Motion Extraction

Computer Vision

Motion is a basic cue

Motion can be the only cue for segmentation
Biologically favoured because of camouflage

Computer Vision

Motion is a basic cue

... which set in motion a constant, evolutionary race

Computer Vision

Motion is a basic cue

Motion can be the only cue for segmentation

Computer
Vision

Motion is a basic cue

Even impoverished motion data can elicit a strong percept

Computer Vision

Some applications of motion extraction
\square Change / shot cut detection
\square Surveillance / traffic monitoring
\square Autonomous driving
\square Analyzing game dynamics in sports
\square Motion capture / gesture analysis (HCl)
\square Image stabilisation
\square Motion compensation (e.g. medical robotics)
\square Feature tracking for 3D reconstruction
\square Etc.!

Computer Vision

Shot cut detection \& Keyframes

Computer Vision

Human-Machine Interfacing

Computer Vision

3D: Structure-from-Motion

Tracked Points gives correspondences

Computer Vision

3D: Structure-from-Motion

Temple of the Masks, Edzna, Mexico

Computer
Vision

www.arc3d.b

K.U. Leuven

Computer Vision

```
in this lecture...
```

Several techniques, but... this lecture is restricted to the

1. detection of the "optical flow"

2. tracking with the "Condensation filter"

Computer Vision

Computer Vision

Definition of optical flow

> OPTICAL FLOW = brightness patterns

Ideally, the optical flow is the projection of the threedimensional motion vectors on the image

Such 2D motion vector is sought at every pixel of the image (note: a motion vector here is a 2 D translation vector)

Computer Vision
 Caution required!

Two examples where following brightness patterns is misleading:

1. Untextured, rotating sphere

$$
\stackrel{\Downarrow}{\text { O.F. }}=0
$$

2. No motion, but changing lighting

$$
\stackrel{\Downarrow}{\text { O.F. } \neq 0}
$$

Computer
Vision

Caution required!

Computer Vision

Qualitative formulation

Suppose a point of the scene projects to a certain pixel of the current video frame. Our task is to figure out to which pixel in the next frame it moves...

That question needs answering for all pixels of the current image.

In order to find these corresponding pixels, we need to come up with a reasonable assumption on how we can detect them among the many.

We assume these corresponding pixels have the same intensities as the pixels the scene points came from in the previous frame.

That will only hold approximately...

Mathematical formulation

Our mathematical representation of a video:

$I(x, y, t)=$ brightness at (x, y) at time t

Optical flow constraint equation :

$$
\frac{d I}{d t}=\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t}=0
$$

This equation states that if one were to track the image projections of a scene point through the video, it would not change its intensity. This tends to be true over short lapses of time.

Mathematical formulation

Our mathematical representation of a video:
$I(x, y, t)=$ brightness at (x, y) at time t

Optical flow constraint equation :

$$
\frac{d I}{d t}=\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t}=0
$$

Note the different types of time derivatives !

Mathematical formulation

Our mathematical representation of a video:
$I(x, y, t)=$ brightness at (x, y) at time t

Optical flow constraint equation :

$$
\frac{d I}{d t} \left\lvert\,=\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t}=0\right.
$$

Change of intensity when following a physical point through the images

Change of intensity when looking at the same pixel (x, y) through the images

Mathematical formulation

$\begin{gathered}\text { We will use as } \\ \begin{array}{c}\text { shorthand } \\ \text { notation for }\end{array}\end{gathered} \frac{d I}{d t}=\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t}=0$

$$
u=\frac{d x}{d t}, \quad v=\frac{d y}{d t}
$$

$$
I_{x}=\frac{\partial I}{\partial x}, \quad I_{y}=\frac{\partial I}{\partial y}, \quad I_{t}=\frac{\partial I}{\partial t}
$$

1 equation per pixel

Computer Vision

The aperture problem

$$
\begin{gathered}
u=\frac{d x}{d t}, \quad v=\frac{d y}{d t} \\
I_{x}=\frac{\partial I}{\partial x}, \quad I_{y}=\frac{\partial I}{\partial y}, \quad I_{t}=\frac{\partial I}{\partial t}
\end{gathered}
$$

$$
I_{x} u+I_{y} v+I_{t}=0
$$

Note that we can measure the 3 derivatives of I, but that u and v are unknown

1 equation in 2 unknowns... the `aperture problem’

