
Deep Learning for
Computer Vision

Part III: Advanced Topics

Computer
Vision Outline

1. Introduction to neural networks – this week
Basics of neural networks

2. Convolutional neural networks– 13.12
Basic applications of deep learning to image analysis and computer
vision

3. Advanced topics and applications – 20.12

Computer
Vision A bit more detailed outline

3. Advanced topics and applications – 20.12
a. Visualization and diagnostics
b. Localization and classification
c. Unsupervised learning

Visualization and diagnostics

Computer
Vision Understanding how a network works

• Challenging task
• Multivariate interactions, information in different areas of the

image are used in interaction with each other
• Nonlinear mapping between features and labels
• Hierarchical mapping, information gathered in multiple layers

• Definition of ‘understanding’ is crucial
• What do you exactly want to get out of the system?
• There are different approaches with different definitions
• We will see one particular example: Visualizing features

Visualization

Computer
Vision Visualizing features

• Discussion based on [Zeiler and Fergus 2013]

• Visualizing the input that activates a neuron in any layer
• ``Deconvolutional’’ network

Visualization

Computer
Vision General network architecture

Output
Number of neurons

equal number of classes

aL = WLhL�1 + bL 2 RK
<latexit sha1_base64="Ubko6DUq2BU4WeG0f6iHH7f2K6g=">AAACGnicbVDLSgMxFL3js9ZX1Z1ugkUQxDLjRhcKBTeCXVSxD2jrmEkzbWgmMyQZoQzzHW78CT/AjQtF3Ikb/8b0sdDWA4Fzz7mX3Hu8iDOlbfvbmpmdm19YzCxll1dW19ZzG5tVFcaS0AoJeSjrHlaUM0ErmmlO65GkOPA4rXm984Ffu6dSsVDc6H5EWwHuCOYzgrWR3JyD3RI6Q80A667nJ7XUlF03KR06KTpAnqmaTIxtL7lOby/dXN4u2EOgaeKMSb64/ZTeAUDZzX022yGJAyo04ViphmNHupVgqRnhNM02Y0UjTHq4QxuGChxQ1UqGp6Vozyht5IfSPKHRUP09keBAqX7gmc7BjmrSG4j/eY1Y+yethIko1lSQ0Ud+zJEO0SAn1GaSEs37hmAimdkVkS6WmGiTZtaE4EyePE2qRwXH8CuTximMkIEd2IV9cOAYinABZagAgQd4hld4sx6tF+vd+hi1zljjmS34A+vrB7nEoPU=</latexit><latexit sha1_base64="hWi28s+C/Ugqy/d5W5sm4dj51F8=">AAACGnicbVDLSsNAFJ3UV62vqDvdDBZBEEviRhcKBTeCXVSxD2hqmEwn7dDJJMxMhBLyHW78AF36AW5cKOJO3Pg3TtoutPXAwLnn3Mvce7yIUaks69vIzczOzS/kFwtLyyura+b6Rl2GscCkhkMWiqaHJGGUk5qiipFmJAgKPEYaXv8s8xu3REga8ms1iEg7QF1OfYqR0pJr2sitwFPoBEj1PD9ppLrsuUnlwE7hPvR05VA+tr3kKr25cM2iVbKGgNPEHpNieesp7ZPHh6prfjqdEMcB4QozJGXLtiLVTpBQFDOSFpxYkgjhPuqSlqYcBUS2k+FpKdzVSgf6odCPKzhUf08kKJByEHi6M9tRTnqZ+J/XipV/3E4oj2JFOB595McMqhBmOcEOFQQrNtAEYUH1rhD3kEBY6TQLOgR78uRpUj8s2Zpf6jROwAh5sA12wB6wwREog3NQBTWAwR14Bq/gzbg3Xox342PUmjPGM5vgD4yvHxGaorY=</latexit><latexit sha1_base64="hWi28s+C/Ugqy/d5W5sm4dj51F8=">AAACGnicbVDLSsNAFJ3UV62vqDvdDBZBEEviRhcKBTeCXVSxD2hqmEwn7dDJJMxMhBLyHW78AF36AW5cKOJO3Pg3TtoutPXAwLnn3Mvce7yIUaks69vIzczOzS/kFwtLyyura+b6Rl2GscCkhkMWiqaHJGGUk5qiipFmJAgKPEYaXv8s8xu3REga8ms1iEg7QF1OfYqR0pJr2sitwFPoBEj1PD9ppLrsuUnlwE7hPvR05VA+tr3kKr25cM2iVbKGgNPEHpNieesp7ZPHh6prfjqdEMcB4QozJGXLtiLVTpBQFDOSFpxYkgjhPuqSlqYcBUS2k+FpKdzVSgf6odCPKzhUf08kKJByEHi6M9tRTnqZ+J/XipV/3E4oj2JFOB595McMqhBmOcEOFQQrNtAEYUH1rhD3kEBY6TQLOgR78uRpUj8s2Zpf6jROwAh5sA12wB6wwREog3NQBTWAwR14Bq/gzbg3Xox342PUmjPGM5vgD4yvHxGaorY=</latexit><latexit sha1_base64="x5jKr0CMHH2WmLcudPKI4XeJFxE=">AAACGnicbVDLSsNAFJ3UV62vqEs3g0UQxJK40YVCwY1gF1XsA5oYJtNJO3QyCTMToYR8hxt/xY0LRdyJG//GSZuFth4YOPece5l7jx8zKpVlfRulhcWl5ZXyamVtfWNzy9zeacsoEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH13mfueBCEkjfqfGMXFDNOA0oBgpLXmmjbwGvIBOiNTQD9JOpsuhlzaO7QweQV9XDuWF7ae32f21Z1atmjUBnCd2QaqgQNMzP51+hJOQcIUZkrJnW7FyUyQUxYxkFSeRJEZ4hAakpylHIZFuOjktgwda6cMgEvpxBSfq74kUhVKOQ1935jvKWS8X//N6iQrO3JTyOFGE4+lHQcKgimCeE+xTQbBiY00QFlTvCvEQCYSVTrOiQ7BnT54n7ZOarfmNVa2fF3GUwR7YB4fABqegDq5AE7QABo/gGbyCN+PJeDHejY9pa8koZnbBHxhfPya5nw0=</latexit>

