatial

consistency; quite some pruning !
[Chum, Werner, Matas]



Computer Supporting the matching step
Vision

... but remember that these tests P 3
make quite strong assumptions " o "
like rigidity (epipolar geometry) " |
or planarity (proj.) — even if they
tend to work quite well also In

conditions where they hold only
partially

There are alternative schemes like topological filtering
that do not have these issues,
but the large majority of systems are RANSAC-based.
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