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Computer
Vision Feature matching

Feature: measured characteristic of (part of) 
a pattern / object

Goal : efficient matching for 

registration (i.e. mosaicking / overlaying), 
correspondences for 3D, 
tracking, 
recognition,
…
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Vision Feature matching – examples for recognition
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Large scale change, heavy occlusion

Feature matching



Computer
Vision

Deformation, illumination change, occlusion

Feature matching
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Large scale change, perspective 
deformation, extensive clutter

Feature matching
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Extensive clutter, scale, occlusion, blur

Feature matching



Computer
Vision

• features to deal with large variations
in
– Viewpoint

Matching: a challenging task
Re-iterating the difficulties with matching

highlighted thus far:
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• features to deal with large variations
in
– Viewpoint
– Illumination

Matching: a challenging task
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• features to deal with large variations in
– Viewpoint
– Illumination
– Background

Matching: a challenging task
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• features to deal with large variations in
– Viewpoint
– Illumination
– Background

And with 

occlusions

Matching: a challenging task



Computer
Vision Considerations when selecting features

n 1. Complete ( describing pattern unambiguously) or not

n 2. Robustness of extraction

n 3. Ease of extraction

n 4. Global vs. local
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n 1. Complete ( describing pattern unambiguously) or not

n 2. Robustness of extraction

n 3. Ease of extraction

n 4. Global vs. local
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PART 2:                             
`INTEREST POINTS’



Computer
Vision Additional requirement:

A feature should capture something discriminative
about a well localisable patch of a surface

We start with the well localisable bit:

Shifting the patch a bit should make a big 
difference in terms of the underlying pattern
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consider the pixel pattern within the green patches: 

Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch
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How do the patterns change upon a shift?

Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch

“flat” region:
no change in all 
directions

“edge”:  
no change along 
the edge direction

“corner”:
significant change 
in all directions
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Uniqueness of a patch

Now that we know what we are looking for, we 
need to find a good way to do it in practice…
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch

WConsider shifting the patch or
`window’ W by (u,v)

• how do the pixels in W change?
• compare each pixel before and after by

summing up the squared differences (SSD)
• this defines an SSD “error” or E(u,v):
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch

Taylor Series expansion of I:

If the motion (u,v) is small, then 1st order appr. is good

Plugging this into the formula at the top…
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch

W

Then, with 
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch

This can be rewritten further as:

• Which directions [u,v] will result in the largest and 
smallest E values?

• We can find these directions by looking at the 
eigenvectors of H
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Uniqueness of a patch - PCA
In order to get the eigenvectors/values of H we need
to apply PCA to H

PCA will be covered in the lecture on Unitary Transf.
So, we give a sneak preview only here.
H is basically is a covariance matrix of (Ix,Iy) ; that 
will later clarify the link with the part on PCA

PCA assumes the distribution of (Ix,Iy) to be Gaussian.

Hence, it fits and ellipse to that distribution. 

The eigenvectors (`principal components’ in PCA 
parlance) correspond to the directions of the 
long and the short axis of the ellipse. The eigenvalue
are given by the ellipse size in those direction. 
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Uniqueness of a patch - PCA

Let’s look at those (Ix,Iy) distributions for:
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Uniqueness of a patch - PCA
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Uniqueness of a patch - PCA
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch
This can be rewritten further as:

Eigenvalues and eigenvectors of H
• Define shifts with the smallest and largest change 

(E value)
• x+ = direction of largest increase in E. 
• + = amount of increase in direction x+

• x- = direction of smallest increase in E. 
• - = amount of increase in direction x+

λ

λ
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch

Want E(u,v) to be large for small shifts in all directions
• the minimum of E(u,v) should be large, over all 

unit vectors [u v]
• this minimum is given by the smaller eigenvalue 

( -) of Hλ

λλexample image + -
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

Uniqueness of a patch
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

The Harris corner detector

- is a variant of the “Harris operator” for feature 
detection

• The trace is the sum of the diagonals, i.e.,                   
trace(H) = h11 + h22