X

k2C
p(y = k) = 1

<latexit sha1_base64="NqgiMMbmNFmuyAyEURb+h4rkcCg=">AAACCnicbZC9SgNBFIXv+htj1FVLm9EgxCbs2mhhIJDGMoL5gWwIs5NJMmR2dpmZFZYlYGfjq9hYKGLrE9j5Gj6Bs0kKTTww8HHuvcy9x484U9pxvqyV1bX1jc3cVn67sLO7Z+8fNFUYS0IbJOShbPtYUc4EbWimOW1HkuLA57Tlj2tZvXVHpWKhuNVJRLsBHgo2YARrY/XsY0/FQS8de0wgL8B6RDBPa5NJVEoq4zNUQW7PLjplZyq0DO4citVa4fseAOo9+9PrhyQOqNCEY6U6rhPpboqlZoTTSd6LFY0wGeMh7RgUOKCqm05PmaBT4/TRIJTmCY2m7u+JFAdKJYFvOrNt1WItM/+rdWI9uOymTESxpoLMPhrEHOkQZbmgPpOUaJ4YwEQysysiIywx0Sa9vAnBXTx5GZrnZdfwjUnjCmbKwRGcQAlcuIAqXEMdGkDgAZ7gBV6tR+vZerPeZ60r1nzmEP7I+vgBpWqbsw==</latexit><latexit sha1_base64="yp7STbT9PpInn+lYw/8nuLhE/54=">AAACCnicbZDNSgMxFIUz9a/WqqOCGzfRItRNmXGjCwuFblxWsD/QKSWTpm1okhmSjDAO3QluXPsWblwo4tYncOdr+ARm2i609UDg49x7yb3HDxlV2nG+rMzS8srqWnY9t5Hf3Nq2d3YbKogkJnUcsEC2fKQIo4LUNdWMtEJJEPcZafqjalpv3hCpaCCudRySDkcDQfsUI22srn3oqYh3k5FHBfQ40kOMWFIdj8NiXB6dwDJ0u3bBKTkTwUVwZ1CoVPPfd/u3j7Wu/en1AhxxIjRmSKm264S6kyCpKWZknPMiRUKER2hA2gYF4kR1kskpY3hsnB7sB9I8oeHE/T2RIK5UzH3TmW6r5mup+V+tHen+eSehIow0EXj6UT9iUAcwzQX2qCRYs9gAwpKaXSEeIomwNunlTAju/MmL0DgtuYavTBoXYKosOABHoAhccAYq4BLUQB1gcA+ewAt4tR6sZ+vNep+2ZqzZzB74I+vjBzMsnN0=</latexit><latexit sha1_base64="yp7STbT9PpInn+lYw/8nuLhE/54=">AAACCnicbZDNSgMxFIUz9a/WqqOCGzfRItRNmXGjCwuFblxWsD/QKSWTpm1okhmSjDAO3QluXPsWblwo4tYncOdr+ARm2i609UDg49x7yb3HDxlV2nG+rMzS8srqWnY9t5Hf3Nq2d3YbKogkJnUcsEC2fKQIo4LUNdWMtEJJEPcZafqjalpv3hCpaCCudRySDkcDQfsUI22srn3oqYh3k5FHBfQ40kOMWFIdj8NiXB6dwDJ0u3bBKTkTwUVwZ1CoVPPfd/u3j7Wu/en1AhxxIjRmSKm264S6kyCpKWZknPMiRUKER2hA2gYF4kR1kskpY3hsnB7sB9I8oeHE/T2RIK5UzH3TmW6r5mup+V+tHen+eSehIow0EXj6UT9iUAcwzQX2qCRYs9gAwpKaXSEeIomwNunlTAju/MmL0DgtuYavTBoXYKosOABHoAhccAYq4BLUQB1gcA+ewAt4tR6sZ+vNep+2ZqzZzB74I+vjBzMsnN0=</latexit><latexit sha1_base64="ck8pdC+ekZH4nUmSP+ZG7r8lEyk=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odOn4MoA7ncAFXEMIN3MEDdKALAhJ4hXdv4r15H6uuat66tDP4I+/zBzjGijg=</latexit><latexit sha1_base64="UCBeRC9GswcJq6/IdY24sRxM3lo=">AAAB/3icbZDNSgMxFIXv1L9aq1a3bqJFqJsy40Y3BaEblxVsK3SGIZNm2tAkMyQZoQyzduOruHGhiG/hzrcx/Vlo64HAxzkJufdEKWfauO63U9rY3NreKe9W9qr7B4e1o2pPJ5kitEsSnqiHCGvKmaRdwwynD6miWESc9qNJe5b3H6nSLJH3ZprSQOCRZDEj2FgrrJ36OhNhPvGZRL7AZkwwz9tFkTamrckFaiEvrNXdpjsXWgdvCXVYqhPWvvxhQjJBpSEcaz3w3NQEOVaGEU6Lip9pmmIywSM6sCixoDrI56sU6Nw6QxQnyh5p0Nz9/SLHQuupiOzN2bR6NZuZ/2WDzMTXQc5kmhkqyeKjOOPIJGjWCxoyRYnhUwuYKGZnRWSMFSbGtlexJXirK69D77LpWb5zoQwncAYN8OAKbuAWOtAFAk/wAm/w7jw7r87Hoq6Ss+ztGP7I+fwBWVaYRw==</latexit><latexit sha1_base64="UCBeRC9GswcJq6/IdY24sRxM3lo=">AAAB/3icbZDNSgMxFIXv1L9aq1a3bqJFqJsy40Y3BaEblxVsK3SGIZNm2tAkMyQZoQyzduOruHGhiG/hzrcx/Vlo64HAxzkJufdEKWfauO63U9rY3NreKe9W9qr7B4e1o2pPJ5kitEsSnqiHCGvKmaRdwwynD6miWESc9qNJe5b3H6nSLJH3ZprSQOCRZDEj2FgrrJ36OhNhPvGZRL7AZkwwz9tFkTamrckFaiEvrNXdpjsXWgdvCXVYqhPWvvxhQjJBpSEcaz3w3NQEOVaGEU6Lip9pmmIywSM6sCixoDrI56sU6Nw6QxQnyh5p0Nz9/SLHQuupiOzN2bR6NZuZ/2WDzMTXQc5kmhkqyeKjOOPIJGjWCxoyRYnhUwuYKGZnRWSMFSbGtlexJXirK69D77LpWb5zoQwncAYN8OAKbuAWOtAFAk/wAm/w7jw7r87Hoq6Ss+ztGP7I+fwBWVaYRw==</latexit><latexit sha1_base64="whzfG9m/TmG9NU7MvfK/Abd4/f4=">AAACCnicbZC7TsMwFIadcivlFmBkMVRIZakSFhioVKkLY5HoRWqiyHGd1qrjRLaDFEWZWXgVFgYQYuUJ2HgbnDYDtPySpU//OUc+5/djRqWyrG+jsra+sblV3a7t7O7tH5iHR30ZJQKTHo5YJIY+koRRTnqKKkaGsSAo9BkZ+LNOUR88ECFpxO9VGhM3RBNOA4qR0pZnnjoyCb1s5lAOnRCpKUYs6+R53EhbswvYgrZn1q2mNRdcBbuEOijV9cwvZxzhJCRcYYakHNlWrNwMCUUxI3nNSSSJEZ6hCRlp5Cgk0s3mp+TwXDtjGERCP67g3P09kaFQyjT0dWexrVyuFeZ/tVGigms3ozxOFOF48VGQMKgiWOQCx1QQrFiqAWFB9a4QT5FAWOn0ajoEe/nkVehfNm3Nd1a9fVPGUQUn4Aw0gA2uQBvcgi7oAQwewTN4BW/Gk/FivBsfi9aKUc4cgz8yPn8A8RKZsg==</latexit><latexit