Deep Learning for
Computer Vision
Part Ill: Advanced Topics
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VEELEE  Qutline

1. Introduction to neural networks — this week
Basics of neural networks

2. Convolutional neural networks— 13.12
Basic applications of deep learning to image analysis and computer
vision

3. Advanced topics and applications — 20.12
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Vision A bit more detailed outline

3. Advanced topics and applications — 20.12
a. Visualization and diagnostics
b. Localization and classification

c. Unsupervised learning




Visualization and diagnostics
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Vision Understanding how a network works

Visualization

* Challenging task

* Multivariate interactions, information in different areas of the
image are used in interaction with each other

* Nonlinear mapping between features and labels
* Hierarchical mapping, information gathered in multiple layers

* Definition of ‘understanding’ is crucial
* What do you exactly want to get out of the system?
* There are different approaches with different definitions
* We will see one particular example: Visualizing features
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Visualization

Visualizing features

* Discussion based on [Zeiler and Fergus 2013]

Visualizing and Understanding Convolutional Networks

Matthew D. Zeiler ZEILERQCS.NYU.EDU
Dept. of Computer Science, Courant Institute, New York University

Rob Fergus FERGUS@CS.NYU.EDU
Dept. of Computer Science, Courant Institute, New York University

* Visualizing the input that activates a neuron in any layer

III

 "Deconvolutional’” network
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Vision General network architecture

Visualization ar, = Wrhrp_1+ b € RE p(y = k) fk(X 9)

= k)
Output
Convolution followed by ReLu nonlinearity followed by Number of neurons
max-pooling [optionally] equal number of classes

# Fully connected layer: transformation followed by non-linearity

Similar to LeCun et al. 1998 and Krizhevsky et al. 2012
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Ve Interpreting internal features

Visualization

Convolutional layers Fully
What input pattern activates a given neuron in an connected
intermediate layer? layers
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Visualization

Image dependent visualization

e The activation level in the neuron
depends on the input image

* For different inputs it will be activated

at different levels

 The difference is due to the non-
linearity

 |fit was linear, neuron’s activation
would be based on the respective
linear projection

rectified linear unit

ol(a)

"

* Analysis should be based on the
input image.

-3 -2

Max-pooling

* The new question
“In the input image which pattern
caused the activation in a given
neuron in an intermediate layer?”
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VUELEE  Size of the pattern in the input image

Visualization -
-‘-'-'--

* Size of the input pattern changes with respect to the receptive field

* Depending on the layer the neuron sits, its receptive field changes

* The size of the input pattern changes as well.

* The image patch that activates the blue neuron is larger than the one that
activates the red neuron
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Vision Operations in the forward pass

Visualization
* Consider the operations we need to do

in order to compute the activation in
the blue neuron from the layer below

* Three operations
e Convolutions with a set of filters

(z,y)
Q= Zwl,kj * hy—1,5 + bk

|/ 1 (z,y)

* Non-linearity with ReLu function
(z,y) _ (z,y)
hl,k =0\

* Max-pooling
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VELES  The idea

Visualization

* Run an input image forward and * Unpool
compute all the features . Rectify

» Keep the activation of the neuron « Transposed convolution

you want and set the rest to O.
* Alinked reverse "deconvolutional”

 Starting from the same layer run the network

operations in reverse order. - .
* Modified layers are the inputs
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VEELEE  The idea

Visualization <. RN

Layer Above
Reconstruction

Switches -
Max Unpooling @ 6 w \ ‘ Max Pooling

Pooled Maps

Unpooled Maps Rectified Feature Maps
Rectified Linear Rectified Linear
Function Function
Rectified Unpooled Maps Feature Maps
Convolutional Convolutional
Filtering {FT} Filtering {F}
Reconstruction Layer Below Pooled Maps
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[Image from Zeiler and Fergus 2013]
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Visualization

Inverting the operations — max pooling

Reconstruction I I
Unpooling @

(N
<

Pooled Maps

-—ie
-—

Pooling

Max Locations
“Switches”

RS
b
Lepond Fea;i:ﬁi;‘:“‘qr‘

[Image from Zeiler and Fergus 2013]

* Keep the max locations while * |tis not possible to regenerate this
forward passing the image information

* While unpooling place the values ¢ Instead zero values are placed for
to the respective positions the locations where activations are

+ Pooling leads to information loss ~ discarded during forward pass
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Vision Inverting the operations - RelLu

Visualization
rectified linear unit

* Only keeps the positive layers

e As the reverse the same
function is used

ol(a)

* RelLu yields only positive
activation maps

—— sigmoid
—— tahn/20+0.5
— relu

* To keep the activation maps
the same, Relu is used again
to keep the activations during
reconstruction positive

s — e€lu
—— Irelu

o(a)

* You can in theory, also use the
inverse of a function
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Vision Inverting the operations - Convolution

Visualization
i e
* The kernel is the kernel used
. - - in the forward pass, flipped
horizontally and vertically
H o
.