The aperture problem

$$
I_{x} u+I_{y} v+I_{t}=0 \Rightarrow\left(I_{x}, I_{y}\right) \cdot(u, v)=-I_{t}
$$

Aperture problem : only the component along the gradient can be retrieved

$$
\frac{I_{t}}{\sqrt{I_{x}^{2}+I_{y}^{2}}}
$$

Computer Vision

The aperture problem

Computer Vision

Remarks

Remarks

1. The underdetermined nature could be solved using higher derivatives of intensity
2. for some intensity patterns, e.g. patches with a planar intensity profile, the aperture problem cannot be resolved anyway.

For many images, large parts have planar intensity profiles... higher-order derivatives than $1^{\text {st }}$ order are typically not used (also because they are noisy)

Computer

 Vision
Horn \& Schunck algorithm

Breaking the spell via an ... additional smoothness constraint :

$$
e_{s}=\iint\left(\left(u_{x}^{2}+u_{y}^{2}\right)+\left(v_{x}^{2}+v_{y}^{2}\right)\right) d x d y
$$

to be minimized, besides the OF constraint equation term

$$
e_{c}=\iint\left(I_{x} u+I_{y} v+I_{t}\right)^{2} d x d y
$$

The integrals are over the image.

Computer

 Vision
Horn \& Schunck algorithm

Breaking the spell via an ... additional smoothness constraint :

$$
e_{s}=\iint\left(\left(u_{x}^{2}+u_{y}^{2}\right)+\left(v_{x}^{2}+v_{y}^{2}\right)\right) d x d y
$$

to be minimized,
besides the OF constraint equation term

$$
e_{c}=\iint\left(I_{x} u+I_{y} v+I_{t}\right)^{2} d x d y
$$

The calculus of variations

look for functions that extremize functionals
(a functional is a function that takes a vector as its input argument, and returns a scalar)
like for our functional:
$\left.\iint\left(u_{x}^{2}+u_{y}^{2}\right)+\left(v_{x}^{2}+v_{y}^{2}\right)\right) d x d y$

$$
+\lambda \iint\left(I_{x} u+I_{y} v+I_{t}\right)^{2} d x d y
$$

what are the optimal $u(x, y)$ and $v(x, y)$?

The calculus of variations

look for functions that extremize functionals

$$
\begin{aligned}
& I=\int_{x_{1}}^{x_{2}} F\left(x, f, f^{\prime}\right) d x \quad \text { with } f=f(x), f^{\prime}=\frac{d f}{d x} \\
& f\left(x_{1}\right)=f_{1} \quad \text { and } \quad f\left(x_{2}\right)=f_{2}
\end{aligned}
$$

Calculus of variations

Suppose

1. $f(x)$ is a solution
2. $\eta(x)$ is a test function with $\eta\left(x_{1}\right)=0$ and $\eta\left(x_{2}\right)=0$

We then consider

$$
I=\int_{x_{1}}^{x_{2}} F\left(x, f, f^{\prime}\right) d x \quad \text { with } f=f(x), f^{\prime}=\frac{d f}{d x}
$$

$$
I=\int_{x_{1}}^{x_{2}} F\left(x, f+\varepsilon \eta, f^{\prime}+\varepsilon \eta^{\prime}\right) d x \Longleftrightarrow \int f \rightarrow f+\varepsilon \eta
$$

Rationale: supposed f is the solution, then any deviation should result in a worse I; when applying classical optimization over the values of ε the optimum should be $\varepsilon={ }^{3} 0$

Calculus of variations

Suppose

1. $f(x)$ is a solution
2. $\eta(x)$ is a test function with $\eta\left(x_{1}\right)=0$

$$
\text { and } \eta\left(x_{2}\right)=0
$$

We then consider

$$
I=\int_{x_{1}}^{x_{2}} F\left(x, f+\varepsilon \eta, f^{\prime}+\varepsilon \eta^{\prime}\right) d x
$$

