

Dictionary:

- [noun] "The pursuit (of a person or animal) by following tracks or marks they left behind"
- [verb] "Observe or plot the moving path of something (e.g., to track a missile)"

What does it mean in Computer Vision?

Many thanks to: H. Grabner, L. van Gool, and V. Ferrari for some of the slides & videos.

What is Tracking

Time t

Time t+1

LOCALIZE "IT" IN THE NEXT FRAMES

Why do we need it

What is tracking for you? Why do you think it is relevant and may be important? Where could it be useful, in real-life applications and engineering scenarios?

Task: "List <u>applications</u> you can think of on a piece of paper"

Discuss in groups of 3-4

Autonomous Driving

NVIDIA GTC Europe

Surveillance, Safety, Security

Sports

Orcun Goksel, ETH Zurich

Video Editing

Applications: VR/AR glasses

Orcun Goksel, ETH Zurich

Medical Guidance

Orcun Goksel, ETH Zurich

SfM: Structure from Motion

• Tracked Points gives correspondences

Defense

"Top Gun"

Orcun Goksel, ETH Zurich

Of course, "very importantly" The Cow Tracker

Applications

- Structure-from-Motion
- Autonomous Driving
- Gesture/Action Recognition
- Augmented Reality
- Navigation
- Safety and Security
- Medical Targeting / Guidance
- Motion Compensation
- •

You will be able to:

- 1. Determine applications of tracking and identify problems solvable by tracking
- 2. Analyze what methods could work in a practical scenario / situation
- 3. Assess potential limitations / pitfalls of particular approaches and scenarios
- 4. Propose an optimal tracking solution

How will we get there:

- (some) common tracking methods
- Few particular keywords & implementation
- What not: details of all individual implementations; cf. "how to google"

Think about

Q. What tracking method would you use in each following application scenario?

What limitations you may expect?

Task: "Discuss each in groups"

App1. Safety: In a lumbar mill, you wish to use CV to stop the blade if a hand reaches nearby.

App2. Medical: You wish to track the ultrasound probe, to relate images in 3D space.

App3. Autonomous driving: Tracking other nearby vehicles to adjust speed and course.

(AppX. Your favourite tracking app)

Approaches

(i) Feature tracking generic

corners, blob/contours, regions, ...

(ii) Model-based tracking application-specific

face, human body, ...

Tracking Requirements

Strongly depends on the application!

Robust, Accurate, Fast,...

Constrain the tracking task!

Information about the object, dynamics,

• • •

Tracking Cues

Orcun Goksel, ETH Zurich

Motion as a Cue

Motion as a Cue

- Eye perceptive to temporal changes (gradients)
- "Event based camera"

General Tracking Loop

Orcun Goksel, ETH Zurich

Trajectory (Temporal Filtering)

Temporal Filtering/Predictions

- To predict location
- To reduce noise
- To disambiguate multiple objects

Kalman Filtering

Orcun Goksel, ETH Zurich

An ETH Legacy

http://www.ethlife.ethz.ch/archive_articles/091008_kalman_per

08.10.2009

<< Rudolf Kalman, ETH-Zurich emeritus professor of mathematics, is awarded the National Medal of Science by Barack Obama – one of the highest accolades for researchers in the USA.

In January 2008, Hungarian-born Kalman received the Charles Draper Prize, which is regarded as the "Nobel Prize" of the engineering world. >>

Steps of Tracking

- Recap: Particle filtering
 - Tracking can be seen as the process of propagating the posterior distribution of state given measurements across time.

O N N S A Ν

Traditional/Simple Tracking

t=1

initialization

t=2 position in prev. frame

candidate new positions (e.g., dynamics)

best new position (e.g., max color similarity)

Tracking-by-Detection

detect object(s) independently in each frame

associate detections over time into tracks

Outline

Region Tracking

- Point Tracking
 Template Tracking

Model

- Tracking-by-Detection
 - a specific target
 - object class
- Model-based Body Articulation
- On-line Learning
- Misc (preventing drift, context, issues)

Region Tracking (and Mean Shift Algorithm)

Background Modeling

For known (fixed) background, simply save it and subtract from each frame

Input

Background Model

Large moving blobs are the objects (foreground)