* Transposed convolution
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Visualization

AN
Y
1
1
1

Layer Above
Reconstruction . Pooled Maps
Switches
. Max Poolin
Max Unpooling | | 6 w g
Unpooled Maps Rectified Feature Maps
Rectified Linear 4 p Rectified Linear
Function Function
Rectified Unpooled Maps Feature Maps
Convolutional Convolutional
Filtering {FT} Filtering {F}
Reconstruction Layer Below Pooled Maps
image size 224 110 26 13 13 13 _ _
filter size 7 3 13
1 k384 | V1 k384 256
| 7\2‘56 N N N
\Lstride 2 96  3x3max 3x3 max c
?r?dr:;)( pool[ [ contrasf pool | | contrast pool 4096 4096 class
stride 2| |norm. stride 2 units units softmax
3 55
13| L}13 6
Input Image @L 256 2>6 - =
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output

[Images from Zeiler and Fergus 2013]
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Vision Feature maps

Visualization
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[Images from Zeiler and Fergus 2013]
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W Further deeper features

Visualization

T [T By e
.'} Ll morning

[Images from Zeiler and Fergus 2013]




Com puter [Images from Zeiler and Fergus 2013]

UNTely Even further deeper

Visualization




Localization and classification
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Visualization

Combined
Localization

Class activation maps

* So far for classification we were only interested in
determining the class assignment

* We also had a separate localization network that relied on
separate classification tasks at proposal regions

* With slight modifications classification networks can identify
approximate locations

* Based on global average pooling idea
* Discussion based on [Zhou et al. 2016]

Learning Deep Features for Discriminative Localization

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba
Computer Science and Artificial Intelligence Laboratory, MIT
{bzhou, khosla, agata,oliva,torralba}@csail.mit.edu
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Vision Normal classification network

Visualization

Lastly fully connected
layers summarizing the

‘ feature maps
-'-'---‘J

Output
# Convolution followed by ReLu nonlinearity followed by Number of neurons
max-pooling [optionally] equal number of classes

Combined
Localization

# Fully connected layer: transformation followed by non-linearity
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Vision Normal classification network

Visualization

Information at this layer Lastly fully connected

layers summarizing the

Combined . . .
Localization ‘ is quite complicated
\ feature maps
- - ' -m- ‘ |

Output
Number of neurons
equal number of classes

# Convolution followed by ReLu nonlinearity followed by
max-pooling [optionally]

# Fully connected layer: transformation followed by non-linearity



Computer
Vision

Visualization

Combined
Localization

We have also seen fully convolutional
networks for segmentation

o

Nyl
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I AT

* [mage size outputs
* Replaced the final fully connected layers
e Upsampling using transpose convolutions or bilinear upsampling

followed by convolutions
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Visualization

Combined
Localization

Combining these ideas

* Class activation maps combines these ideas

* Using Global Average Pooling

SR

GAP
Global Average Pooling

* Like normal pooling, applies to each
channel in a layer separately

h(w7y)
Ml—lNl Z =Lk

* Averaging all the information to a
single number!

hir =

e Then continue as usual

= E wr, ikl k
k
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Visualization

Combined
Localization

Activation Maps

O
S~ Australian
C C C C O Wy terrier
®) 0] o . .
(Ii N Y v : / :
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Class Activation Mapping

Class
Activation

Map

. (Australian terrier)

+ ... —|_Wn*

g A

e Per-class weighted sum of all the channels before global average
pooling yields the class-specific activation map

[Image taken from Zhou et al. 2016]
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Visualization

Combined
Localization

Caltech256

Rowina

Stanford Action40
Excavation

SUN397 UIUC Event8

* Network architecture preceding the GAP layer can change
* Form of weak-supervision for localization

[Image taken from Zhou et al. 2016]
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Visualization
Proposal maps

* Especially in medical

Combined CNN feature extraction layers , ===

1
Localization . 1:\-‘1 ig i - Ilr imaging
| 1 I 8_ I C .
T & =S E * Labels are expensive and
U =i |5 i
(& Tl Limbs .9@ difficult to get.