• Det(H) = product of eigenvalues, Trace(H) = sum eigenval.
• Thus, related to eigenvalues but cheaper to compute 
• AND more refined detection of corners 
• Called the “Harris Corner Detector” or “Harris Operator”
• Lots of other corner detectors, this is one of the most 

popular ones

Determinant - k (Trace)2

λ

(k is empirically chosen, typically 0.04 to 0.06)
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Slide adapted from Darya Frolova, Denis Simakov, Deva Ramanan

The Harris corner detector
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The Harris corner detector

2 views of an object… are the corners stable?
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The Harris corner detector
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The Harris corner detector
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The Harris corner detector
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The Harris corner detector
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Interest points

Corners are the most prominent example of 
so-called `Interest Points’, i.e. points that can 
be well localised in different views of a scene

`Blobs’ are another, as we will see… but also 
a blob is a region with intensity changes in 
multiple directions
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PART 3:                             
A TALE OF INVARIANCE



Computer
Vision Need for an invariant descriptor:

There are many corners coming out of our
DETECTOR, but they still cannot be told apart

We need to describe their surrounding image 
patch such we can discriminate between them, 
i.e. we need to build a feature vector for the patch, 
a so-called DESCRIPTOR

During a MATCHING step, the descriptors can 
then be compared. In order for that to be easy,
the descriptors for corresponding, detected points 
must be similar in different views. i.e. invariant
under the changes between these views. 



Computer
Vision Additional requirement on the descriptor:

Invariance under geom./phot. change

A local patch is small, 
hence probably rather planar. 

But how do planar patches deform when
looking at their image projection? 
i.e. we determine the geometric changes 
the descriptor should remain invariant under



Computer
Vision Planar pattern projections to be compared
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Vision Projection : a camera model

Reversed center-image pinhole model : 
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Vision Projection : equations

Z
Xfx =

Z
Yfy =

an approximation...

special cases : 
1.  Z constant, or 
2. object small compared to its distance to    

the camera

kYy
kXx

=
=

pseudo-perspective



Computer
Vision Deformations under projection

In particular, how do different views
of the same planar shape / contour differ ?

we consider 3 cases : 

1. viewed from a perpendicular direction
2. viewed from any direction but at sufficient 

distance to use pseudo - perspective
3. viewed from any direction and from any 

distance
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Deformations : case 1
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Case of fronto-parallel viewing : 
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Vision Deformations : case 2

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

       
       
      

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

′
′
′   

3

2

1

333231

232221

131211

t
t
t

Z
Y
X

rrr
rrr
rrr

Z
Y
X

,
,  
Xkx
kXx

′′=′
=

,
,  
Yky
kYy

′′=′
=

we easily derive

1131211 tkZrkyr
k
kxr

k
kx ′+′+

′
+

′
=′

and should eliminate Z



Computer
Vision Deformations : case 2 cont’d

We use the planarity restriction : 
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Vision Summary case 2

Viewing from a distance : 
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Vision Deformations : case 3

3D Euclidean motion, but perspective projecton
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Deformations : case 3
3D Euclidean motion, but perspective projecton
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Vision Deformations : case 3

Thus,
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Computer
Vision Deformations : case 3 cont’d

Using the planarity restriction : .
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Vision Deformations : case 3 cont’d

Using the planarity restriction : .
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General viewing conditions:
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Computer
Vision Invariance and groups

Invariance w.r.t. group actions

Invariance under transformations implies 
invariance under the smallest encompassing 
group

image 1 image 2 image 3

T2T1

I1= I2= I3

T1 T2
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Vision Remarks

There are more groups, but the ones described 
are the most relevant for us
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Remarks
Complexity of the groups goes up with the 
generality of the viewing conditions, and so 
does the complexity of the group’s invariants

Fewer invariants are found going from left to right
Similarities ⊂ affinities  ⊂  projectivities
Invar. Proj. ⊂ invar. Aff.  ⊂ invar. Sim.

4D 6D 8D

e.g. effects on a square:
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Vision Remarks

Many types of invariants can be generated, e.g.
for points, for lines, for moments, etc. 

notations for point coordinates:

Image coordinates of a point: X = (x,y)T

Subscript indentifiers: X = (xi,yi)T for point ii
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Vision Remarks

Many types of invariants can be generated, e.g.
for points, for lines, for moments, etc. 