sha1_base64="whzfG9m/TmG9NU7MvfK/Abd4/f4=">AAACCnicbZC7TsMwFIadcivlFmBkMVRIZakSFhioVKkLY5HoRWqiyHGd1qrjRLaDFEWZWXgVFgYQYuUJ2HgbnDYDtPySpU//OUc+5/djRqWyrG+jsra+sblV3a7t7O7tH5iHR30ZJQKTHo5YJIY+koRRTnqKKkaGsSAo9BkZ+LNOUR88ECFpxO9VGhM3RBNOA4qR0pZnnjoyCb1s5lAOnRCpKUYs6+R53EhbswvYgrZn1q2mNRdcBbuEOijV9cwvZxzhJCRcYYakHNlWrNwMCUUxI3nNSSSJEZ6hCRlp5Cgk0s3mp+TwXDtjGERCP67g3P09kaFQyjT0dWexrVyuFeZ/tVGigms3ozxOFOF48VGQMKgiWOQCx1QQrFiqAWFB9a4QT5FAWOn0ajoEe/nkVehfNm3Nd1a9fVPGUQUn4Aw0gA2uQBvcgi7oAQwewTN4BW/Gk/FivBsfi9aKUc4cgz8yPn8A8RKZsg==</latexit><latexit sha1_base64="yp7STbT9PpInn+lYw/8nuLhE/54=">AAACCnicbZDNSgMxFIUz9a/WqqOCGzfRItRNmXGjCwuFblxWsD/QKSWTpm1okhmSjDAO3QluXPsWblwo4tYncOdr+ARm2i609UDg49x7yb3HDxlV2nG+rMzS8srqWnY9t5Hf3Nq2d3YbKogkJnUcsEC2fKQIo4LUNdWMtEJJEPcZafqjalpv3hCpaCCudRySDkcDQfsUI22srn3oqYh3k5FHBfQ40kOMWFIdj8NiXB6dwDJ0u3bBKTkTwUVwZ1CoVPPfd/u3j7Wu/en1AhxxIjRmSKm264S6kyCpKWZknPMiRUKER2hA2gYF4kR1kskpY3hsnB7sB9I8oeHE/T2RIK5UzH3TmW6r5mup+V+tHen+eSehIow0EXj6UT9iUAcwzQX2qCRYs9gAwpKaXSEeIomwNunlTAju/MmL0DgtuYavTBoXYKosOABHoAhccAYq4BLUQB1gcA+ewAt4tR6sZ+vNep+2ZqzZzB74I+vjBzMsnN0=</latexit><latexit sha1_base64="yp7STbT9PpInn+lYw/8nuLhE/54=">AAACCnicbZDNSgMxFIUz9a/WqqOCGzfRItRNmXGjCwuFblxWsD/QKSWTpm1okhmSjDAO3QluXPsWblwo4tYncOdr+ARm2i609UDg49x7yb3HDxlV2nG+rMzS8srqWnY9t5Hf3Nq2d3YbKogkJnUcsEC2fKQIo4LUNdWMtEJJEPcZafqjalpv3hCpaCCudRySDkcDQfsUI22srn3oqYh3k5FHBfQ40kOMWFIdj8NiXB6dwDJ0u3bBKTkTwUVwZ1CoVPPfd/u3j7Wu/en1AhxxIjRmSKm264S6kyCpKWZknPMiRUKER2hA2gYF4kR1kskpY3hsnB7sB9I8oeHE/T2RIK5UzH3TmW6r5mup+V+tHen+eSehIow0EXj6UT9iUAcwzQX2qCRYs9gAwpKaXSEeIomwNunlTAju/MmL0DgtuYavTBoXYKosOABHoAhccAYq4BLUQB1gcA+ewAt4tR6sZ+vNep+2ZqzZzB74I+vjBzMsnN0=</latexit><latexit sha1_base64="yp7STbT9PpInn+lYw/8nuLhE/54=">AAACCnicbZDNSgMxFIUz9a/WqqOCGzfRItRNmXGjCwuFblxWsD/QKSWTpm1okhmSjDAO3QluXPsWblwo4tYncOdr+ARm2i609UDg49x7yb3HDxlV2nG+rMzS8srqWnY9t5Hf3Nq2d3YbKogkJnUcsEC2fKQIo4LUNdWMtEJJEPcZafqjalpv3hCpaCCudRySDkcDQfsUI22srn3oqYh3k5FHBfQ40kOMWFIdj8NiXB6dwDJ0u3bBKTkTwUVwZ1CoVPPfd/u3j7Wu/en1AhxxIjRmSKm264S6kyCpKWZknPMiRUKER2hA2gYF4kR1kskpY3hsnB7sB9I8oeHE/T2RIK5UzH3TmW6r5mup+V+tHen+eSehIow0EXj6UT9iUAcwzQX2qCRYs9gAwpKaXSEeIomwNunlTAju/MmL0DgtuYavTBoXYKosOABHoAhccAYq4BLUQB1gcA+ewAt4tR6sZ+vNep+2ZqzZzB74I+vjBzMsnN0=</latexit><latexit sha1_base64="yp7STbT9PpInn+lYw/8nuLhE/54=">AAACCnicbZDNSgMxFIUz9a/WqqOCGzfRItRNmXGjCwuFblxWsD/QKSWTpm1okhmSjDAO3QluXPsWblwo4tYncOdr+ARm2i609UDg49x7yb3HDxlV2nG+rMzS8srqWnY9t5Hf3Nq2d3YbKogkJnUcsEC2fKQIo4LUNdWMtEJJEPcZafqjalpv3hCpaCCudRySDkcDQfsUI22srn3oqYh3k5FHBfQ40kOMWFIdj8NiXB6dwDJ0u3bBKTkTwUVwZ1CoVPPfd/u3j7Wu/en1AhxxIjRmSKm264S6kyCpKWZknPMiRUKER2hA2gYF4kR1kskpY3hsnB7sB9I8oeHE/T2RIK5UzH3TmW6r5mup+V+tHen+eSehIow0EXj6UT9iUAcwzQX2qCRYs9gAwpKaXSEeIomwNunlTAju/MmL0DgtuYavTBoXYKosOABHoAhccAYq4BLUQB1gcA+ewAt4tR6sZ+vNep+2ZqzZzB74I+vjBzMsnN0=</latexit><latexit sha1_base64="whzfG9m/TmG9NU7MvfK/Abd4/f4=">AAACCnicbZC7TsMwFIadcivlFmBkMVRIZakSFhioVKkLY5HoRWqiyHGd1qrjRLaDFEWZWXgVFgYQYuUJ2HgbnDYDtPySpU//OUc+5/djRqWyrG+jsra+sblV3a7t7O7tH5iHR30ZJQKTHo5YJIY+koRRTnqKKkaGsSAo9BkZ+LNOUR88ECFpxO9VGhM3RBNOA4qR0pZnnjoyCb1s5lAOnRCpKUYs6+R53EhbswvYgrZn1q2mNRdcBbuEOijV9cwvZxzhJCRcYYakHNlWrNwMCUUxI3nNSSSJEZ6hCRlp5Cgk0s3mp+TwXDtjGERCP67g3P09kaFQyjT0dWexrVyuFeZ/tVGigms3ozxOFOF48VGQMKgiWOQCx1QQrFiqAWFB9a4QT5FAWOn0ajoEe/nkVehfNm3Nd1a9fVPGUQUn4Aw0gA2uQBvcgi7oAQwewTN4BW/Gk/FivBsfi9aKUc4cgz8yPn8A8RKZsg==</latexit>