* Approximate localization
with CAM allow identifying
areas of interest

Polar
representation
= r

* Also weak supervision to

train stronger localization

Weakly Supervised Localisation for Fetal d IgO rlth ms
Ultrasound Images

Nicolas Toussaint', Bishesh Khanal':2, Matthew Sinclair?, Alberto Gomez!,
Emily Skelton', Jacqueline Matthew!, and Julia A. Schnabel®



Unsupervised learning
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Vision Very coarse view on supervised learning
Visualization / \

Combined . .
|Gl Supervised learning

74 years old

30 years old

: * Patterns between two types of data
Unsupervised

Learning * Goal: predicting one from the other

» Examples have both types of data

17 years oI

* At prediction only one exist

30 years old
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Visualization

Combined
Localization

Unsupervised
Learning

General idea in the supervised approach

* Algorithms assume a mathematical model between features
and labels

Machine Learning

X Algorithm Yy
Parameters -

* Estimate the parameters of the model to best predict labels
from features in the training examples

y = f(x|0)
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Vision Unsupervised learning

Visualization

Unsupervised learning of features
Combined

\eeallarfern * Filters are important for performing image

analysis tasks

Unsupervised * So far, we determine features in a supervised
Learning way, task-specific manner

e Determine features in an unsupervised manner

* Examples have only features

Both are unsupervised in the sense that there are no labels!

Unsupervised learning of
distributions

Patterns within the data

Goal: describe variability in the data
Estimate the distribution of the data
There is still a training dataset

Examples have only features
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General idea in unsupervised
distribution learning

Visualization

Combined e Algorithm assumes a mathematical model for the features
-ocsfization * Ideally this is the probability distribution of features

Unsupervised
Learning p(X|9) Likelihood
of the sample

Distribution A real sample Distributi deli
Learning X Istribution moadeling p(X‘H)

Parameters - ()

A sample from the
distribution of features

A sample from a

known distribution :
Sampling model

Parameters -
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Why is this useful?

* Sample from the distribution of image to generate images

Figure 1: Class-conditional samples generated by our model.

[Figure from Brock, Donahue and Simonyan 2018 — Class conditional generation of images]




Computer
vision Why is this useful?

Visualization

Combined  Style transfer

Localization

source

Unsupervised
Learning

destination

Distribution
Learning

Coarse styles copied

[Figure from Karras, Laine and Aila, 2018]
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VEELEE  \Why is this useful?

Visualization
Combined Improving resolution of an image Bayesian reconstruction of medical images
Localization
bicubic SRGAN original
15d

(21.59dB/0.6423) (21.15dB/0.6868)

qy, o, ‘{/\.\_ M‘

Unsupervised
Learning

Distribution
Learning

[Figure from Ledig et al. 2017] [Figure from Tezcan et al. 2018]
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Why is this useful?

* Many more applications:
* [n-painting
* Realistic video and image editing
* Video frame prediction
* QOutlier detection

* Scientifically
* Building a model of the visual world

* Possibly an important component in human learning.
 We do not see 100s of cups to understand what a cup is
* We constantly observe around and get visual input to our brains.
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Images are big

Images are very high dimensional
Consider a small image of 64x64
Even that is 4096 dimensionall!

We need to keep that in mind when we think
about unsupervised learning.
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

The most straightforward way

Kernel density estimation (KDE)

Given a sample set of images the naive way is

p(x|0) = ZK@ T, Ty)

Place a "kernel” around each training sample

Determine the likelihood of a new sample based on these kernels

If kernels depends on Euclidean distance, e.g. Gaussian kernel, then
likelihood is related to the distance in Euclidean space.
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Bad idea due to the dimensions

* For the KDE to work, roughly speaking, you
need to somehow “fill” the space, e.g.

| | |
W ra = == - ha L

* To fill a space of 4096 dimensions, you need
a lot of samples, we need to find a better
solution.
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Latent variable models

* Assume that images live in a lower dimensional sub-space

* We build a mapping between them

>,

latent space

2 c R

p(z|2)

p(x) = / p(z|2)p(2)dz

reRP, 2eRY d<< D

image space

re McCRP
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Probabilistic principal component
analysis

* Assumes the mapping is a linear one
* Probabilistic principal component analysis [Tipping & Bishop 1999]

>,

latent space p($|2) image sp
d image space
zeR z € MCRP
p(e) = [ plelz)p(z)i plals) = A (W= + 1,

D p p(z) =N (0,I) gz : mean image
$6R726R7d<<D WERDXd 0'2:1’10i86
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Link to PCA

 Maximum likelihood estimate of the parameters yield the PCA
* Eigenvalues and eigenvectors of the sample covariance matrix
e Derivation in [Tipping and Bishop 1999]