Examples for points

Similarities:

Affinities:

Projectivities:
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Computer
Vision Comment:

As our local patches are by definition small, 
we expect that invariance under affine or
even similarity transformations will do, also
for case 3 viewing conditions.  

That invariants under similarities can serve 
us well under case 3 viewing conditions should
come as a surprise… their deviation from strict
geometric requirements is compensated by 
their computational simplicity compared to 
affine invariants, if viewing changes are not 
too extreme.  
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photometric changes
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• A reasonable model for typical illumination changes 
is given by

• linear part caters for changes of color and/or 
intensity of the illumination;                                            
the 3 scale factors are the same if the illumination 
changes intensity only

• the non-linear part caters for specularities
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Computer
Vision Thus:

As our patches cover part of a surface containing 
some surface texture, we will also have to be 
invariant under photometric changes if we want to 
use that texture.   
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• Contrasts (intensity differences) let the non-linear 
offsets cancel; hence gradients are good !

• Moreover the orientation of gradients in the color 
bands is invariant under their linear changes, as is 
the intensity gradient orientation in case the scale 
factors are identical;                                                  
this is indeed relevant if the illumination changes its 
intensity, but not its color, which is typically assumed.

• But even under changing color of the illumination, in 
practice edge orientations tend to remain the same.

photometric changes



Computer
Vision Our goal

Define good interest points, i.e.

DETECTORS + DESCRIPTORS



Computer
Vision Our goal

Define good interest points, i.e.

DETECTORS + DESCRIPTORS

The detector typically yields image points

Descriptors then are a vector of measurements
taken around each such point
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Matching of the descriptors based on closeness
according to an appropriate metric…
Hierarchical matching can help to speed up

Not discussed in detail here
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• Interest points are matched on the basis of their 
descriptors

• E.g. nearest neighbour, based on some distance 
like Euclidean or Mahalanobis; good to compare 
against 2nd nearest neighbour: OK if difference 
is big; or fuzzy matching w. multiple neighbours

• Speed-ups by using lower-dim. descriptor space  
(PCA) or through some coarse-to-fine scheme 
(very fast schemes exist to date!)

• Matching of individual points typically followed 
by some consistency check, e.g. epipolar
geometry, homograpy, or topological 

notes on matching
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PART 3:                             
THE PATCH…
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Vision Our goal

BUT, so far we have glossed over an important issue: 

The shape of the patch should change with viewpoint



Computer
Vision The need for variable patch shape



Computer
Vision The need for variable patch shape

Taking the same square patch around corresponding
interest points leads to a very different content of the
patches… hence the matching will become hard. 



Computer
Vision The need for variable patch shape

Replacing the squares by identical circles does not
really help much… 
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Vision The need for variable patch shape

Allowing the diameters to differ helps somewhat, but
contents still quite different (look at the top regions in
the circles)
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Vision The need for variable patch shape

Using ellipses works much better: the circle on the 
left transforms into an ellipse under the affine transf.
between the local view change 
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Vision The need for variable patch shape

The important thing is to achieve such change in
patch shape without having to compare the images,
i.e. this should happen on the basis of information 
in one 
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The need for variable patch shape

An image that we will use as test case…

Note the global perspective/projective distortion!



Computer
Vision Example: parallelogram next to edge corner
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1. Harris corner detection

Example: parallelogram next to edge corner
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2. (Canny) edge detection

Example: parallelogram next to edge corner
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3. Evaluation relative affine invariant parameter 
along two edges

iiiiii dssppspabsl ∫ −= |))()((| )1(

Letting 2 points evolve away from the corner in opposite directions, 
such that the above expression is the same for both, yields in the 
2 images to corresponding parallelograms

Example: parallelogram next to edge corner



Computer
Vision

4. Construct 1-dimensional family of 
parallelogram shaped regions

Example: parallelogram next to edge corner
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f