p(y = k) = fk(x; ✓) =
eaL,k

P
k02C e

aL,k0
<latexit sha1_base64="KoXSh4HOG3iRkGqLSMzUPszV7CU=">AAACQnicbVBLaxRBEK6Jj8T1terRS2OQbEDCjJeE6EIgFw8eEsgmkZ11qOmtyTbT0zN094QsTf82L/4Cb9704MWDErx6SO9uEE0saPj4HlT1lzdSGBvHn6OlGzdv3V5eudO5e+/+g4fdR48PTd1qTgNey1of52hICkUDK6yk40YTVrmko7zcnelHp6SNqNWBnTY0qvBEiUJwtIHKuu+a3rRfrveLzJW+l1ZoJ3nhzvyr1E7I4jrrs7TQyB29d5i5ty9K771LTVuFwFoq1DzCUbpd7/941oIp667GG/F82HWQXILVnf721y8AsJd1P6XjmrcVKcslGjNM4saOHGoruCTfSVtDDfIST2gYoMKKzMjNK/DseWDGrKh1eMqyOft3wmFlzLTKg3N2sLmqzcj/acPWFlsjJ1TTWlJ8sahoJbM1m/XJxkITt3IaAHItwq2MTzA0ZkPrnVBCcvXL18Hhy40k4P3QxmtYzAo8hWfQgwQ2YQfewB4MgMMH+AY/4Gf0MfoenUe/Ftal6DLzBP6Z6PcFBNG0jA==</latexit><latexit sha1_base64="SswlqTzvGDDXEhIYmkkng9vwirM=">AAACQnicbVC/axRBFJ5N1MTzR85Y2owGyQUk7NoY1INAGguLBLwkcnsub+fe5oadnV1m3orHMP+R/4ONja2djWBhY2EQWwvn7oJo4oOBj+8H782XN0paiuNP0dLypctXVlavdq5dv3FzrXtr/dDWrRE4ELWqzXEOFpXUOCBJCo8bg1DlCo/ycm+mH71GY2WtX9C0wVEFJ1oWUgAFKuu+bHrTfrnVLzJX+l5aAU3ywr3xT1KaIMEW7/O0MCAcvnKQuecPSu+9S21bhcBmKvU8IkC5Pe//eDaDKetuxNvxfPhFkJyBjd3+4y+f3364u591P6bjWrQVahIKrB0mcUMjB4akUOg7aWuxAVHCCQ4D1FChHbl5BZ7fD8yYF7UJTxOfs38nHFTWTqs8OGcH2/PajPyfNmyp2Bk5qZuWUIvFoqJVnGo+65OPpUFBahoACCPDrVxMIDRGofVOKCE5/+WL4PDhdhLwQWjjKVvMKrvD7rEeS9gjtsuesX02YIK9Y1/Zd3YavY++RT+inwvrUnSWuc3+mejXbyEutiA=</latexit><latexit sha1_base64="SswlqTzvGDDXEhIYmkkng9vwirM=">AAACQnicbVC/axRBFJ5N1MTzR85Y2owGyQUk7NoY1INAGguLBLwkcnsub+fe5oadnV1m3orHMP+R/4ONja2djWBhY2EQWwvn7oJo4oOBj+8H782XN0paiuNP0dLypctXVlavdq5dv3FzrXtr/dDWrRE4ELWqzXEOFpXUOCBJCo8bg1DlCo/ycm+mH71GY2WtX9C0wVEFJ1oWUgAFKuu+bHrTfrnVLzJX+l5aAU3ywr3xT1KaIMEW7/O0MCAcvnKQuecPSu+9S21bhcBmKvU8IkC5Pe//eDaDKetuxNvxfPhFkJyBjd3+4y+f3364u591P6bjWrQVahIKrB0mcUMjB4akUOg7aWuxAVHCCQ4D1FChHbl5BZ7fD8yYF7UJTxOfs38nHFTWTqs8OGcH2/PajPyfNmyp2Bk5qZuWUIvFoqJVnGo+65OPpUFBahoACCPDrVxMIDRGofVOKCE5/+WL4PDhdhLwQWjjKVvMKrvD7rEeS9gjtsuesX02YIK9Y1/Zd3YavY++RT+inwvrUnSWuc3+mejXbyEutiA=</latexit><latexit sha1_base64="ck8pdC+ekZH4nUmSP+ZG7r8lEyk=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odOn4MoA7ncAFXEMIN3MEDdKALAhJ4hXdv4r15H6uuat66tDP4I+/zBzjGijg=</latexit><latexit sha1_base64="F20CJVuVZuPGhFlVUbFHLNNSqMg=">AAACN3icbZDPahRBEMZr4r+4Rl29emkMkg1ImPGiIAtCLh48RHCTyM461PTWZJvp6Rm6a8Sl6Wfz4hN48wG8eFDEF7B3s4gmFjR8fF8VVf0rO60cp+mXZOvK1WvXb2zfHNzauX3n7vDezrFreytpIlvd2tMSHWllaMKKNZ12lrApNZ2U9eEqP3lP1qnWvOFlR7MGz4yqlESOVjF8242W43p/XBW+DqO8QV6Ulf8Qnue8IMZ9MRZ5ZVF6euex8K8e1yEEn7u+iQN7uTLrEYnaH4bwp2cvNhXD3fQgXZe4LLKN2IVNHRXDz/m8lX1DhqVG56ZZ2vHMo2UlNYVB3jvqUNZ4RtMoDTbkZn6NIIhH0ZmLqrXxGRZr9+8Jj41zy6aMnauD3cVsZf4vm/ZcPZt5ZbqeycjzRVWvBbdixVPMlSXJehkFSqvirUIuMBLjSH0QIWQXv3xZHD85yKJ+ncI2PICHMIIMnsILeAlHMAEJH+ErfIcfyafkW/LzHNdWsuF2H/6p5NdvFliwcQ==</latexit><latexit sha1_base64="F20CJVuVZuPGhFlVUbFHLNNSqMg=">AAACN3icbZDPahRBEMZr4r+4Rl29emkMkg1ImPGiIAtCLh48RHCTyM461PTWZJvp6Rm6a8Sl6Wfz4hN48wG8eFDEF7B3s4gmFjR8fF8VVf0rO60cp+mXZOvK1WvXb2zfHNzauX3n7vDezrFreytpIlvd2tMSHWllaMKKNZ12lrApNZ2U9eEqP3lP1qnWvOFlR7MGz4yqlESOVjF8242W43p/XBW+DqO8QV6Ulf8Qnue8IMZ9MRZ5ZVF6euex8K8e1yEEn7u+iQN7uTLrEYnaH4bwp2cvNhXD3fQgXZe4LLKN2IVNHRXDz/m8lX1DhqVG56ZZ2vHMo2UlNYVB3jvqUNZ4RtMoDTbkZn6NIIhH0ZmLqrXxGRZr9+8Jj41zy6aMnauD3cVsZf4vm/ZcPZt5ZbqeycjzRVWvBbdixVPMlSXJehkFSqvirUIuMBLjSH0QIWQXv3xZHD85yKJ+ncI2PICHMIIMnsILeAlHMAEJH+ErfIcfyafkW/LzHNdWsuF2H/6p5NdvFliwcQ==</latexit><latexit sha1_base64="MpEpY/ylq6MHiPRV3DhAqnZ40s8=">AAACQnicbVDLahRBFK2Oj8TxNdGlm8JBMgEJ3dkYSAYC2bhwESGTRKbH5nbN7UzR1dVN1e3gUNS3ufEL3PkBblwo4tZFaiZDiIkXCg7nwb118kZJS3H8LVq5c/fe/dW1B52Hjx4/edpdf3Zs69YIHIpa1eY0B4tKahySJIWnjUGocoUneXkw10/O0VhZ6yOaNTiu4EzLQgqgQGXdD01/Nig3B0XmSt9PK6BpXrhPfjelKRJs8gFPCwPC4UcHmXv3uvTeu9S2VQhspFIvIgKUO/D+yrMRTFm3F2/Fi+G3QbIEPbacw6z7NZ3Uoq1Qk1Bg7SiJGxo7MCSFQt9JW4sNiBLOcBSghgrt2C0q8PxVYCa8qE14mviCvZ5wUFk7q/LgnB9sb2pz8n/aqKViZ+ykblpCLS4XFa3iVPN5n3wiDQpSswBAGBlu5WIKoTEKrXdCCcnNL98Gx9tbScDv497+3rKONfaCvWR9lrA3bJ+9ZYdsyAT7zL6zn+xX9CX6Ef2O/lxaV6Jl5jn7Z6K/F7BJshQ=</latexit><latexit