W = Ug (Mg — 021)""* R

1/2
Wyt = Ug Ag el R
N~ N~ | N~ |
d eigenvectors \d eigenvalues arbitrary rotation
D
. , 1
Lt : sample mean image oML = g E Ag
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Non-linear maps

* In supervised learning linear maps were not enough

* The same idea applies here

>,

latent space p(:c | Z) image sp
d Image space
:€R € MCRP
p(z) = /P(xlz)p(z)dz p(z|z) = N (f(210) + pa,0°)
2) =N (0,1 [ © Mean lmage
reRP, zeRY d<< D P(z) (0.1) 2

o< : noise
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Density networks

[MacKay, Nucl. Inst. Met. In Physics Research 1995]
p(a:|z; 9) : Parameterize with a network with parameters 0
p(a:6) = [ plolzs0)p(z)dz

For the given samples, maximize with respect to 6

Hp(wn;e)
= p(z|2;0) - H/p(a:n|z, 0)p(z)dz

using Monte Carlo integration

Zln % Zp(wn|zr§ ‘9)7 By p(z)

Sampling was not efficient for very large dimensional problems, need too many samples
MacKay hinted importance sampling

)

O
z—>8
O

OO000O0
OO00O0O0O000OO
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Vision Two avenues — both end of 2013

Visualization

Generative Adversarial Network Variational Auto-encoders
FerbiinEE Sampler Distributional model
Localization A sample from a A sample from the Likelihood
nown distribution distribution of | A real sample : : of the sample
_ foatures P Machine !.earnmg
Unsupervised z x X Algorithm p(x|6)
Learning Parameters - ()
e.g. N(0,I)
Distribution
Learning Auto-Encoding Variational Bayes
Generative Adversarial Nets
Diederik P. Kingma Max Welling
Machine Learning Group Machine Learning Group
Universiteit van Amsterdam Universiteit van Amsterdam
Ian J. Goodfellow; Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley, dpkingma@gmail.com welling.max@gmail.com

Sherjil Ozair} Aaron Courville, Yoshua Bengio®
Département d’informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC H3C 3J7

Stochastic Backpropagation and Approximate Inference
in Deep Generative Models

Danilo J. Rezende, Shakir Mohamed, Daan Wierstra
{danilor, shakir, daanw}@google.com
Google DeepMind, London
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Variational auto-encoders

Builds on density networks concept but instead of Monte-Carlo uses variational
inference with a network parameterized sampling (approximate) distribution

In p(z; 0)

>

In /p(a:|z; 0)p(z)dz Let’s find a distribution more
focused so | will sample for less for
q(z|z; @) the same approximation
1n/p(a:|z; 0)p(2) q(z|a:’ &) dz < Importance Sampling
Y,

Best option is the posterior p(z|x)

[ aletes o) inpla ) L de e sensems sty

E[Inp(z|z;0)] — Dkr lq(z|z; ¢)llp(2)]

Inp(z36) > Eq(zfai) Ip(e]2:6)] — Dicr la(zl; 6)|Ip(2)

N _/
—

Evidence lower-bound : Maximize this instead of real likelihood
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Vision Variational auto-encoders

Visualization

O O
Combined O O
Localization O O O O o O
O O O O Op O
Ve z =0 [»O s> q(z|z;0) 2= S0P O > pz|z0)
Learning O O O O or O
O O O 8
O
Distribution O q(z|a:; qb) ~ p(z|513) O
Learning
Encoding Model Decoding Model
Takes an image and maps it to the Takes the lower dimensional
posterior distribution in the latent space. representation and maps to an image.
Encodes to the lower dimensional space Can be used as a sampler.

Can be used as a reconstruction tool
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Variational auto-encoders

O O
O O
o O o © O
Opn O Sh Op O
r = O }O} —» q(z|z; 0 z =P O}O}O = p(z|z;0)

or O ;7 OF O
O O O 8
O

O q(z|z; ¢) = p(z|z) O

Encoding Model Decoding Model

q(z|lz; @) = N (25 pz(250), X2 (250))  p(2]2;0) = N (25 e (25 0), Lz (25 0))

Both Gaussian Models
Homework: Can you determine the link with the probabilistic PCA model?
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Difference with PCA

Image patches from Magnetic Resonance Images of the brain

Real patches of 28x28

60 components

[Tezcan et al. 2018]

PCA
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Generative adversarial networks

Instead of an explicit probabilistic model, a GAN is a sampling tool that generates
samples from the data distribution