)(lΩ

5. Select parallelograms based on invariant extrema of 
function

For instance: 
extrema of average value of a color band within the patch

Example: parallelogram next to edge corner
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5. Select parallelograms based on local extrema of invariant 
function

Example: parallelogram next to edge corner
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Augmented Reality where an interest point’s patch is 
filled with the texture `BIWI’. The stability shows how 
well the patch adapts to the viewpoint

Example: parallelogram next to edge corner
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PART 4:                             
EXAMPLES
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Vision Example 1: edge corners + affine moments
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6. Describe the pattern within the parallelogram with 
affine invariant moments

( ) ( ) ( ) dxdyyxbyxgyxryxM cbaqpcba
qp   ,  ,  ,  ,,

, ∫=

Geometric/photometric moment invariants based 
on generalised colour moments:

abc
pqM are not invariant themselves, need to be combined

Example 1: edge corners + affine moments
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6. Describe the pattern within the parallelogram with 
affine invariant moments

Example moment invariant from only 2 color bands:

Example 1: edge corners + affine moments
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1. Search intensity extrema
2. Observe intensity profile along rays 
3. Search maximum of invariant function f(t) along 

each ray 
4. Connect local maxima  
5. Fit ellipse
6. Double ellipse size
7. Describe elliptical patch with moment invariants

Ex. 2: intensity extrema + affine moments
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Vision Ex. 2: intensity extrema + affine moments



Computer
Vision Ex. 2: intensity extrema + affine moments
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Wide baseline stereo matching example.
based on ex.1 and ex.2 interest points 

Remark

In practice different types of interest points
are often combined
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MSER = Maximally Stable Extremal Regions 

• Similar to the Intensity-Based Regions we just saw

• Came later, but is more often used

• Start with intensity extremum

• Then move intensity threshold away from its value 
and watch the super/sub-threshold region grow 

• Take regions at thresholds where the growth is 
slowest (happens when region is bounded by strong edges)

MSER interest points
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Computer
Vision MSER
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nii QQQQ ...... 11 ⊂⊂⊂⊂ +

iii QQQiq /|\|)( Δ−Δ+=

• Extremal region: region such that 

• Order regions, following increasing or
decreasing threshold

• Maximally Stable Extremal Region:
local minimum of

MSER
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SIFT, developed by David Lowe (Un. British
Columbia, Canada), is a carefully crafted
interest point detector + descriptor, 
based on intensity gradients (cf. our comment

on photometric invariance) and 
invariants under similarities, not affine like so far

Our summary is a simplified account! 

Example 3: SIFT

SIFT = Scale-Invariant Feature Transform
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SIFT
Descriptor is based on blob detection, at several scales, 
i.e. local extrema of the Laplacian-of-Gaussian, or LoG
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Dominant orientation selection 
– Compute image gradients
– Build orientation histogram
– Find maximum

0 2π

SIFT
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• Dominant orientation selection
– Compute image gradients
– Build orientation histogram
– Find maximum

0 2π

SIFT



Computer
Vision • Thresholded image gradients are sampled over a grid

• Create array of orientation histograms within blocks
• 8 orientations x 4x4 histogram array = 128 dimensions
• Apply weighting with a Gaussian located at the center
• Normalized to unit vector

SIFT

(Fig. shows 2x2, actually 4x4)
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SIFT

The descriptor is a vector concatenating the cell 
histograms…
Its total dimension is 128
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Sensitivity to affine changes… quite good !!!

SIFT
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Can you find correspondences ?

NASA Mars Rover images

SIFT
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NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely

SIFT can…

SIFT
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SIFT
NB: detectors and descriptors can be mixed, through
normalization

e.g. create an affinely  invariant region (affinely inv. 
detector), then describe content with SIFT:
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Application: robot navigation
SURF efficient alternative to SIFT
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• Robot equipped with omnidirectional camera

SURF
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SURF
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Landmark, label, cover,… recognition also used 
for prior kooaba Déjà Vu app (then Qualcomm)
for the iPhone, Android, and Symbian platforms

SURF
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http://www.cs.ubc.ca/~mbrown/autostitch/autostit
ch.html

Automatic mosaicing
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