sha1_base64="MpEpY/ylq6MHiPRV3DhAqnZ40s8=">AAACQnicbVDLahRBFK2Oj8TxNdGlm8JBMgEJ3dkYSAYC2bhwESGTRKbH5nbN7UzR1dVN1e3gUNS3ufEL3PkBblwo4tZFaiZDiIkXCg7nwb118kZJS3H8LVq5c/fe/dW1B52Hjx4/edpdf3Zs69YIHIpa1eY0B4tKahySJIWnjUGocoUneXkw10/O0VhZ6yOaNTiu4EzLQgqgQGXdD01/Nig3B0XmSt9PK6BpXrhPfjelKRJs8gFPCwPC4UcHmXv3uvTeu9S2VQhspFIvIgKUO/D+yrMRTFm3F2/Fi+G3QbIEPbacw6z7NZ3Uoq1Qk1Bg7SiJGxo7MCSFQt9JW4sNiBLOcBSghgrt2C0q8PxVYCa8qE14mviCvZ5wUFk7q/LgnB9sb2pz8n/aqKViZ+ykblpCLS4XFa3iVPN5n3wiDQpSswBAGBlu5WIKoTEKrXdCCcnNL98Gx9tbScDv497+3rKONfaCvWR9lrA3bJ+9ZYdsyAT7zL6zn+xX9CX6Ef2O/lxaV6Jl5jn7Z6K/F7BJshQ=</latexit><latexit sha1_base64="SswlqTzvGDDXEhIYmkkng9vwirM=">AAACQnicbVC/axRBFJ5N1MTzR85Y2owGyQUk7NoY1INAGguLBLwkcnsub+fe5oadnV1m3orHMP+R/4ONja2djWBhY2EQWwvn7oJo4oOBj+8H782XN0paiuNP0dLypctXVlavdq5dv3FzrXtr/dDWrRE4ELWqzXEOFpXUOCBJCo8bg1DlCo/ycm+mH71GY2WtX9C0wVEFJ1oWUgAFKuu+bHrTfrnVLzJX+l5aAU3ywr3xT1KaIMEW7/O0MCAcvnKQuecPSu+9S21bhcBmKvU8IkC5Pe//eDaDKetuxNvxfPhFkJyBjd3+4y+f3364u591P6bjWrQVahIKrB0mcUMjB4akUOg7aWuxAVHCCQ4D1FChHbl5BZ7fD8yYF7UJTxOfs38nHFTWTqs8OGcH2/PajPyfNmyp2Bk5qZuWUIvFoqJVnGo+65OPpUFBahoACCPDrVxMIDRGofVOKCE5/+WL4PDhdhLwQWjjKVvMKrvD7rEeS9gjtsuesX02YIK9Y1/Zd3YavY++RT+inwvrUnSWuc3+mejXbyEutiA=</latexit><latexit sha1_base64="SswlqTzvGDDXEhIYmkkng9vwirM=">AAACQnicbVC/axRBFJ5N1MTzR85Y2owGyQUk7NoY1INAGguLBLwkcnsub+fe5oadnV1m3orHMP+R/4ONja2djWBhY2EQWwvn7oJo4oOBj+8H782XN0paiuNP0dLypctXVlavdq5dv3FzrXtr/dDWrRE4ELWqzXEOFpXUOCBJCo8bg1DlCo/ycm+mH71GY2WtX9C0wVEFJ1oWUgAFKuu+bHrTfrnVLzJX+l5aAU3ywr3xT1KaIMEW7/O0MCAcvnKQuecPSu+9S21bhcBmKvU8IkC5Pe//eDaDKetuxNvxfPhFkJyBjd3+4y+f3364u591P6bjWrQVahIKrB0mcUMjB4akUOg7aWuxAVHCCQ4D1FChHbl5BZ7fD8yYF7UJTxOfs38nHFTWTqs8OGcH2/PajPyfNmyp2Bk5qZuWUIvFoqJVnGo+65OPpUFBahoACCPDrVxMIDRGofVOKCE5/+WL4PDhdhLwQWjjKVvMKrvD7rEeS9gjtsuesX02YIK9Y1/Zd3YavY++RT+inwvrUnSWuc3+mejXbyEutiA=</latexit><latexit sha1_base64="SswlqTzvGDDXEhIYmkkng9vwirM=">AAACQnicbVC/axRBFJ5N1MTzR85Y2owGyQUk7NoY1INAGguLBLwkcnsub+fe5oadnV1m3orHMP+R/4ONja2djWBhY2EQWwvn7oJo4oOBj+8H782XN0paiuNP0dLypctXVlavdq5dv3FzrXtr/dDWrRE4ELWqzXEOFpXUOCBJCo8bg1DlCo/ycm+mH71GY2WtX9C0wVEFJ1oWUgAFKuu+bHrTfrnVLzJX+l5aAU3ywr3xT1KaIMEW7/O0MCAcvnKQuecPSu+9S21bhcBmKvU8IkC5Pe//eDaDKetuxNvxfPhFkJyBjd3+4y+f3364u591P6bjWrQVahIKrB0mcUMjB4akUOg7aWuxAVHCCQ4D1FChHbl5BZ7fD8yYF7UJTxOfs38nHFTWTqs8OGcH2/PajPyfNmyp2Bk5qZuWUIvFoqJVnGo+65OPpUFBahoACCPDrVxMIDRGofVOKCE5/+WL4PDhdhLwQWjjKVvMKrvD7rEeS9gjtsuesX02YIK9Y1/Zd3YavY++RT+inwvrUnSWuc3+mejXbyEutiA=</latexit><latexit sha1_base64="SswlqTzvGDDXEhIYmkkng9vwirM=">AAACQnicbVC/axRBFJ5N1MTzR85Y2owGyQUk7NoY1INAGguLBLwkcnsub+fe5oadnV1m3orHMP+R/4ONja2djWBhY2EQWwvn7oJo4oOBj+8H782XN0paiuNP0dLypctXVlavdq5dv3FzrXtr/dDWrRE4ELWqzXEOFpXUOCBJCo8bg1DlCo/ycm+mH71GY2WtX9C0wVEFJ1oWUgAFKuu+bHrTfrnVLzJX+l5aAU3ywr3xT1KaIMEW7/O0MCAcvnKQuecPSu+9S21bhcBmKvU8IkC5Pe//eDaDKetuxNvxfPhFkJyBjd3+4y+f3364u591P6bjWrQVahIKrB0mcUMjB4akUOg7aWuxAVHCCQ4D1FChHbl5BZ7fD8yYF7UJTxOfs38nHFTWTqs8OGcH2/PajPyfNmyp2Bk5qZuWUIvFoqJVnGo+65OPpUFBahoACCPDrVxMIDRGofVOKCE5/+WL4PDhdhLwQWjjKVvMKrvD7rEeS9gjtsuesX02YIK9Y1/Zd3YavY++RT+inwvrUnSWuc3+mejXbyEutiA=</latexit><latexit sha1_base64="MpEpY/ylq6MHiPRV3DhAqnZ40s8=">AAACQnicbVDLahRBFK2Oj8TxNdGlm8JBMgEJ3dkYSAYC2bhwESGTRKbH5nbN7UzR1dVN1e3gUNS3ufEL3PkBblwo4tZFaiZDiIkXCg7nwb118kZJS3H8LVq5c/fe/dW1B52Hjx4/edpdf3Zs69YIHIpa1eY0B4tKahySJIWnjUGocoUneXkw10/O0VhZ6yOaNTiu4EzLQgqgQGXdD01/Nig3B0XmSt9PK6BpXrhPfjelKRJs8gFPCwPC4UcHmXv3uvTeu9S2VQhspFIvIgKUO/D+yrMRTFm3F2/Fi+G3QbIEPbacw6z7NZ3Uoq1Qk1Bg7SiJGxo7MCSFQt9JW4sNiBLOcBSghgrt2C0q8PxVYCa8qE14mviCvZ5wUFk7q/LgnB9sb2pz8n/aqKViZ+ykblpCLS4XFa3iVPN5n3wiDQpSswBAGBlu5WIKoTEKrXdCCcnNL98Gx9tbScDv497+3rKONfaCvWR9lrA3bJ+9ZYdsyAT7zL6zn+xX9CX6Ef2O/lxaV6Jl5jn7Z6K/F7BJshQ=</latexit>