O O
3 5 o
o O
Q) O) O On O S
Z =P }O}Q = T T =» O }O} = Real or Fake
O O
o O 8 O
2~ N(O,I) 3 5
Generator Discriminator
Generates realistic looking images Tries to classify images into two categories:
from random samples in the Real or generated (Fake)

latent space.
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

During training they compete

Generator - G Discriminator - D
Tries to create samples that can Tries to identifies the images
fool the discriminator the generator creates
O O
3 5 o
o O
Oy Op O On O S
AR o }O}Q - T T = O }O} =P Real or Fake
O O
o O 8 O
2~ N(O,I) 3 3

Solve this problem: Optimize the network weights with a two-player game

min max B, (2) [In D(2; 8)] + Expiz) (1~ D(G(:6))]
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

[Images from Goodfellow et al. 2014]

HEPd NS
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Vision Very active area of research

Visualization
A Style-Based Generator Architecture for Generative Adversarial Networks
Combined Tero Karras Samuli Laine Timo Aila
NVIDIA NVIDIA NVIDIA

Localization

tkarras@nvidia.com slaine@nvidia.com taila@nvidia.com

Unsupervised

Learning December 12, 2018

 The model is not yet peer-reviewed
 However, the samples they claim to
generate are remarkable.

e

Distribution
Learning

B=1 $=07 $=05 $=0 $=-05 p=—1
Interpolation between images
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Unsupervised learning

Unsupervised learning of features

* Filters are important for performing image
analysis tasks

* So far, we determine features in a supervised
way, task-specific manner

e Determine features in an unsupervised manner

* Examples have only features
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Visualization

Combined * Features are important, they are the essential building blocks

Localization e For any task it is important to get the right features

Unsupervised * It requires large number of labelled images to do this

Learning 1. It would be wonderful if we could do it with only few images

Distribution 2. Humans do not seem to require lots of labelled images for good
Learning features, assuming humans do have good features

Unsupervised 3. Are there features that can be used for any visual task?
Feature
Learning
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VBRI  Auto-encoding models

Visualization

f(x;0) =
Combined
Localization g
Unsupervised 1 § 2
Learning :
- - -
Distribution
Learning
Unsupervised Y Y
Feature . .
Learning EnCOdmg path Decodmg path
. . 9
min |l — f(z;0)|)3

0

The bottleneck layer does not allow the network to learn an identity map
It learns to summarize the most important information for reconstruction
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Visualization

Combined
Localization

Unsupervised
Learning

Distribution
Learning

Unsupervised
Feature
Learning

Auto-encoding models

f(xz;0) =
' '-»- -' '
Encoding path Decoding path
min [l — £(2;6)|

Minimization only requires the images. The goal is to be able to
reconstruct the image with high fidelity.
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VERURE  Auto-encoding models
Visualization ////’ ‘\\\\
Combined

Localization

V-0-=

Distribution

Learning ////
Unsupervised \\\v//,

LFeeaart:i:weg \ Encoding path / Decoding path

Unsupervised
Learning
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VBB Auto-encoding models

Visualization / \/ \
Combined
Localization ¢
Unsupervised | 2
Learning : - - - - - # ‘
/

Distribution
Learning

Unsupervised Y Train these layers with

Feature .
Learning K Encoding path / labelled examples /

Features learnt here can then be translated
to another task either directly or by fine-tuning, i.e. starting the optimization
from the pre-learnt weights
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Vision In practice

Visualization

Cemibfinas * The features learnt from a simple auto-encoder can be very
Localization helpful

Unsupervised * They are not however, extremely useful
Learning

* In the end, you may still need large number of labelled
Distribution examples

Learning
* Not as large as training from scratch though
Unsupervised

Feature

Learning
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Vision

An example from more recent works —
Context-Encoder

Context Encoders: Feature Learning by Inpainting

Visualization

Combined

Localization Deepak Pathak Philipp Krahenbiihl Jeff Donahue Trevor Darrell Alexei A. Efros
University of California, Berkeley
{pathak,philkr,jdonahue,trevor,efros}@cs.berkeley.edu

Unsupervised
Learning

]
)

—
—
—

Base-CNN Stream-1 !

S:) ->L1-)L2 ..+_

9
. |F1
Unsupervised
Feature - < /D | -> L[|l e e -;»_
Learnin I -
= Base-CNN Stream-2: Top-CNN

Channel-wise
Fully
Connected

Distribution
Learning

—

Encoder Features
Decoder Features

—

\A

ol

\
uonewlojsuel |

Learning to See by Moving

Pulkit Agrawal Jodo Carreira Jitendra Malik
UC Berkeley UC Berkeley UC Berkeley

pulkitagleecs.berkeley.edu carreira@eecs.berkeley.edu malik@eecs.berkeley.edu




