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Computer
Vision

Motion is a basic cue

Motion can be the only cue for segmentation

Biologically favoured because of camouflage
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Computer
Vision

Motion is a basic cue

… which set in motion a constant, evolutionary race
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Computer
Vision

Motion is a basic cue
Motion can be the only cue for segmentation
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Computer
Vision

Motion is a basic cue
Even impoverished motion data can elicit a 
strong percept

http://www.biomotionlab.ca/Demos/BMLwalker.html5



Computer
Vision

Some applications of motion extraction

❏ Change / shot cut detection

❏ Surveillance / traffic monitoring

❏ Autonomous driving

❏ Analyzing game dynamics in sports

❏ Motion capture / gesture analysis (HCI)

❏ Image stabilisation 

❏ Motion compensation (e.g. medical robotics)

❏ Feature tracking for 3D reconstruction

❏ Etc. !è
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Shot cut detection & Keyframes

Shot cut

Shot cut
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Computer
Vision Human-Machine Interfacing
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Computer
Vision 3D: Structure-from-Motion

Tracking points yields correspondences
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Temple of the Masks, Edzna, Mexico

3D: Structure-from-Motion
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Computer
Vision www.arc3d.b
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Computer
Vision in this lecture...

Several techniques, but…
this lecture is restricted to the 

the detection of the “optical flow”

è
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Computer
Vision Definition of optical flow

OPTICAL FLOW = apparent motion of 
brightness patterns

Ideally, the optical flow is the projection of the three-
dimensional motion vectors on the image

Such 2D motion vector is sought at every pixel of 
the image (note: a motion vector here is a 2D translation vector) 

è
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Computer
Vision Caution required !

Two examples where following brightness patterns 
is misleading: 

1. Untextured, rotating sphere

⇓
O.F. =  0

2. No motion, but changing lighting

⇓
O.F. ≠ 0

è
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Computer
Vision Caution required !
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Computer
Vision

Qualitative formulation

è

Suppose a point of the scene projects to a
certain pixel of the current video frame. Our
task is to figure out to which pixel in the next
frame it moves…

That question needs answering for all pixels of
the current image.

In order to find these corresponding pixels, we
need to come up with a reasonable assumption
on how we can detect them among the many.

We assume these corresponding pixels have
the same intensities as the pixels the scene 
points came from in the previous frame. 

That will only hold approximately… 16



Computer
Vision Mathematical formulation

I (x,y,t) = brightness at (x,y) at time t

Optical flow constraint equation :

0
 
 =

∂
∂+

∂
∂+

∂
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t
I

dt
dy
y
I

dt
dx

x
I

dt
dI

è

This equation states that if one were to track the image 
projections of a scene point through the video, it would
not change its intensity. This tends to be true over short
lapses of time.  

Our mathematical representation of a video:
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Computer
Vision Mathematical formulation

I (x,y,t) = brightness at (x,y) at time t

Optical flow constraint equation :

0
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∂
∂+

∂
∂+
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x
I

dt
dI

è

Note the different types of time derivatives !

Our mathematical representation of a video:
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Computer
Vision Mathematical formulation

I (x,y,t) = brightness at (x,y) at time t

Optical flow constraint equation :

0
 
 =

∂
∂+

∂
∂+

∂
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t
I

dt
dy
y
I

dt
dx

x
I

dt
dI

è

Change of intensity when
following a physical point
through the images

Our mathematical representation of a video:

Change of intensity when
looking at the same pixel
(x,y) through the images19
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0  =++ tyx IvIuI
è
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Mathematical formulation

We will use as 
shorthand 
notation for 

1 equation
per pixel
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Computer
Vision

The aperture problem 

0  =++ tyx IvIuI

1 equation in 2 unknowns… the `aperture problem’
è

, =
dt
dxu

dt
dyv =

Ix =
∂I
∂x

 , , 
∂
∂=
y
II y t

IIt ∂
∂=

Note that we can measure the 3 derivatives of
I, but that u and v are unknown
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Computer
Vision The aperture problem 

( ) ( ) tyxtyx IvuIIIvIuI −=⋅⇒  =++ ,,0

Aperture problem : only the component along the 
gradient  can be retrieved 

22
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Computer
Vision The aperture problem 
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Vision Remarks



Computer
Vision Remarks

1. The underdetermined nature could be
solved using higher derivatives of intensity

2. for some intensity patterns, e.g. patches with
a planar intensity profile, the aperture problem 
cannot be resolved anyway. 