Convolution followed by ReLu nonlinearity followed by
max-pooling [optionally]

Fully connected layer: transformation followed by non-linearity

Similar to LeCun et al. 1998 and Krizhevsky et al. 2012

L(yn, f(xn; ✓)) = �
X

k2C
log(fk(xn; ✓))1(yn = k)

<latexit sha1_base64="5xhpxuNUR7eDQwS763w2ADINIl8=">AAACXHicdVFNS8NAEN3Er7Z+VQUvXhaL0IJKIoKCCoIXDx4UbBWaEjbbTbtkswm7E7GE/ElvXvwruk2rqNWBhcd785iZt0EquAbHebXsufmFxaVKtba8srq2Xt/Y7OgkU5S1aSIS9RgQzQSXrA0cBHtMFSNxINhDEF2N9YcnpjRP5D2MUtaLyUDykFMChvLr2osJDCkR+U3RHPlyH4fNkgrC/Lnw5Rn2YMiAtFr4Ah94Oov9PPK4/LJdFYUnkkEz9KN/jJ+sWw64iFp+veEcOmXhWeBOQQNN69avv3j9hGYxk0AF0brrOin0cqKAU8GKmpdplhIakQHrGihJzHQvL8Mp8J5h+jhMlHkScMl+d+Qk1noUB6ZzvKj+rY3Jv7RuBuFpL+cyzYBJOhkUZgJDgsdJ4z5XjIIYGUCo4mZXTIdEEQrmP2omBPf3ybOgc3ToGnx33Lg8n8ZRQTtoFzWRi07QJbpGt6iNKHpF71bFqlpv9ry9bK9OWm1r6tlCP8re/gDrc7VU</latexit><latexit sha1_base64="5xhpxuNUR7eDQwS763w2ADINIl8=">AAACXHicdVFNS8NAEN3Er7Z+VQUvXhaL0IJKIoKCCoIXDx4UbBWaEjbbTbtkswm7E7GE/ElvXvwruk2rqNWBhcd785iZt0EquAbHebXsufmFxaVKtba8srq2Xt/Y7OgkU5S1aSIS9RgQzQSXrA0cBHtMFSNxINhDEF2N9YcnpjRP5D2MUtaLyUDykFMChvLr2osJDCkR+U3RHPlyH4fNkgrC/Lnw5Rn2YMiAtFr4Ah94Oov9PPK4/LJdFYUnkkEz9KN/jJ+sWw64iFp+veEcOmXhWeBOQQNN69avv3j9hGYxk0AF0brrOin0cqKAU8GKmpdplhIakQHrGihJzHQvL8Mp8J5h+jhMlHkScMl+d+Qk1noUB6ZzvKj+rY3Jv7RuBuFpL+cyzYBJOhkUZgJDgsdJ4z5XjIIYGUCo4mZXTIdEEQrmP2omBPf3ybOgc3ToGnx33Lg8n8ZRQTtoFzWRi07QJbpGt6iNKHpF71bFqlpv9ry9bK9OWm1r6tlCP8re/gDrc7VU</latexit><latexit sha1_base64="5xhpxuNUR7eDQwS763w2ADINIl8=">AAACXHicdVFNS8NAEN3Er7Z+VQUvXhaL0IJKIoKCCoIXDx4UbBWaEjbbTbtkswm7E7GE/ElvXvwruk2rqNWBhcd785iZt0EquAbHebXsufmFxaVKtba8srq2Xt/Y7OgkU5S1aSIS9RgQzQSXrA0cBHtMFSNxINhDEF2N9YcnpjRP5D2MUtaLyUDykFMChvLr2osJDCkR+U3RHPlyH4fNkgrC/Lnw5Rn2YMiAtFr4Ah94Oov9PPK4/LJdFYUnkkEz9KN/jJ+sWw64iFp+veEcOmXhWeBOQQNN69avv3j9hGYxk0AF0brrOin0cqKAU8GKmpdplhIakQHrGihJzHQvL8Mp8J5h+jhMlHkScMl+d+Qk1noUB6ZzvKj+rY3Jv7RuBuFpL+cyzYBJOhkUZgJDgsdJ4z5XjIIYGUCo4mZXTIdEEQrmP2omBPf3ybOgc3ToGnx33Lg8n8ZRQTtoFzWRi07QJbpGt6iNKHpF71bFqlpv9ry9bK9OWm1r6tlCP8re/gDrc7VU</latexit><latexit sha1_base64="5xhpxuNUR7eDQwS763w2ADINIl8=">AAACXHicdVFNS8NAEN3Er7Z+VQUvXhaL0IJKIoKCCoIXDx4UbBWaEjbbTbtkswm7E7GE/ElvXvwruk2rqNWBhcd785iZt0EquAbHebXsufmFxaVKtba8srq2Xt/Y7OgkU5S1aSIS9RgQzQSXrA0cBHtMFSNxINhDEF2N9YcnpjRP5D2MUtaLyUDykFMChvLr2osJDCkR+U3RHPlyH4fNkgrC/Lnw5Rn2YMiAtFr4Ah94Oov9PPK4/LJdFYUnkkEz9KN/jJ+sWw64iFp+veEcOmXhWeBOQQNN69avv3j9hGYxk0AF0brrOin0cqKAU8GKmpdplhIakQHrGihJzHQvL8Mp8J5h+jhMlHkScMl+d+Qk1noUB6ZzvKj+rY3Jv7RuBuFpL+cyzYBJOhkUZgJDgsdJ4z5XjIIYGUCo4mZXTIdEEQrmP2omBPf3ybOgc3ToGnx33Lg8n8ZRQTtoFzWRi07QJbpGt6iNKHpF71bFqlpv9ry9bK9OWm1r6tlCP8re/gDrc7VU</latexit>

Visualization

Computer
Vision Interpreting internal features

Fully
connected

layers

Convolutional layers
What input pattern activates a given neuron in an

intermediate layer?

Visualization

Computer
Vision Image dependent visualization

• The activation level in the neuron
depends on the input image

• For different inputs it will be activated
at different levels

• The difference is due to the non-
linearity

• If it was linear, neuron’s activation
would be based on the respective
linear projection

• Analysis should be based on the
input image.

• The new question
“In the input image which pattern
caused the activation in a given
neuron in an intermediate layer?”

Max-pooling

Visualization

Computer
Vision Size of the pattern in the input image

• Size of the input pattern changes with respect to the receptive field
• Depending on the layer the neuron sits, its receptive field changes
• The size of the input pattern changes as well.
• The image patch that activates the blue neuron is larger than the one that

activates the red neuron

Visualization

Computer
Vision Operations in the forward pass

• Consider the operations we need to do
in order to compute the activation in
the blue neuron from the layer below
• Three operations

• Convolutions with a set of filters

• Non-linearity with ReLu function

• Max-pooling

Visualization

Computer
Vision The idea

• Run an input image forward and
compute all the features
• Keep the activation of the neuron

you want and set the rest to 0.
• Starting from the same layer run the

operations in reverse order.

• Unpool
• Rectify
• Transposed convolution
• A linked reverse ”deconvolutional”

network
• Modified layers are the inputs

Visualization

Computer
Vision The idea

[Image from Zeiler and Fergus 2013]

Visualization

Computer
Vision Inverting the operations – max pooling

• Keep the max locations while
forward passing the image
• While unpooling place the values

to the respective positions
• Pooling leads to information loss

• It is not possible to regenerate this
information
• Instead zero values are placed for

the locations where activations are
discarded during forward pass

[Image from Zeiler and Fergus 2013]

Visualization

Computer
Vision Inverting the operations - ReLu

• Only keeps the positive layers
• As the reverse the same

function is used
• ReLu yields only positive

activation maps
• To keep the activation maps

the same, ReLu is used again
to keep the activations during
reconstruction positive
• You can in theory, also use the

inverse of a function

Visualization

Computer
Vision Inverting the operations - Convolution

• Transposed convolution
• The kernel is the kernel used

in the forward pass, flipped
horizontally and vertically

a b c d e

f g h j i

k l m n o

p q r s t

u v w x y

Visualization

Computer
Vision

[Images from Zeiler and Fergus 2013]

Visualization

Computer
Vision Feature maps

Visualizing and Understanding Convolutional Networks

Layer 1

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

[Images from Zeiler and Fergus 2013]