With this trick, we reformulate an optimization over a function into a classical optimization over a scalar... a problem we know how to solve ${\underset{y}{2}}$

Computer Vision

Calculus of variations

Suppose

1. $f(x)$ is a solution
2. $\eta(x)$ is a test function with $\eta\left(x_{1}\right)=0$ and $\eta\left(x_{2}\right)=0$

$$
I=\int_{x_{1}}^{x_{2}} F\left(x, f+\varepsilon \eta, f^{\prime}+\varepsilon \eta^{\prime}\right) d x
$$

for the optimum :

$$
\left.\frac{d I}{d \varepsilon}\right|_{\varepsilon=0}=0
$$

Computer Vision

Calculus of variations

Suppose

1. $f(x)$ is a solution
2. $\eta(x)$ is a test function with $\eta\left(x_{1}\right)=0$ and $\eta\left(x_{2}\right)=0$

$$
I=\int_{x_{1}}^{x_{2}} F\left(x, f+\varepsilon \eta, f^{\prime}+\varepsilon \eta^{\prime}\right) d x
$$

for the optimum :

$$
\begin{aligned}
& \int_{x_{1}}^{x_{2}}\left(\eta(x) F_{\overparen{f}}+\eta^{\prime}(x) F_{\overparen{f}}\right) d x=0 \\
& f+\varepsilon \eta \text { with } \varepsilon=0 \quad f^{\prime}+\varepsilon \eta^{\prime} \text { with } \varepsilon=0
\end{aligned}
$$

Computer Vision

Calculus of variations

$\int_{x_{1}}^{x_{2}}\left(\eta(x) F_{f}+\eta^{\prime}(x) F_{f^{\prime}}\right) d x=0$
Using integration by parts:
$\int_{x_{1}}^{x_{2}} \frac{d}{d x}(g h) d x=\int_{x_{1}}^{x_{2}}\left(\frac{d g}{d x} h+\frac{d h}{d x} g\right) d x=[g h]_{x_{1}}^{x_{2}}$
where
$[g h]_{x_{1}}^{x_{2}}=g\left(x_{2}\right) h\left(x_{2}\right)-g\left(x_{1}\right) h\left(x_{1}\right)$

Computer Vision

Calculus of variations

$$
\int_{x_{1}}^{x_{2}}\left(\eta(x) F_{f}+\eta^{\prime}(x) F_{f^{\prime}}\right) d x=0
$$

Using integration by parts $\int_{x_{1}}^{x_{2}} \frac{d}{d x}\left(\eta(x) F_{f^{\prime}}\right) d x$:
$\int_{x_{1}}^{x_{2}} \eta^{\prime}(x) F_{f^{\prime}}+\eta(x) \frac{d}{d x} F_{f^{\prime}} d x=\left[\eta(x) F_{f^{\prime}}\right]_{x_{1}}^{x_{2}}$

Computer Vision

Calculus of variations

$$
\int_{x_{1}}^{x_{2}}\left(\eta(x) F_{f}+\eta^{\prime}(x) F_{f^{\prime}}\right) d x=0
$$

Using integration by parts $\int_{x_{1}}^{x_{2}} \frac{d}{d x}\left(\eta(x) F_{f^{\prime}}\right) d x$:
$\int_{x_{1}}^{x_{2}} \eta^{\prime}(x) F_{f^{\prime}}+\eta(x) \frac{d}{d x} F_{f^{\prime}} d x=\left[\eta(x) F_{f^{\prime}}\right]_{x_{1}}^{x_{2}}$

Computer Vision

Calculus of variations

$$
\int_{x_{1}}^{x_{2}}\left(\eta(x) F_{f}+\eta^{\prime}(x) F_{f^{\prime}}\right) d x=0
$$

Using integration by parts $\int_{x_{1}}^{x_{2}} \frac{d}{d x}\left(\eta(x) F_{f^{\prime}}\right) d x$:

$$
\int_{x_{1}}^{x_{2}} \eta^{\prime}(x) F_{f^{\prime}} d x=\left[\eta(x) F_{f^{\prime}} x_{x_{1}}^{x_{2}}-\int_{x_{1}}^{x_{2}} \eta(x) \frac{d}{d x} F_{f^{\prime}} d x,\right.
$$