Sources of errors, e.g.:

- * same color as backg
- * lighting changes
- * camera noise/motion
- * occlusion

• •

Noise must be filtered, to extract the object

Deformable models

• One option: Fit deformable curves

Mean Shift Method

- Mean Shift Tracking (general description)
 Maximize similarity between tracked and
 target regions through evolution towards
 higher density in a parameter space
- Can be used to find the object from background modeling, by assuming that the object is formed of a large group of densely located pixels (in contrast to noise as fewer scattered foreground pixels)
- A mean (center) location is iteratively updated by moving it to the *centroid* of pixels within a chosen radius

Meanshift Tracking

Intuitive Description

Typically this search only takes a few iterations

Computer

Intuitive Description

Vision

Initialize multiple means and pick the location where many converges

Example: Safety Monitoring

Outline

• Region Tracking (and Mean Shift Algorithm)

Point TrackingTemplate Tracking

- Tracking-by-Detection
 - a specific target
 - object class
- Model-based Body Articulation
- On-line Learning
- Misc (preventing drift, context, issues)

Model

Point Tracking (and Aperture Problem)

Estimate Optimal Transformation

When can we (not) estimate motion?

Q1. Which direction is the pattern behind the circular hole moving in physical space?

Q2. Motion in 1D: What mathematical property of curves make it impossible to determine the direction of motion from red to green line in the last case?

Q3. What is common between Q1 & Q2?

Sum of Squared Differences

$$E(h) = [I_0(x+h) - I_1(x)]^2$$

Displacement

$$E(h) = [I_0(x+h) - I_1(x)]^2$$

$$E(h) \approx [I_0(x) + hI_0'(x) - I_1(x)]^2$$

$$\frac{\partial E}{\partial h} \approx 2 I_0'(x) [I_0(x) + hI_0'(x) - I_1(x)] = 0$$

$$h \approx \frac{I_1(x) - I_0(x)}{I_0'(x)}$$

Orcun Goksel, ETH Zurich

Intuition

Orcun Goksel, ETH Zurich

Problem 1: Zero Gradient

$$h \approx \frac{I_1(x) - I_0(x)}{I_0'(x)}$$

Problem 1: "Aperture problem"

- For tracking to be well defined, nonzero gradients in all possible directions are needed
- If no gradient along one direction, we cannot determine relative motion in that axis

Problem 2: Local Minima

- Motion to closest minimum has to be assumed
- Indirect result: Frame-rate should be faster than motion of half-wavelength (Nyquist rate)
- Nonconvex regions may indicate multiple solns

Problem 2: Local Minima

Recall: Optical Flow in Motion Estimation

- OF recovers (smooth) motion everywhere
- Least-squares regularization: Horn-Schunk makes smooth spatial change assumption
- In contrast, tracking seeks a single motion!

Recall: Optical Flow

$$I_x u + I_y v + I_t = 0$$

$$I_x = \frac{\partial I}{\partial x}, \quad I_y = \frac{\partial I}{\partial y}, \quad I_t = \frac{\partial I}{\partial t}$$

$$u = \frac{dx}{dt}, \quad v = \frac{dy}{dt}$$

1 equation in 2 unknowns

Treating Aperture Problem in Tracking

- Get additional info to constrain motion:
 - OF: Smoothly regularize in space
 - Tracking: Assume single motion for a region
- Spatial coherence constraint:

Least Squares Problem: Single motion with multiple equations

$$\begin{bmatrix} I_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\ I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(\mathbf{p}_1) \\ I_t(\mathbf{p}_2) \\ \vdots \\ I_t(\mathbf{p}_{25}) \end{bmatrix}$$

Over determined System $A \quad d = b$ of Equations

25x2 2x1 25x1

Pseudo Inverse

$$(A^T A) d = A^T b$$

$$\begin{bmatrix} \sum_{i=1}^{I_x I_x} & \sum_{i=1}^{I_x I_y} I_y \\ \sum_{i=1}^{I_x I_y} & \sum_{i=1}^{I_x I_y} I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum_{i=1}^{I_x I_t} I_i \\ \sum_{i=1}^{I_x I_y} I_i \end{bmatrix}$$