Visualizing and Understanding Convolutional Networks

Layer 2

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Visualization

Computer
Vision Further deeper features

Visualizing and Understanding Convolutional Networks

Layer 3

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

[Images from Zeiler and Fergus 2013]

Visualization

Computer
Vision Even further deeper

[Images from Zeiler and Fergus 2013]

Visualizing and Understanding Convolutional Networks

Layer 4 Layer 5

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Visualization

Localization and classification

Computer
Vision Class activation maps

• So far for classification we were only interested in
determining the class assignment
• We also had a separate localization network that relied on

separate classification tasks at proposal regions
• With slight modifications classification networks can identify

approximate locations
• Based on global average pooling idea
• Discussion based on [Zhou et al. 2016]

Visualization

Combined
Localization

Computer
Vision Normal classification network

Output
Number of neurons

equal number of classes
Convolution followed by ReLu nonlinearity followed by
max-pooling [optionally]

Fully connected layer: transformation followed by non-linearity

Lastly fully connected
layers summarizing the

feature maps

Visualization

Combined
Localization

Computer
Vision Normal classification network

Output
Number of neurons

equal number of classes
Convolution followed by ReLu nonlinearity followed by
max-pooling [optionally]

Fully connected layer: transformation followed by non-linearity

Lastly fully connected
layers summarizing the

feature maps

Information at this layer
is quite complicated

Visualization

Combined
Localization

Computer
Vision We have also seen fully convolutional

networks for segmentation

• Image size outputs
• Replaced the final fully connected layers
• Upsampling using transpose convolutions or bilinear upsampling

followed by convolutions

Visualization

Combined
Localization

Computer
Vision Combining these ideas

• Class activation maps combines these ideas
• Using Global Average Pooling

GAP
Global Average Pooling

• Like normal pooling, applies to each
channel in a layer separately

• Averaging all the information to a
single number!
• Then continue as usual

Visualization

Combined
Localization

Computer
Vision Activation Maps

[Image taken from Zhou et al. 2016]

• Per-class weighted sum of all the channels before global average
pooling yields the class-specific activation map

Visualization

Combined
Localization

Computer
Vision

• Network architecture preceding the GAP layer can change
• Form of weak-supervision for localization

[Image taken from Zhou et al. 2016]

Visualization

Combined
Localization

Computer
Vision Various applications

• Especially in medical
imaging
• Labels are expensive and

difficult to get.
• Approximate localization

with CAM allow identifying
areas of interest
• Also weak supervision to

train stronger localization
algorithms

Visualization

Combined
Localization

Unsupervised learning

Computer
Vision Very coarse view on supervised learning

Supervised learning
• Patterns between two types of data
• Goal: predicting one from the other
• Examples have both types of data
• At prediction only one exist

30 years old

30 years old 74 years old

81 years old 17 years old

Visualization

Combined
Localization

Unsupervised
Learning

Computer
Vision General idea in the supervised approach

Visualization

Combined
Localization

Unsupervised
Learning

• Algorithms assume a mathematical model between features
and labels

• Estimate the parameters of the model to best predict labels
from features in the training examples

Machine Learning
Algorithm

Parameters -
x y

✓

Computer
Vision Unsupervised learning

Unsupervised learning of
distributions

• Patterns within the data

• Goal: describe variability in the data
• Estimate the distribution of the data

• There is still a training dataset

• Examples have only features

Unsupervised learning of features
• Filters are important for performing image

analysis tasks
• So far, we determine features in a supervised

way, task-specific manner

• Determine features in an unsupervised manner
• Examples have only features

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

Visualization

Combined
Localization

Unsupervised
Learning

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel Ixy =
[IRxy, I

G
xy, I

B
xy]

T we add the following quantity:

[p1,p2,p3][↵1�1,↵2�2,↵3�3]
T

where pi and �i are ith eigenvector and eigenvalue of the 3 ⇥ 3 covariance matrix of RGB pixel
values, respectively, and ↵i is the aforementioned random variable. Each ↵i is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11⇥11⇥3 learned by the first convolutional
layer on the 224⇥224⇥3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

vi+1 := 0.9 · vi � 0.0005 · ✏ · wi � ✏ ·
⌧
@L

@w

��
wi

�

Di

wi+1 := wi + vi+1

where i is the iteration index, v is the momentum variable, ✏ is the learning rate, and
D

@L
@w

��
wi

E

Di

is
the average over the ith batch Di of the derivative of the objective with respect to w, evaluated at
wi.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and

6

Both are unsupervised in the sense that there are no labels!

Computer
Vision General idea in unsupervised

distribution learning
Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

• Algorithm assumes a mathematical model for the features
• Ideally this is the probability distribution of features

Distribution modeling
Parameters -x

✓

Likelihood
of the sampleA real sample

Sampling model
Parameters - ✓

A sample from the
distribution of features

A sample from a
known distribution

Computer
Vision Why is this useful?

• Sample from the distribution of image to generate images

LARGE SCALE GAN TRAINING FOR
HIGH FIDELITY NATURAL IMAGE SYNTHESIS

Andrew Brock⇤

Heriot-Watt University
ajb5@hw.ac.uk

Jeff Donahue
DeepMind
jeffdonahue@google.com

Karen Simonyan
DeepMind
simonyan@google.com

ABSTRACT

Despite recent progress in generative image modeling, successfully generating
high-resolution, diverse samples from complex datasets such as ImageNet remains
an elusive goal. To this end, we train Generative Adversarial Networks at the
largest scale yet attempted, and study the instabilities specific to such scale. We
find that applying orthogonal regularization to the generator renders it amenable
to a simple “truncation trick,” allowing fine control over the trade-off between
sample fidelity and variety by truncating the latent space. Our modifications lead
to models which set the new state of the art in class-conditional image synthe-
sis. When trained on ImageNet at 128⇥128 resolution, our models (BigGANs)
achieve an Inception Score (IS) of 166.3 and Fréchet Inception Distance (FID) of
9.6, improving over the previous best IS of 52.52 and FID of 18.65.

1 INTRODUCTION

Figure 1: Class-conditional samples generated by our model.

The state of generative image modeling has advanced dramatically in recent years, with Generative
Adversarial Networks (GANs, Goodfellow et al. (2014)) at the forefront of efforts to generate high-
fidelity, diverse images with models learned directly from data. GAN training is dynamic, and
sensitive to nearly every aspect of its setup (from optimization parameters to model architecture),
but a torrent of research has yielded empirical and theoretical insights enabling stable training in
a variety of settings. Despite this progress, the current state of the art in conditional ImageNet
modeling (Zhang et al., 2018) achieves an Inception Score (Salimans et al., 2016) of 52.5, compared
to 233 for real data.

In this work, we set out to close the gap in fidelity and variety between images generated by GANs
and real-world images from the ImageNet dataset. We make the following three contributions to-
wards this goal:

• We demonstrate that GANs benefit dramatically from scaling, and train models with two
to four times as many parameters and eight times the batch size compared to prior art. We
introduce two simple, general architectural changes that improve scalability, and modify a
regularization scheme to improve conditioning, demonstrably boosting performance.

⇤Work done at DeepMind

1

ar
X

iv
:1

80
9.

11
09

6v
1

 [c
s.L

G
]

28
 S

ep
 2

01
8

[Figure from Brock, Donahue and Simonyan 2018 – Class conditional generation of images]

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Computer
Vision Why is this useful?

• Style transfer

[Figure from Karras, Laine and Aila, 2018]

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Computer
Vision Why is this useful?