Computer Vision

Calculus of variations

$$
\int_{x_{1}}^{x_{2}}\left(\eta(x) F_{f}+\eta^{\prime}(x) F_{f^{\prime}}\right) d x=0
$$

Using integration by parts $\int_{x_{1}}^{x_{2}} \frac{d}{d x}\left(\eta(x) F_{f^{\prime}}\right) d x$:
$\int_{x_{1}}^{x_{2}} \eta^{\prime}(x) F_{f^{\prime}} d x=\quad-\int_{x_{1}}^{x_{2}} \eta(x) \frac{d}{d x} F_{f^{\prime}} d x$,
Therefore

$$
\int_{x_{1}}^{x_{2}} \eta(x)\left(F_{f}-\frac{d}{d x} F_{f^{\prime}}\right) d x=0
$$

regardless of $\eta(x)$, then $\quad F_{f}-\frac{d}{d x} F_{f^{\prime}}=0$

Computer Vision

Calculus of variations

Generalizations
■ 1. $I=\int_{x_{1}}^{x_{2}} F\left(x, f_{1}, f_{2}, \ldots, f_{1}^{\prime}, f_{2}^{\prime}, \ldots\right) d x$
Simultaneous Euler-Lagrange equations, i.c. one for u and one for v :

$$
F_{f i}-\frac{d}{d x} F_{f_{i}^{\prime}}=0
$$

Calculus of variations

Generalizations
■ 1. $I=\int_{x_{1}}^{x_{2}} F\left(x, f_{1}, f_{2}, \ldots, f_{1}^{\prime}, f_{2}^{\prime}, \ldots\right) d x$
Simultaneous Euler-Lagrange equations, i.c. one for u and one for v :

$$
F_{f i}-\frac{d}{d x} F_{f_{i}^{\prime}}=0
$$

As we add $\varepsilon_{1} \eta_{1}$ to f_{1}, and $\varepsilon_{2} \eta_{2}$ to f_{2} then repeat, once deriving w.r.t. ε_{1}, once w.r.t. ε_{2} thus obtaining a system of 2 PDEs

Computer

Calculus of variations

Generalizations

■ 1. $I=\int_{x_{1}}^{x_{2}} F\left(x, f_{1}, f_{2}, \ldots, f_{1}^{\prime}, f_{2}^{\prime}, \ldots\right) d x$
Simultaneous Euler-Lagrange equations, i.c. one for u and one for v :

$$
F_{f i}-\frac{d}{d x} F_{f_{i}^{\prime}}=0
$$

■ 2. 2 independent variables x and y

$$
I=\iint_{D} F\left(x, y, f+\varepsilon \eta, f_{x}+\varepsilon \eta_{x}, f_{y}+\varepsilon \eta_{y}\right) d x d y
$$

Computer Vision

Calculus of variations

Hence

$$
0=\iint_{D}\left(\eta F_{f}+\eta_{x} F_{f_{x}}+\eta_{y} F_{f_{y}}\right) d x d y
$$

Now by Gauss' s integral theorem,

$$
\iint_{D}\left(\frac{\partial Q}{\partial x}+\frac{\partial P}{\partial y}\right) d x d y=\int_{\partial D}(Q d y-P d x)
$$

such that

$$
\begin{aligned}
\iint_{D} \frac{\partial\left(\eta F_{f_{x}}\right)}{\partial x}+\frac{\partial\left(\eta F_{f_{y}}\right)}{\partial y} d x d y & =\int_{\partial D}\left(\eta F_{f_{x}} d y-\eta F_{f_{y}} d x\right) \\
& =0
\end{aligned}
$$

Calculus of variations

Computer
Vision

$$
\begin{gathered}
\iint_{D} \frac{\partial\left(\eta F_{f_{x}}\right)}{\partial x}+\frac{\partial\left(\eta F_{f_{y}}\right)}{\partial y} d x d y=0 \\
\iint_{D}\left(\eta_{x} F_{f_{x}}+\eta_{y} F_{f_{y}}\right) d x d y+\iint_{D}\left(\eta \frac{\partial F_{f_{x}}}{\partial x}+\eta \frac{\partial F_{f_{y}}}{\partial y}\right) d x d y=0
\end{gathered}
$$