Eigenvectors of A^TA

$$\begin{bmatrix} \sum_{i=1}^{I_x I_x} & \sum_{i=1}^{I_x I_y} I_y \\ \sum_{i=1}^{I_x I_y} & \sum_{i=1}^{I_x I_y} I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum_{i=1}^{I_x I_t} I_i \\ \sum_{i=1}^{I_x I_t} I_i \end{bmatrix}$$

- (u,v) can only be found, if this is solvable, i.e. 2x2 image structure matrix is invertible == with no small eigenvalue
- This matrix and the requirement sound familiar have we seen these before?
- Recall Harris corner detector!
- Thus, "good image features (with large structural eigenvalues) are also good for tracking (with which we can find motion"

Interpreting the Eigenvalues

Samples: Edge / Low Texture / High Texture

Example

Outline

• Region Tracking (and Mean Shift Algorithm)

- Point Tracking (and Aperture Problem)
 Template Tracking

- Tracking-by-Detection
 - a specific target
 - object class
- Model-based Body Articulation
- On-line Learning
- Misc (preventing drift, context, issues)

Model

Template Tracking

Template Tracking

- Keep a template image to compare with each frame
- This is typically applied for small patches, e.g. 5x5
- Why not run it for the entire object (for a larger window)
- Locally, translation is sufficient to explain motion; but...

Orcun Goksel, ETH Zurich

Lucas-Kanade Template Tracker

• Motion is more complex in a larger window

• Nonetheless, we can easily generalize the motion model to other parametric models! e.g., translation, affine, projective, "warp"

$$E(u, v) = \sum_{x,y} [I(x + u, y + v) - T(x, y)]^{2}$$
$$E(p) = \sum_{x,y} [I(W(x; p)) - T(x, y)]^{2}$$

Lucas-Kanade Template Tracker

- From Points to templates
- Estimate "optimal" warp W

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x}) \right]^2$$

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x})]^2$$

Lucas-Kanade Framework] 04 ng fyi Uni Matthews, K On ರ Н [Baker 20 Yea

Lucas-Kanade Template Tracker

- Step 1. Warp I to obtain $I(W([x \ y]; P))$
- Step 2. Compute the error image $T(x) I(W([x \ y]; P))$
- Step 3. Warp the gradient ∇I with $W([x \ y]; P)$
- Step 4. Evaluate $\frac{\partial W}{\partial P}$ at $([x \ y]; P)$ (Jacobian)
- Step 5. Compute steepest descent images $\nabla I \frac{\partial W}{\partial P}$
- Step 6. Compute Hessian matrix $\sum (\nabla I \frac{\partial W}{\partial P})^T (\nabla I \frac{\partial W}{\partial P})$
- Step 7. Compute $\sum (\nabla I \frac{\partial W}{\partial P})^T (T(x, y) I(W([x, y]; P)))$
- Step 8. Compute ΔP
- Step 9. Update $P \leftarrow P + \Delta P$

Example

Example: Tracking Liver in Ultrasound

Our tracking+ Manual annotation

Outline

• Region Tracking (and Mean Shift Algorithm)

- Point Tracking (and Aperture Problem)
 Template Tracking (Lucas-Kanade)

 - Tracking-by-Detection
 - a specific target

- object class
- Model-based Body Articulation
- On-line Learning
- Misc (preventing drift, context, issues)

Model

Tracking by Detection (of a specific target)

3D Object Detection

Reference image(s) of the object to detect

Test image

3D Object Detection

MathWorks

Reference image(s) of the object to detect

Test image

1. Detect Keypoints

- invariant to scale, rotation, or perspective

100 strongest feature points in the reference image

300 strongest feature points in the test image

2. Build Feature Descriptors

Histogram of Oriented Gradients

Example: HOG is a (rotation invariant) feature descriptor

Useful to track specific points

Also, object shapes defined by edges, thus HOG over entire objects can be descriptive

Bin magnitudes

of gradients

as a histogram

See also SIFT, SURF, ...