è

For many images, large parts have planar intensity
profiles… higher-order derivatives than 1st order are 
typically not used (also because they are noisy) 
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Computer
Vision

Horn & Schunck algorithm 

Breaking the spell via an …
additional smoothness constraint : 

,))()(( 2222 dxdyvvuue yxyxs +++= ∫∫
to be minimized, 
besides the OF constraint equation term

,)( 2dxdyIvIuIe tyxc ++= ∫∫

è

The integrals are over the image.
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Computer
Vision

Horn & Schunck algorithm 

Breaking the spell via an …
additional smoothness constraint : 

,))()(( 2222 dxdyvvuue yxyxs +++= ∫∫
to be minimized, 
besides the OF constraint equation term

,)( 2dxdyIvIuIe tyxc ++= ∫∫

minimize es+λec

è

(also reduces influence of noise)
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Computer
Vision The calculus of variations

look for functions that extremize functionals 

(a functional is a function that takes a vector as its input 
argument, and returns a scalar)

è

((ux
2∫∫ + uy

2 )+ (vx
2 + vy

2 ))dxdy

dxdyIvIuI tyx
2)(  ++ + ∫∫λ

like for our functional:

what are the optimal u(x,y) and v(x,y) ?
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Computer
Vision The calculus of variations

look for functions that extremize functionals

I = F(x, f , ′f )dx
x1

x2

∫

f (x1) = f1 and 22)( fxf =

è

f = f (x) ′f = df
dx

with               ,
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Computer
Vision Calculus of variations 

Suppose 

1. f(x) is a solution

2. η(x) is a test function with η(x1)= 0
and η(x2) = 0

è

Rationale: suppose f is the solution, then 
any deviation should result in a worse I; 
when  applying classical optimization over 
the values of ε the optimum should be ε = 0

I = F(x, f + εη  ,  ′f + ε ′η )dx
x1

x2

∫
We then consider

30



Computer
Vision Calculus of variations 

Suppose 

1. f(x) is a solution

2. η(x) is a test function with η(x1)= 0
and η(x2) = 0

è

With this trick, we reformulate an optimization 
over a function into a classical optimization over 
a scalar… a problem we know how to solve

I = F(x, f + εη  ,  ′f + ε ′η )dx
x1

x2

∫
We then consider
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Computer
Vision Calculus of variations 

Suppose 

1. f(x) is a solution

2. η(x) is a test function with η(x1)= 0
and η(x2) = 0

I = F(x, f + εη  ,  ′f + ε ′η )dx
x1

x2

∫

è

for the optimum : 

00==εεd
dI Around the optimum, the 

derivative should be zero
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Computer
Vision Calculus of variations 

Suppose 

1. f(x) is a solution

2. η(x) is a test function with η(x1)= 0
and η(x2) = 0

I = F(x, f + εη  ,  ′f + ε ′η )dx
x1

x2

∫
for the optimum : 

02

1

=′+ ′∫ dxFxFx f

x

x f ))()(( ηη

è
f + εη ε = 0with ′f + ε ′η ε = 0with 33
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Calculus of variations

è

02

1

=′+ ′∫ dxFxFx f

x

x f ))()(( ηη

Using integration by parts : 

d
dx

(g
x1

x2

∫ h) dx = (dg
dx
h +

x1

x2

∫  dh
dx
g)dx = [gh]x1

x2

[gh]x1

x2 = g(x2 )h(x2 )− g(x1)h(x1)

Using integration by parts:

where
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Calculus of variations

è

02

1

=′+ ′∫ dxFxFx f

x

x f ))()(( ηη

Using integration by parts                                  : 

′η (x)F ′fx1

x2

∫ +η(x) d
dx
F ′f dx = η(x)F ′f⎡⎣ ⎤⎦x1

x2

d
dx

(η(x)F ′f ) 
x1

x2

∫ dx
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Calculus of variations

Using integration by parts                                  : 

′η (x)F ′fx1

x2

∫ +η(x) d
dx
F ′f dx = η(x)F ′f⎡⎣ ⎤⎦x1

x2

è

02

1

=′+ ′∫ dxFxFx f

x

x f ))()(( ηη

d
dx

(η(x)F ′f ) 
x1

x2

∫ dx
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Calculus of variations

Using integration by parts                                  : 

[ ] ,)()()( dxF
dx
dxFxdxFx f

x

x

x
xf

x

x f  −=′ ′′′ ∫∫ 2

1

2

1

2

1

ηηη

è

02

1

=′+ ′∫ dxFxFx f

x

x f ))()(( ηη

d
dx

(η(x)F ′f ) 
x1

x2

∫ dx
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Calculus of variations

Using integration by parts                                  : 

[ ] ,)()()( dxF
dx
dxFxdxFx f

x

x

x
xf
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1

2
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ηηη

è

02

1

=′+ ′∫ dxFxFx f

x

x f ))()(( ηη

d
dx

(η(x)F ′f ) 
x1

x2

∫ dx
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Calculus of variations

Using integration by parts                                  : 