Computer

 VisionCalculus of variations

$$
0=\iint_{D}\left(\eta F_{f}+\eta_{x} F_{f_{x}}+\eta_{y} F_{f_{y}}\right) d x d y
$$

$$
\iint_{D} \frac{\partial\left(\eta F_{f_{x}}\right)}{\partial x}+\frac{\partial\left(\eta F_{f_{y}}\right)}{\partial y} d x d y=0
$$

$\iint_{D}\left(\eta_{x} F_{f_{x}}+\eta_{y} F_{f_{y}}\right) d x d y=-\iint_{D} \eta\left(\frac{\partial F_{f_{x}}}{\partial x}+\frac{\partial F_{f_{y}}}{\partial y}\right) d x d y$
Consequently,

$$
0=\iint_{D} \eta\left(F_{f}-\frac{\partial}{\partial x} F_{f_{x}}-\frac{\partial}{\partial y} F_{f_{y}}\right) d x d y
$$

for all test functions η, thus

$$
F_{f}-\frac{\partial}{\partial x} F_{f_{x}}-\frac{\partial}{\partial y} F_{f_{y}}=0
$$

is the Euler-Lagrange equation

Horn \& Schunck

The Euler-Lagrange equations :

$$
\begin{aligned}
& F_{u}-\frac{\partial}{\partial x} F_{u_{x}}-\frac{\partial}{\partial y} F_{u_{y}}=0 \\
& F_{v}-\frac{\partial}{\partial x} F_{v_{x}}-\frac{\partial}{\partial y} F_{v_{y}}=0
\end{aligned}
$$

In our case ,

$$
F=\left(u_{x}^{2}+u_{y}^{2}\right)+\left(v_{x}^{2}+v_{y}^{2}\right)+\lambda\left(I_{x} u+I_{y} v+I_{t}\right)^{2},
$$

so the Euler-Lagrange equations are

$$
\begin{gathered}
\Delta u=\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{x}, \\
\Delta v=\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{y}, \\
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \quad \text { is the Laplacian operator }
\end{gathered}
$$

Horn \& Schunck

Remarks :

1. Coupled PDEs solved using iterative methods and finite differences (iteration i)

$$
\begin{aligned}
& \frac{\partial u}{\partial i}=\Delta u-\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{x} \\
& \frac{\partial v}{\partial i}=\Delta v-\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{y}
\end{aligned}
$$

2. More than two frames allow for a better estimation of I_{t}
3. Information spreads from edge- and corner-type patterns

Computer Vision

Horn \& Schunck, example result

Horn \& Schunck, remarks

1. Errors at object boundaries
(where the smoothness constraint is no longer valid)
2. Example of regularisation
(selection principle for the solution of
ill-posed problems by imposing an extra generic constraint, like here smoothness)

Computer Vision

condensation filter

Computer Vision

condensation filter

as an example of a `tracker', shifting the emphasis from pixels to objects...

Computer Vision

Condensation tracker

x_{t} state vector
z_{t} observation vector v_{t} noise in measurement model

Condensation tracker

1. Prediction, based on the system model
$x_{t}=f_{t-1}\left(x_{t-1}, w_{t-1}\right)$
($f=$ system transition function)
2. Update, based on the measurement model
$z_{t}=h_{t}\left(x_{t}, v_{t}\right)$
($h=$ measurement function)
$Z_{t}=\left(z_{1}, \ldots, z_{t}\right)$ is the history of observations

Condensation tracker

Example

dots indicate time derivatives

System model

$$
x_{t}=\left(p_{t}, \dot{p}_{t}\right)
$$

$p_{t}=p_{t-1}+\Delta t \dot{p}_{t-1}+w_{p, t-1} \quad$ position
$\dot{p}_{t}=\dot{p}_{t-1}+w_{\dot{p}, t-1}$
velocity

Measurement model

$$
z_{t}=p_{t}+v_{t}
$$

Computer Vision

Condensation tracker

Recursive Bayesian filter

Object not as a single state but a prob. distribution

Computer Vision

Condensation tracker

Recursive Bayesian filter

Object not as a single state but a prob. Distribution (p here means probability...)