3. Match Keypoint Descriptors

• Search in the Database

3. Search in the Database

4. Outlier Elimination

Orcun Goksel, ETH Zurich

Summary

Keypoint Detection

Search in the Database

Geometric verification Robust 3D Pose Calculation

(RANSAC)

[Wagner et al. ISMAR'08]

Computer Vision

Overall: 3.42 ms

Find Pts: 1.25 ms

Track Pts: 0.32 ms

Features: 1.16 ms

Corners: 166

Matched Features: 29

Wrong Rotation: 0

Bad Linetest: 0

Orcun Goksel, ETH Zurich

Outline

• Region Tracking (and Mean Shift Algorithm)

- Point Tracking (and Aperture Problem)
 Template Tracking (Lucas-Kanade)

 - Tracking-by-Detection
 - a specific target (e.g., keypoints + Ransac)
 - object class

- On-line Learning
- Misc (preventing drift, context, issues)

Model

Tracking by Detection (of the object class)

also for "Multiple Object Tracking"

Tracking-by-Detection

detect object(s) independently in each frame

associate detections over time into tracks

Multiple Objects

Examples: Multiple Object Tracking

How to get the detections?

Persons

Background

Supervised Learning

(Support Vector Machines, Random Forests, Neural Networks, ...)

Orcun Goksel, ETH Zurich

Using the classifier

Space-Time Analysis

• Collect detections in space-time volume

Detections

Space Time Volume

[Leibe et al. CVPR'07]

Trajectory Estimation

• Trajectory growing and selection

Trajectory Estimation

• Trajectory growing and selection

Driving

Input (Object Detections)

"Tracking" Result

[Ess et al. CVPR'08]

Outline

• Region Tracking (and Mean Shift Algorithm)

- Point Tracking (and Aperture Problem)
 Template Tracking (Lucas-Kanade)

 - Tracking-by-Detection
 - a specific target (e.g., keypoints + Ransac)
 - object class (multiple object tracking)
 - Model-based Body Articulation
 - On-line Learning
 - Misc (preventing drift, context, issues)

Model

Model based Tracking

Articulated Tracking: Part-Based Models

- Intuitive model of an object
- Model has two components
 - 1. parts (2D image fragments)
 - 2. structure (configuration of parts)
- Dates back to Fischler & Elschlager 1973

Parts-based analysis

Objective: detect human and determine upper body pose (layout)

Model as a graph labelling problem

- Vertices V are parts, $a_i, i = 1, \cdots, n$
- Edges E are pairwise linkages between parts
- ullet For each part there are h possible poses $\mathbf{p}_j = (x_j, y_j, \phi_j, s_j)$
- Label each part by its pose: $f: \mathcal{V} \longrightarrow \{1, \dots, h\}$, i.e. part a takes pose $\mathbf{p}_{f(a)}$.

Parts-based analysis

Pictorial structure model – CRF

Each labelling has an energy (cost):

 $E(f) = \sum_{a \in \mathcal{V}} \theta_{a;f(a)} + \sum_{(a,b) \in \mathcal{E}} \theta_{ab;f(a)f(b)}$ unary terms pairwise terms (appearance) (configuration)

• Fit model (inference) as labelling with lowest energy

Features for unary:

- colour
- · HOG

for limbs/torso

[Ramanan et al. CVPR'05]

Orcun Goksel, ETH Zurich

Walking

 What temporal info can we use for tracking?

 What variation would we expect in population?

Articulation Space

<u>Tracking Articulated Motion as High-Dimensional Inference</u>

- Walking cycles have one main (periodic) DOF
- Regressors to learn this (latent) space, and its variation (Gaussian Process regression, PCA, etc)
- (Pose, Silhouette) training data can be obtained by 3D rendering

Articulation Space

<u>Tracking Articulated Motion as High-Dimensional Inference</u>

- Walking cycles have one main (periodic) DOF
- Regressors to learn this (latent) space, and its variation (Gaussian Process regression, PCA, etc)
- (Pose, Silhouette) training data can be obtained by 3D rendering

Articulation Space Tracking

Outline

• Region Tracking (and Mean Shift Algorithm)

- Point Tracking (and Aperture Problem)
 Template Tracking (Lucas-Kanade)

 - Tracking-by-Detection
 - a specific target (e.g., keypoints + Ransac)
 - object class (multiple object tracking)
 - Model-based Body Articulation
 - On-line Learning

• Misc (preventing drift, context, issues)

Model

Tracking as On-line learning (updating tracking models)

Tracking as Classification

• Learning current object appearance vs. local background.

current background

Tracking as Classification

Tracking as Classification

Tracking Loop

Orcun Goksel, ETH Zurich

For tracking "the invisible"

[Grabner et al. CVPR'06]

When does it fail...