[ ] ,)()()( dxF
dx
dxFxdxFx f

x

x

x
xf

x

x f  −=′ ′′′ ∫∫ 2

1

2

1
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ηηη

Therefore

02

1

=−∫ dxF
dx
dFx f

x

x f ))(( 'η

regardless of η(x), then 0=− ′ff F
dx
dF

Euler-Lagrange equation
è

02

1

=′+ ′∫ dxFxFx f

x

x f ))()(( ηη

d
dx

(η(x)F ′f ) 
x1

x2

∫ dx
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Vision

Calculus of variations

Generalizations

n 1. dxffffxFI
x

x
,...),,...,,,( 2121

2

1

′′= ∫
Simultaneous Euler-Lagrange equations,
i.c. one for u and one for v : 

0=− ′iffi F
dx
dF

è
40
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Calculus of variations

Generalizations

n 1. dxffffxFI
x

x
,...),,...,,,( 2121

2

1

′′= ∫
Simultaneous Euler-Lagrange equations,
i.c. one for u and one for v : 

0=− ′iffi F
dx
dF

è

then repeat, once deriving w.r.t. ε1 ,
once w.r.t. ε2 , …
thus obtaining a system of PDEs

We add ε1 η1 to f1 , ε2 η2  to f2 , etc.
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Calculus of variations

Generalizations

n 1. dxffffxFI
x

x
,...),,...,,,( 2121

2

1

′′= ∫
Simultaneous Euler-Lagrange equations,
i.c. one for u and one for v : 

0=− ′iffi F
dx
dF

n 2.    2 independent variables x and y

dxdyfffyxFI yyxD x ),,,,( εηεηεη +++= ∫ ∫
è
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Computer
Vision Hence 

0 = (ηFf +ηxD∫∫ Ffx +ηyFfy )dxdy

Now by Gauss’s integral theorem,

∂Q
∂x

+ ∂P
∂y

⎛
⎝⎜

⎞
⎠⎟D∫∫  dxdy = (Qdy − Pdx),

∂D∫
such that

)  (
)()(

dxFdyFdxdy
y
F

x
F

yx

yx
fD f

f

D

f ηη
ηη

−=
∂

∂
+

∂
∂

∫∫ ∫ ∂

= 0 

Calculus of variations

è
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Calculus of variations

(ηxD∫∫ Ffx +ηyFfy ) dxdy + (η
∂Ffx
∂x

+η
∂Ffy
∂y

) 
D∫∫ dxdy = 0

è

0
)()(

=
∂

∂
+

∂
∂

∫ ∫ dxdy
y
F

x
F

yx f

D

f ηη
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Calculus of variations

dxdy
y

F

x
F

dxdyFF
DD

yx
yx
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fyfx  ⎟

⎟
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⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂
∂

−= + ∫ ∫∫ ∫ ηηη )(

Consequently,
dxdyF

y
F
x

F
D yx fff∫ ∫  ⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂
∂−

∂
∂−= η0

for all test functions η , thus

0=
∂
∂−

∂
∂−

yx fff F
y

F
x

F

is the Euler-Lagrange equation
è
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∂
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∂
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F

yx f

D

f ηη
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Horn & Schunck

The Euler-Lagrange equations : 

0

0

=
∂
∂−

∂
∂−

=
∂
∂−

∂
∂−

yx

yx

vvv

uuu

F
y

F
x

F

F
y

F
x

F

In our case ,

,)()()( 22222
tyxyxyx IvIuIvvuuF ++++++= λ

so the Euler-Lagrange equations are 

,)(
,)(

ytyx

xtyx

IIvIuIv
IIvIuIu

++=Δ

++=Δ

λ
λ

2

2

2

2

yx ∂
∂+

∂
∂=Δ is the Laplacian operator

è
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Horn & Schunck

Remarks : 

1. Coupled PDEs solved using iterative 
methods and finite differences (iteration i)

2. More than two frames allow for a better 
estimation of It

3. Information spreads from edge- and corner-type 
patterns

è

,)(          

,)(          

ytyx

xtyx

IIvIuIv
t
v

IIvIuIu
t
u

++−Δ=
∂
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∂
∂

λ

λ
i

i

_
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è
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Computer
Vision Horn & Schunck, remarks

1. Errors at object boundaries

2. Example of regularisation
(selection principle for the solution of
ill-posed problems by imposing an extra
generic constraint, like here smoothness)

è

(where the smoothness constraint is
no longer valid)
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Computer
Vision Other approaches

1. Model-based tracking (application-specific)
- active contours 
- analysis/synthesis schemes

è

2. Feature tracking (more generic)
- corner tracking
- blob/contour tracking
- intensity profile tracking
- region tracking

50



Computer
Vision Condensation tracker
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Computer
Vision Model-based tracker

(EPFL)
52



Computer
Vision Model-based tracker

(EPFL)
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Motion capture for special effects
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