1. Prediction

$$
p\left(x_{t} \mid Z_{t-1}\right)=\int p\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid Z_{t-1}\right) d x_{t-1}
$$

2. Update

$$
p\left(x_{t} \mid Z_{t}\right)=\frac{p\left(Z_{t} \mid x_{t}\right) p\left(x_{t} \mid Z_{t-1}\right)}{p\left(Z_{t} \mid Z_{t-1}\right)}
$$

Computer Vision

Condensation tracker

Recursive Bayesian filter

Object not as a single state but a prob. distribution

1. Prediction

$$
p\left(x_{t} \mid Z_{t-1}\right)=\int p\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid Z_{t-1}\right) d x_{t-1}
$$

2. Update

$$
p\left(x_{t} \mid Z_{t}\right)=\frac{p\left(z_{t} \mid x_{t}\right) p\left(x_{t} \mid Z_{t-1}\right)}{p\left(z_{t} \mid Z_{t-1}\right)}
$$

$p\left(z_{t} \mid Z_{t-1}\right)$ can be considered a normalization factor

Computer Vision

Condensation tracker

Recursive Bayesian filter

Object not as a single state but a prob. distribution

Bayes' rule

$p(b \mid a) p(a)=p(a \mid b) p(b)=p(a, b)$ here $p\left(x_{t}, z_{t} \mid Z_{t-1}\right)$
2. Update

$$
p\left(x_{t} \mid Z_{t}\right)=\frac{p\left(z_{t} \mid x_{t}\right) p\left(x_{t} \mid Z_{t-1}\right)}{p\left(z_{t} \mid Z_{t-1}\right)}
$$

$p\left(z_{t} \mid Z_{t-1}\right)$ can be considered a normalization factor

Computer Vision

Condensation tracker

Recursive Bayesian filter

Object not as a single state but a prob. distribution

Bayes' rule

$$
p\left(x_{t}, \mathrm{Z}_{t} \mid Z_{t-1}\right)=p\left(x_{t} \mid Z_{t}\right) p\left(\mathrm{Z}_{t} \mid Z_{t-1}\right)=p\left(\mathrm{Z}_{t} \mid x_{t}\right) p\left(x_{t} \mid Z_{t-1}\right)
$$

2. Update

$$
p\left(x_{t} \mid Z_{t}\right)=\frac{p\left(z_{t} \mid x_{t}\right) p\left(x_{t} \mid Z_{t-1}\right)}{p\left(z_{t} \mid Z_{t-1}\right)}
$$

$p\left(z_{t} \mid Z_{t-1}\right)$ can be considered a normalization factor

Computer Vision

Condensation tracker

Recursive Bayesian filter

Object not as a single state but a prob. distribution

1. Prediction
$p\left(x_{t} \mid Z_{t-1}\right)=\int p\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid Z_{t-1}\right) d x_{t-1}$
2. Update

$$
p\left(x_{t} \mid Z_{t}\right)=\frac{p\left(z_{t} \mid x_{t}\right) p\left(x_{t} \mid Z_{t-1}\right)}{p\left(z_{t} \mid Z_{t-1}\right)}
$$

Computer Vision

Computer Vision

Condensation tracker

Recursive Bayesian filter

Calculating $p\left(x_{t} \mid Z_{t-1}\right)=\int p\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid Z_{t-1}\right) d x_{t-1}$ numerically is very time consuming, and the prob. distributions have to be known...

Analytic solutions are only available for the simplest of cases, e.g. when distr. are Gaussian and the system and measurement models are linear...
(Kalman filter, 1960 - Kalman was prof. at ETH, D-ITET)

Computer Vision

Condensation tracker

Recursive Bayesian filter

Calculating $p\left(x_{t} \mid Z_{t-1}\right)=\int p\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid Z_{t-1}\right) d x_{t-1}$ numerically is very time consuming, and the prob. distributions have to be known...

Analytic solutions are only available for the simplest of cases, e.g. when distr. are Gaussian and the system and measurement models are linear...