Improving resolution of an image

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4× upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [15].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [48, 32, 4]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4× upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [42] or Yang et al. [60]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [3, 14].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [13] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 38].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [17, 16]. Related ap-
proaches to the SR problem originate in compressed sensing
[61, 11, 68]. In Glasner et al. [20] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [30], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [24] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [51] combine an edge-directed SR
algorithm based on a gradient profile prior [49] with the
benefits of learning-based detail synthesis. Zhang et al. [69]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [66] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [53, 54]. In Kim and Kwon
[34] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [26], trees [45] or Random Forests [46]. In Dai et al.
[5] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR

4682

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4× upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [15].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [48, 32, 4]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4× upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [42] or Yang et al. [60]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [3, 14].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [13] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 38].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [17, 16]. Related ap-
proaches to the SR problem originate in compressed sensing
[61, 11, 68]. In Glasner et al. [20] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [30], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [24] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [51] combine an edge-directed SR
algorithm based on a gradient profile prior [49] with the
benefits of learning-based detail synthesis. Zhang et al. [69]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [66] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [53, 54]. In Kim and Kwon
[34] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [26], trees [45] or Random Forests [46]. In Dai et al.
[5] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR

4682

[Figure from Ledig et al. 2017]

Bayesian reconstruction of medical images

[Figure from Tezcan et al. 2018]

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Computer
Vision Why is this useful?

• Many more applications:
• In-painting
• Realistic video and image editing
• Video frame prediction
• Outlier detection
• …

• Scientifically
• Building a model of the visual world
• Possibly an important component in human learning.

• We do not see 100s of cups to understand what a cup is
• We constantly observe around and get visual input to our brains.

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Computer
Vision Images are big

• Images are very high dimensional
• Consider a small image of 64x64
• Even that is 4096 dimensional!
• We need to keep that in mind when we think

about unsupervised learning.

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Computer
Vision The most straightforward way

• Kernel density estimation (KDE)
• Given a sample set of images the naïve way is

• Place a ”kernel” around each training sample
• Determine the likelihood of a new sample based on these kernels
• If kernels depends on Euclidean distance, e.g. Gaussian kernel, then

likelihood is related to the distance in Euclidean space.

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Computer
Vision Bad idea due to the dimensions

• For the KDE to work, roughly speaking, you
need to somehow “fill” the space, e.g.

• To fill a space of 4096 dimensions, you need
a lot of samples, we need to find a better
solution.

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Computer
Vision Latent variable models

• Assume that images live in a lower dimensional sub-space
• We build a mapping between them

image space
latent space

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Computer
Vision Probabilistic principal component

analysis
• Assumes the mapping is a linear one
• Probabilistic principal component analysis [Tipping & Bishop 1999]

image space
latent space

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Computer
Vision Link to PCA

• Maximum likelihood estimate of the parameters yield the PCA
• Eigenvalues and eigenvectors of the sample covariance matrix
• Derivation in [Tipping and Bishop 1999]

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Computer
Vision Non-linear maps

• In supervised learning linear maps were not enough
• The same idea applies here

image space
latent space

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Computer
Vision Density networks

[MacKay, Nucl. Inst. Met. In Physics Research 1995]
Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

: Parameterize with a network with parameters !

For the given samples, maximize with respect to !

using Monte Carlo integration

Sampling was not efficient for very large dimensional problems, need too many samples
MacKay hinted importance sampling

Computer
Vision Two avenues – both end of 2013

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Generative Adversarial Network
Sampler

Variational Auto-encoders
Distributional model

Machine Learning
Algorithm

Parameters -
x

✓

Likelihood
of the sampleA real sample

Machine Learning
Algorithm

Parameters - ✓

A sample from the
distribution of

features

A sample from a
known distribution

Computer
Vision Variational auto-encoders

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Builds on density networks concept but instead of Monte-Carlo uses variational
inference with a network parameterized sampling (approximate) distribution

Let’s find a distribution more
focused so I will sample for less for
the same approximation
Importance Sampling
Best option is the posterior p(z|x)

Jensen’s Inequality

Evidence lower-bound : Maximize this instead of real likelihood

Computer
Vision Variational auto-encoders

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Encoding Model Decoding Model

Takes an image and maps it to the
posterior distribution in the latent space.
Encodes to the lower dimensional space

Takes the lower dimensional
representation and maps to an image.
Can be used as a sampler.
Can be used as a reconstruction tool

Computer
Vision Variational auto-encoders

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Encoding Model Decoding Model

Both Gaussian Models
Homework: Can you determine the link with the probabilistic PCA model?

Computer

Vision Difference with PCA
Visualization

Combined

Localization

Unsupervised

Learning

Distribution

Learning

Real patches of 28x28 VAE Generated

60 components

PCA

60 components

PCA

250 components

[Tezcan et al. 2018]

Image patches from Magnetic Resonance Images of the brain

Computer
Vision Generative adversarial networks

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Instead of an explicit probabilistic model, a GAN is a sampling tool that generates
samples from the data distribution

Generator
Generates realistic looking images

from random samples in the
latent space.

Real or Fake

Discriminator

Tries to classify images into two categories:
Real or generated (Fake)

Computer
Vision During training they compete

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Generator - G
Tries to create samples that can

fool the discriminator

Real or Fake

Discriminator - D
Tries to identifies the images

the generator creates

Solve this problem: Optimize the network weights with a two-player game

Computer
Vision Random samples

[Images from Goodfellow et al. 2014]

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Computer
Vision Very active area of research

December 12, 2018

• The model is not yet peer-reviewed
• However, the samples they claim to

generate are remarkable.

Interpolation between images

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Computer
Vision Unsupervised learning

Unsupervised learning of
distributions

• Patterns within the data
• Goal: describe variability in the data
• Estimate the distribution of the data
• Only features
• Examples have only features

Unsupervised learning of features
• Filters are important for performing image

analysis tasks
• So far, we determine features in a supervised

way, task-specific manner

• Determine features in an unsupervised manner
• Examples have only features

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel Ixy =
[IRxy, I

G
xy, I

B
xy]

T we add the following quantity:

[p1,p2,p3][↵1�1,↵2�2,↵3�3]
T

where pi and �i are ith eigenvector and eigenvalue of the 3 ⇥ 3 covariance matrix of RGB pixel
values, respectively, and ↵i is the aforementioned random variable. Each ↵i is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11⇥11⇥3 learned by the first convolutional
layer on the 224⇥224⇥3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

vi+1 := 0.9 · vi � 0.0005 · ✏ · wi � ✏ ·
⌧
@L

@w

��
wi

�

Di

wi+1 := wi + vi+1

where i is the iteration index, v is the momentum variable, ✏ is the learning rate, and
D

@L
@w

��
wi

E

Di

is
the average over the ith batch Di of the derivative of the objective with respect to w, evaluated at
wi.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and

6

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Computer
Vision Unsupervised learning of features

• Features are important, they are the essential building blocks
• For any task it is important to get the right features
• It requires large number of labelled images to do this
1. It would be wonderful if we could do it with only few images
2. Humans do not seem to require lots of labelled images for good

features, assuming humans do have good features
3. Are there features that can be used for any visual task?

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Unsupervised
Feature
Learning

Computer
Vision Auto-encoding models

Encoding path Decoding path

The bottleneck layer does not allow the network to learn an identity map
It learns to summarize the most important information for reconstruction

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Unsupervised
Feature
Learning

Computer
Vision Auto-encoding models

Encoding path Decoding path

Minimization only requires the images. The goal is to be able to
reconstruct the image with high fidelity.

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Unsupervised
Feature
Learning

Computer
Vision Auto-encoding models

Encoding path Decoding path

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Unsupervised
Feature
Learning

Computer
Vision Auto-encoding models

Encoding path

Features learnt here can then be translated
to another task either directly or by fine-tuning, i.e. starting the optimization
from the pre-learnt weights

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Unsupervised
Feature
Learning

Train these layers with
labelled examples

Computer
Vision In practice

• The features learnt from a simple auto-encoder can be very
helpful
• They are not however, extremely useful
• In the end, you may still need large number of labelled

examples
• Not as large as training from scratch though

Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Unsupervised
Feature
Learning

Computer
Vision An example from more recent works –

Context-Encoder
Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Unsupervised
Feature
Learning