When does it fail...

Drift

Tracked Patches

Confidence

Drift

Outline

• Region Tracking (and Mean Shift Algorithm)

- Point Tracking (and Aperture Problem)
 Template Tracking (Lucas-Kanade)

 - Tracking-by-Detection
 - a specific target (e.g., keypoints + Ransac)
 - object class (multiple object tracking)
- object class (multiple ce.)

 Model-based Body Articulation

 arning

 - Misc (preventing drift, context, issues)

Combining Tracking and Detection (to avoid drift)

Refining an object model

- Only thing we are sure about the object is its initial model (e.g. appearance in first frame)
- We can "anchor" / correct our model with this information, in order to help avoid drift

Current Model

Fix (initial) Model

[Grabner et al. ECCV'08]

Recover from Drift

using a fixed/anchor model (e.g. first frame)

Context in Tracking

Humans use context to track

- ... objects which change there appearance very quickly.
- ... occluded
 objects or object
 outside the image.
- ... small and/or low textured objects or even "virtual points".

Orcun Goksel, ETH Zurich

Using Supporters

Assumptions should hold

In Practice

Which strategy to use?

Depends... No single solution

Some rule-of-thumb suggestions:

- If you can alter the "object" to be tracked,
- → modify/add tracking info e.g. optical IR markers, mark with patterns, etc
- If object is fixed/known, but modification not possible/
 desired → <u>Utilize known info</u>
 e.g. use a template image and/or known object features
- If object unknown/variable object, but resides in a known (static) environment → bg modeling!
- If none above, simply follow from initial image/location, or use sophisticated learning techniques for detection

Tracking v.s. segmentation/localization:
Key difference is TEMPORAL consistency
Orcun Goksel, ETH Zurich

Let's apply

Q. What tracking method would you use in each following application scenario?

What limitations you may expect?

Task: "Discuss one (or more) in groups"

App1. Safety: In a lumbar mill, you wish to use CV to stop the blade if a hand reaches nearby.

App2. Medical: You wish to track the motion of an ultrasound probe, to relate images in space,.

App3. Autonomous driving: Tracking other nearby vehicles to adjust speed and course.

AppX. Your favourite tracking app

Problems in Tracking

Tracking Issues

Initialization

Time t = 0

Tracking Issues

- Obtaining observation...
 - Generative: "render" the state on top of the image and compare
 - <u>Discriminative</u>: classifier or detector score

- ...and dynamics model
 - specify using domain knowledge
 - learn (very difficult)

Tracking Issues

• Model- vs. Model-free-Tracking

Tracking Issues

Nonlinear dynamics

- Sometimes needed to keep multiple trackers in parallel
- E.g., for abrupt direction changes (,,Persons")

Wrong prediction

Tracking Issues

- Prediction vs. Correction (cf. Kalman Filtering)
 - If the <u>dynamics</u> model is <u>too strong</u>,
 tracking will end up <u>ignoring the data</u>.
 - If the <u>observation</u> model is <u>too strong</u>,
 tracking is reduced to repeated detection.

Tracking Issues

- Data Association –
 Multiple Object Tracking
 - What if we don't know which measurements to associate with which tracks?

Tracking Issues

Data Association –
 Occlusions / Self Occlusions

Tracking Issues

• Data Association – Fast Motion

Tracking Issues

- Data Association –
 Background / Appearance Change
 - Cluttered Background
 - Changes in shape, orientation, color,...

Tracking Issues

• Drift

Errors caused by dynamical model,
 observation model, and data association
 tend to accumulate over time

Orcun Goksel, ETH Zurich

Summary

• Region Tracking (and Mean Shift Algorithm)

- Point Tracking (and Aperture Problem)
 Template Tracking (Lucas-Kanade)

 - Tracking-by-Detection
 - a specific target (e.g., keypoints + Ransac)
 - object class (multiple object tracking)
- object class (multiple ce.)

 Model-based Body Articulation

 arning

 - Misc (preventing drift, context, issues)