That's where Condensation comes in, acronym for CONditional DENSity propagATION

Computer Vision

In our example model is linear, distributions Gaussian

System model

$$
\begin{aligned}
& p_{t}=p_{t-1}+\Delta t \dot{p}_{t-1}+w_{p, t-1} \\
& \dot{p}_{t}=\dot{p}_{t-1}+w_{\dot{p}, t-1}
\end{aligned}
$$

Measurement model

$$
z_{t}=p_{t}+v_{t}
$$

Computer Vision

Condensation tracker

The probability distribution is represented by a sample set S (set of selected states s)

$$
S=\left\{\left(s^{(n)}, \pi^{(n)}\right) \mid n=1 \ldots N\right\}
$$

With π a weight determining the sampling probability

Condensation tracker

1. prediction

Start with S_{t-1}, the sample set of the previous step, and apply the system model to each sample, yielding predicted samples $s_{t}^{\prime(n)}$
2. update

Sample from the predicted set, where samples are drawn with replacement and with probability

$$
\pi^{(n)}=p\left(z_{t} \mid s_{t}^{\prime(n)}\right) \quad \text { (i.e. using meas. model) }
$$

In the limit (large N) equivalent to Bayesian tracker

Computer Vision

Condensation tracker

Condensation tracker

NOTE

Sample may be drawn multiple times, but noise will yield different predictions for samples corresponding to the same state after drawing.

This diversification through noise is important, as otherwise fewer and fewer different samples would survive

Condensation tracker

Comparison with Kalman filter

Condensation

Unrestricted system models Unrestricted noise models Multiple hypotheses

Discretisation error
Postprocessing for interpret.

Kalman-Bucy

Linear system models Gaussian noise Unimodal

Exact solution Direct interpretation

Computer Vision

Condensation tracker

Computer Vision

Computer Vision

Condensation tracker

Computer Vision

Computer Vision

Condensation tracker

Computer Vision

ALERT

Recognition: No successful recognition Camera ${ }^{\boldsymbol{1}} \mathbf{1}$ Cam-Pos
Dale: Deterible, 01. 2000
Time: 11:36:30

previous next
play

loop IMAGE \#9

1

Computer Vision

Condensation tracker

Elliptical region with prescribed color histogram

System model

$$
\begin{array}{ll}
x_{t}=x_{t-1}+\Delta t \dot{x}_{t-1}+w_{x, t-1} & \\
y_{t}=y_{t-1}+\Delta t \dot{y}_{t-1}+w_{y, t-1} & \text { position } \\
\dot{x}_{t}=\dot{x}_{t-1}+w_{\dot{x}, t-1} & \\
\dot{y}_{t}=\dot{y}_{t-1}+w_{\dot{y}, t-1} & \text { velocity } \\
H_{x t}=H_{x t-1}+\Delta t \dot{H}_{x t-1}+w_{H_{x}, t-1} & \\
H_{y_{t}}=H_{y_{t-1}}+\Delta t \dot{H}_{y_{t-1}}+w_{H_{y}, t-1} & \\
\dot{H}_{x t}=\dot{H}_{x_{t-1}}+w_{\dot{H}_{x}, t-1} & \\
\dot{H}_{y_{t}}=\dot{H}_{y_{t-1}}+w_{\dot{H}_{y}, t-1} & \text { size chance }
\end{array}
$$

Condensation tracker

Measurement model

$$
\pi=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1-\rho}{2 \sigma^{2}}}
$$

with

$$
\rho=\sum_{u=1}^{m} \sqrt{p^{(u)} q^{(u)}}
$$

where p and q are the color histograms of a sample and the target, resp.

Computer
Vision

Condensation tracker

Computer Vision

Mean shift tracker

Computer Vision

Mean shift tracker

Computer

Condensation tracker

Computer Vision

Condensation tracker

Other approaches

1. Model-based tracking (application-specific)

- active contours (discussed with segmentation)
- analysis/synthesis schemes

2. Feature tracking (more generic)

- corner tracking (shown when we discuss 3D)
- blob/contour tracking
- intensity profile tracking
- region tracking

Computer Vision

Model-based tracker

(EPFL)

Computer Vision

Model-based tracker

(EPFL)

Computer Vision

Motion capture for special effects

